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A B S T R A C T

We theoretically investigate the bandgap formation in an Euler–Bernoulli beam-based metastructure with
periodically attached double negative 3-dof local resonators. The idiosyncratic physical phenomena found in
mechanical metamaterials, such as negative stiffness and mass, are introduced in the attached local resonator
to design the double negative metabeam. The transfer matrix method with the Bloch–Floquet formulation
is implemented in a unit cell of the double negative metabeam. The complex band structure describes the
existence of various locally resonant attenuation bandgaps on the frequency spectrum. Further system analysis
is conducted to illustrate the merging of the negative stiffness and mass controlled locally resonant bandgaps.
A significant increase of 164% is found in the attenuation bandwidth due to the merging of locally resonant
bandgaps.
1. Introduction

The dynamics of the elastic beam with attached local resonators
has engrossed researchers from the decades for controlling the vibra-
tion in structures [1–5]. Here we propose a metabeam with period-
ically attached 3-dof special double negative resonating unit to the
host structure having a spring–mass system with specified boundary
conditions. The stiffness and mass of the attached resonators to the
host beam modulate the wave propagation in the system. Due to
the frequency-dependent wave propagation properties, mapping the
excitation frequency with the wavenumber exhibits various locally
resonant attenuation bands on the frequency spectrum. Analysis of the
isolated single unit cell from the metabeam gives wave propagation
characteristics in the designed metastructure. The specified boundary
conditions for a single unit cell in conjunction with the transfer matrix
method application give the correlation between the state vectors of
either side. The logarithm of the eigenvalues of the transfer matrix gives
the wavenumber for the metabeam [6]. Propagation and attenuation
characteristics of a wave are dependent on the numerical values of the
wavenumber, which can be purely real or imaginary and complex [7].
According to the bandgap formation mechanism, the attenuation bands
can be categorized as locally resonant and Bragg’s Scattering bandgap.
The locally resonant bandgaps are formed due to the simultaneous out-
of-phase motion of multiple resonating units, making dynamic effective
mass or effective stiffness of the structure negative in a specific band of
the excitation frequency. Bragg’s scattering bandgap is formed because
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of the destructive interference of the waves in the higher frequency
region. These elastic metastructures can exhibit wideband vibration
damping characteristics because of the locally resonant bandgaps. The
application of these structures can also be extended for vibration energy
harvesting [8,9]. The locally resonant bandgaps can be tuned on the fre-
quency spectra with the help of the stiffness and mass of the resonators.
An elastic beam with an attached spring–mass system exhibits a nar-
row locally resonant band. Many works are reported in the literature
for widening the locally resonant bandgap [10–15]. In this direction,
researchers also proposed multi-degree of freedom resonator attached
to the elastic beam to study the multi flexural bandgaps. However,
these studies may not produce wider bandgaps due to separation in
different frequency ranges. The effect of eigenfrequencies apart from
the individual natural frequency of resonators in the multi-degree of
freedom system is also essential to communicate, which plays a vital
role in forming the locally resonant bandgaps.

This article presents a special double negative resonator attached to
the elastic beam to address the research gap in the literature. By incor-
porating the idiosyncratic physical properties like negative stiffness and
mass of mechanical metamaterials [16–19] through the discrete spring–
mass system, the double negative metabeam is designed. The bandgap
formed due to the attached double negative resonators are tuned to
merge with the help of derived critical physical system parameters. This
analysis increases the efficacy of the designed metabeam for wideband
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Fig. 1. Discrete double negative metamaterial having negative stiffness and mass
characteristics. A series of primary masses 𝑚 attached with spring having stiffness 𝑘 by
four rigid massless bars with secondary spring–mass systems (𝑘1 and 𝑚1) attached to
the diagonally opposite nodes. This system acts as a negative stiffness metamaterial.
Further, inside the primary mass 𝑚, a resonating mass 𝑚2 is present, making it a
mass-in-mass system and acting as a negative mass metamaterial.

Fig. 2. Euler–Bernoulli based double negative metabeam. The local 3-dof resonator
attached to the host beam is having negative stiffness and mass characteristics.

vibration control due to the merging of the various locally resonant
attenuation bands along the frequency spectrum.

2. Double-negative metabeam

Fig. 1 shows double-negative mechanical metamaterial in the dis-
crete form, previously investigated by Huang et al. [20]. This mechan-
ical metamaterial lattice structure has primary masses 𝑚 connected by
spring having stiffness 𝑘. The secondary mass 𝑚1 and spring having
stiffness 𝑘1 are attached to primary masses 𝑚 with the help of four
massless bars on either side with frictionless revolute joints such that
nodes connecting the primary masses traverse only horizontally. This
special structure is inspired by the Helmholtz resonator and called neg-
ative stiffness metamaterial [21–23]. To introduce double negativity in
this system, primary mass 𝑚 has a mass-in-mass structure. The internal
resonating mass 𝑚2 is connected to 𝑚 with spring having stiffness 𝑘2.
The mass-in-mass structure of the primary mass 𝑚 is called a negative
mass metamaterial and can be represented as a single degree of freedom
spring–mass system having negative mass [24,25]. Hence, the whole
discrete spring–mass system is called a double-negative metamaterial.

As shown in Fig. 2, we propose a beam-based metastructure in
which double negative resonators are attached periodically at uniform
locations on an elastic beam. The beam assumed in the metastructure
is Euler–Bernoulli beam. The massless bar structure with spring–mass
systems (𝑚1, 𝑘1) and (𝑚, 𝑘) introduce dynamic negative stiffness in
the horizontal direction. On the other side, the extended spring–mass
systems (𝑚2, 𝑘2) coupled with (𝑚, 𝑘) becomes a mass-on-mass system
and introduce dynamic negative mass effect in the vertical direction.
Therefore, the entire 3-dof spring–mass resonator attached to the beam
introduces a double negative effect in a specific excitation frequency
band in the metabeam. Hence, the proposed metastructure with a 3-dof
resonator attached to the beam may be expressed as a double negative
metabeam.

The dynamics of negative stiffness [21,23,26] and negative mass
resonator [24,25] is investigated thoroughly in the literature. The
characteristic equations can be derived for the effective stiffness and
mass for a unit cell of the metabeam with attached 3-dof resonators.
2

Fig. 3. The effective dynamic properties (mass and stiffness) of the metabeam are
negative in a frequency range.

To find the effective stiffness and mass of the system, we need to find
the effective force and momentum of the system, respectively. The
effective dynamic properties (𝐸𝑒𝑓𝑓 ) of the system can be derived using
the closed-form expressions of 𝑦1 and 𝑦2 given in Appendix A. Fig. 3 elu-
cidates the variation of the effective dynamic property on the frequency
scale. The effective stiffness and mass of the system are negative in a
frequency range. Therefore, dynamic physical properties will modulate
wave propagation inside the designed metabeam. The simultaneous
out-of-the-phase motion of multiple resonating units make the effective
physical properties (mass or stiffness) of the system frequency contin-
gent due to the occurrence of local resonance phenomenon, resulting
in the formation of locally resonant bandgaps. By changing the natural
frequency (mass and stiffness) of resonators in the metastructure, edg-
ing frequencies of the bandgap can be changed. The following section
explains the analytical formulation of the Euler–Bernoulli beam-based
metabeam.

3. Analytical formulation

Equation of motion of the Euler–Bernoulli beam for free vibration
can be written as

𝐸𝐼
𝜕4𝑤(𝑧, 𝑡)

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑤(𝑧, 𝑡)
𝜕𝑡2

= 0 (1)

where 𝐸𝐼 is the flexural rigidity of the beam, 𝜌 is the density of the
material, and 𝐴 is the cross-section area of the beam. 𝑤 is the transverse
deflection of the beam in 𝑧−direction, which is the function of the space
(𝑧) and time (𝑡).

Eq. (1) can be non-dimensionalized by assuming 𝑧 = 𝐿𝑏�̃�, 𝑡 = 𝜔𝜏,
𝑤(𝑧, 𝑡) = 𝑊 �̃�(�̃�, 𝜏). Here 𝐿𝑏 is length of the unit cell in metabeam, 𝜔
is the natural frequency of the beam. 𝐿𝑏, 𝜔 and 𝑊 relate the respec-
tive dimensional terms to non-dimensional terms. Based on this, non-
dimensional form of Euler–Bernoulli beam equation may be written as

𝜕4�̃�(�̃�, 𝜏)
𝜕�̃�4

+
𝜕2�̃�(�̃�, 𝜏)

𝜕𝜏2
= 0 (2)

where 𝜔2 = 𝐸𝐼
𝜌𝐴𝐿4

𝑏
. For solving Eq. (2), we assumed the displacement in

the form �̃�(�̃�, 𝜏) = 𝑋(�̃�)𝑒𝑖𝛺𝜏 , where 𝛺 = 𝜔
𝜔 is the ratio of the temporal

frequency of the wave to the natural frequency of the beam. After
substituting the assumed displacement in Eq. (2), Euler–Bernoulli beam
equation could be rewritten as

𝑋𝐼𝑉 (�̃�) −𝛺
2
𝑋(�̃�) = 0 (3)

The continuity equations for the 𝑛𝑡ℎ unit cell in the metabeam can be
written for displacement, slope, moment, and shear force, respectively
as in Eq. (4), where 𝜇 is the amplitude of the non-dimensionalized
𝑓
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Fig. 4. (a) Negative mass resonator (b) Negative stiffness resonator (c) Double negative
resonator.

shear force induced to the metabeam due to the attached 3-dof double-
negative resonator.

𝑋𝑛(0) = 𝑋𝑛−1(1)

𝑋′
𝑛(0) = 𝑋′

𝑛−1(1)

𝑋′′
𝑛 (0) = 𝑋′′

𝑛−1(1)

𝑋′′′
𝑛 (0) − 𝜇𝑓 = 𝑋′′′

𝑛−1(1)

(4)

The mode shape function 𝑋(�̃�) for obtaining the general solution to
the Euler–Bernoulli beam can be written as in Eq. (5), where 𝐴,𝐵, 𝐶,
and 𝐷 are unknown constants. The defined set of boundary conditions
can find these constants. Substitution of the assumed solution from
Eq. (5) in Eq. (3) yields the value of 𝜆 for the Euler–Bernoulli beam
as 𝜆 =

√

𝛺. It gives the relation between the spatial frequency ratio 𝛺
and eigenfrequency 𝜆 for the metabeam.

𝑋(�̃�) =
[

cos (𝜆�̃�) sin (𝜆�̃�) cosh (𝜆�̃�) sinh (𝜆�̃�)
]

×
[

𝐴 𝐵 𝐶 𝐷
]𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

(5)

Fig. 4 illustrates the development of various resonators in chrono-
logical order. The resonator shown in Fig. 4(a) is a simple, widely
used single degree of freedom negative mass resonator. The conceptual
design of negative stiffness resonator [23,27] is shown in Fig. 4(b).
By combining these two resonators, the double negative resonator can
be designed as depicted in Fig. 4(c). 𝜔1 𝜔2 and 𝜔3 are the natural
frequencies of the resonators for the spring–mass systems (𝑚1, 𝑘1),
(𝑚2, 𝑘2) and (𝑚, 𝑘), respectively. Therefore, 𝜔1 and 𝜔3 are associated
with negative stiffness resonator and 𝜔2 belongs to the negative mass
resonator. The non-dimensionalized natural frequencies 𝛺1, 𝛺2 and 𝛺3
can be defined as 𝛺1 = 𝜔1

𝜔 , 𝛺2 = 𝜔2
𝜔 and 𝛺3 = 𝜔3

𝜔 , which are the ratio
natural frequency of the resonators to natural frequency the beam.

To comprehend the dependency of the various critical physical
parameters on the band structure, we can write 𝛺1

2 = 𝜇𝑠
𝜃 , 𝛺2

2 = 𝜇𝑠𝛩1𝜅2
𝜃𝜅1

and 𝛺3
2 = 𝜇𝑠𝛩2

𝜃𝜅1
, where 𝜃 = 𝑚1

𝜌𝐴𝐿𝑏
, which is the ratio of mass of

the resonator (𝑚1) to the beam and 𝜇𝑠 = 𝑘1𝐿𝑏
3

𝐸𝐼 is the stiffness ratio.
𝛩1 and 𝛩2 are the mass ratios, which are defined as 𝛩1 = 𝑚1

𝑚2
and

𝛩2 =
𝑚1
𝑚 . 𝜅1 =

𝑘1
𝑘 and 𝜅2 =

𝑘2
𝑘 are the stiffness ratios for the resonators.

Additionally, the non-dimensionalized resonating frequencies 𝜂𝑟1 =
𝛺
𝛺1

,

𝜂𝑟2 = 𝜂𝑟1
√

𝜅1
𝜅2𝛩1

and 𝜂𝑟3 = 𝜂𝑟1
√

𝜅1
𝛩2

can be defined as the ratio of the
excitation frequency with natural frequencies of the resonators and can
be reduced in terms of 𝛩1, 𝛩2, 𝜅1, 𝜅2 and 𝜂𝑟1. Hence, all the governing
independent non-dimensional critical system parameters are 𝜂𝑟1, 𝜃, 𝛩1,
𝛩2, 𝜅1, 𝜅2 and 𝜇𝑠.

For finding the shear force due to the double-negative resonator on
the beam, the free body analysis is done for the 𝑛𝑡ℎ 3-dof resonator
along 𝑧 direction in Appendix A. Hence, the non-dimensionalized shear
3

force 𝜇𝑓 in the continuity equation can be written as

𝜇𝑓 =
𝑓𝑛𝐿𝑏

3

𝑊𝐸𝐼
= 𝜇𝑠×

⎡

⎢

⎢

⎣

𝛼2

2
𝛺

2

𝛺1
2 −𝛺

2
− 𝑘

𝑘1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1

1 −

{

𝜅2
𝛺2

𝛺22−𝛺
2 +

𝛺2

𝛺32

}

{

1−𝜅1
𝛼2
2

𝛺2

𝛺12−𝛺
2

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜒

𝑋𝑛(0)

= 𝜇𝑠𝜒𝑋𝑛(0) = 𝜗𝑋𝑛(0)

(6)

where 𝜗 = 𝜇𝑠𝜒 , 𝛼 = 𝐿
𝐷 is the aspect ratio of the resonator. Due

to the above described physical system parameters, the widespread
resonating double negative resonator induces a frequency-dependent
shear force in the metabeam, which always changes the shear force
boundary condition.

Moreover, all the continuity conditions can be non-dimensionalized
using the assumed displacement as done for Eq. (3). Therefore, all the
continuity conditions in Eq. (4) can be condensed in the form of a
matrix, as given below

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0

0 𝜆 0 𝜆

𝜆2 0 𝜆2 0

𝜗 𝜆3 𝜗 𝜆3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑛

𝐵𝑛

𝐶𝑛

𝐷𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏟⏟
𝛬𝑛

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos 𝜆 sin 𝜆 cosh 𝜆 sinh 𝜆

−𝜆 sin 𝜆 𝜆 cos 𝜆 𝜆 sinh 𝜆 𝜆 cosh 𝜆

−𝜆2 cos 𝜆 −𝜆2 sin 𝜆 𝜆2 cosh 𝜆 𝜆2 sinh 𝜆

𝜆3 sin 𝜆 𝜆3 cos 𝜆 𝜆3 sinh 𝜆 𝜆3 cosh 𝜆

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑛−1

𝐵𝑛−1

𝐶𝑛−1

𝐷𝑛−1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⏟⏞⏟⏞⏟
𝛬𝑛−1

(7)

From Eq. (7), the obtained matrices can be written as 𝜦𝑛 = 𝐊−1𝐇𝜦𝑛−1.
As the proposed system is periodic, hence from the Bloch–Floquet’s
theorem, we can have relationship between the state vectors of the
successive unit cell [6], which states

𝝓𝑛(1) = 𝑒−𝑖𝜇 ⋅ 𝐈 ⋅ 𝝓𝑛−1(1) (8)

where 𝐼 is an identity matrix of size 4 × 4, 𝜙 is the state vector and 𝜇 is
non-dimensional wave number. Therefore using Eq. (8), we can relate
the state vectors in consecutive unit cells
𝝓𝑛(1) = 𝐇𝜦𝑛 = 𝐇𝐊−1𝐇𝜦𝑛−1 = 𝐇𝐊−1

⏟⏟⏟
𝑇

𝝓𝑛−1(1)

→ |𝐓 − 𝑒−𝑖𝜇 ⋅ 𝐈|𝝓𝑛−1(1) = 0 → 𝑒−𝑖𝜇 = eig(𝐓)
⏟⏟⏟

𝑢

→ 𝜇 = 𝑖𝑙𝑛(𝑢)

(9)

From the above explained methodology, the band structure of double
negative metabeam can be obtained for a unit cell using the transfer
matrix method followed by the implementation of Bloch–Floquet’s
theorem. Here, the wavenumber is a logarithmic function of the eigen-
values of the transfer matrix 𝑇 . The following section illustrates the
band structure characteristic of the double negative metabeam.

4. Results and discussions

For simulations done in this section parameters of the beam taken
are: area 𝐴 = 7.85 × 10−5 m2, inertia 𝐼 = 4.90 × 10−10 m4,
length 𝐿 = 5 × 10−2 m, density 𝜌 = 7800 kg/m3, Young’s Modulus
𝑏
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Fig. 5. Band structure of the double-negative metabeam is shown for the real and
imaginary parts of the wavenumber with the excitation frequency. The attenuation
bands due to the double negative resonator are highlighted. The eigenfrequencies
of the 3-dof double negative resonator are marked as 151.02 Hz, 500.51 Hz, and
754.26 Hz, which are the opening frequencies of the locally resonant bandgaps. The
individual natural frequencies of the resonators are marked as 159.15 Hz, 503.29 Hz,
and 711.76 Hz.

𝐸 = 2.1 × 1011 N/m2, natural frequency 𝑓𝑏 = 825.70 Hz. For the
local resonator vertical and horizontal dimensions are 𝐿 = 0.01 m and
𝐷 = 0.02 m , respectively. The stiffness of springs are 𝑘1 = 1 × 105 N∕m,
𝑘2 = 1 × 104 N∕m, and 𝑘 = 1 × 105 N∕m, masses attached are having
values 𝑚1 = 5 × 10−3 kg, 𝑚2 = 1 × 10−2 kg and 𝑚 = 1 × 10−2 kg.

Fig. 5 describes the complex band structure of the double neg-
ative metabeam. The imaginary and real parts of the wavenumber
(𝜇) are shown on the 𝑦-axis for attenuation and propagation band
identification. On the 𝑥-axis, the excitation frequency is represented in
Hz. Total three attenuation bands can be observed on the frequency
spectrum in the frequency ranges 151.0–172.50 Hz, 500.10–545.50 Hz,
and 754.20–780.70 Hz. It implies the formation of three attenuation
bands, namely negative mass attenuation band (NM) and two negative
stiffness attenuation bands (NS1 and NS2), as per the natural frequen-
cies of the respective individual resonators. The individual natural
frequencies of the resonators are marked as 159.15 Hz, 503.29 Hz,
and 711.76 Hz in Fig. 5. The resonators having natural frequencies
503.29 Hz and 711.76 Hz contribute to the formation of negative
stiffness bandgaps (NS1 and NS2). On the other side, the resonator
having a natural frequency of 159.15 Hz helps in the formation of a
negative mass bandgap (NM). The negative stiffness attenuation bands
NS1 and NS2 are in the frequency range 500.10–545.50 Hz and 754.20–
780.70 Hz, respectively, whereas the negative mass attenuation band
NM is exhibited in the region 151.0–172.50 Hz. The bandgap due to
the negative mass resonator is observed before the bandgaps associated
with negative stiffness.

The natural frequency of the negative stiffness resonator is not
situated in the negative stiffness bandgap NS2. Due to multi-degree of
freedom resonator, there is a shift in the natural frequency of the double
negative resonator. The natural frequencies of all individual resonators
will not fall independently in bandgaps. For this, we need to calculate
the eigenfrequencies of the 3-dof double negative resonator with the
help of mass and stiffness matrix as reported in Appendix B. The
eigenfrequencies are highlighted in Fig. 5 and having values 151.02 Hz,
500.51 Hz, and 754.26 Hz. These eigenfrequencies are present at the
lower edging frequencies of the negative stiffness (NS1 and NS2) and
negative mass (NM) bandgaps. These are the opening frequencies for
the locally resonant bandgaps.

4.1. Merging of the attenuation bands

This section addresses merging of the negative stiffness and mass-
controlled locally resonant attenuation bandgaps on the frequency
spectrum for wideband vibration control. For this, the identification of
critical system parameters is essential. The parameters 𝜂 , 𝜃, 𝛩 , 𝛩 ,
4

𝑟1 1 2
Fig. 6. Visualization of the location of various locally resonant bandgaps due to the
attached 3-dof double negative resonator to the host beam. Green and white colors,
respectively, show the attenuation and propagation bands. The band structure subplots
are shown between the of mass ratio 𝜃 and resonating excitation frequency ratio 𝜂𝑟1.
The value of mass ratio 𝛩2 is defined in each subplot in the range from 0.01 to 0.1
and the mass ratio 𝛩1 = 0.1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

𝜅1, 𝜅2 and 𝜇𝑠 derived in Section 3 are used to get the bandstructure of
the double negative metabeam in the non-dimensional domain. Tuning
these system parameters can yield an enlarged attenuation band due to
merging of negative stiffness bandgaps with the negative mass bandgap.
In Figs. 6, 7, 8 and 9, in each subplot on 𝑥 and 𝑦-axis, resonating
frequency ratio 𝜂𝑟1 and the mass ratio 𝜃 are shown, respectively. 𝜃
ranges from 0.1 to 4 in all simulations to study the effect on the width
of the locally resonant bandgaps. However, in practice, the mass ratio
of the resonator and beam unit cell should not be greater than 1. Fig. 6
illustrates the location of different locally resonant bandgaps due to
the negative stiffness and mass resonators on the frequency axis. Here,
the two negative stiffness-controlled bandgaps are merged. The specific
value of the mass ratio 𝛩2 is defined in the range from 0.01 to 0.1
in each subplot, whereas the mass ratio 𝛩1 = 0.1 is fixed. Hence,
the first two locally resonant bandgaps are associated with negative
stiffness resonators, and the third bandgap is because of the negative
mass resonator. The negative mass controlled bandgap (NM) width is
constant throughout due to the fixed value of 𝛩1 = 0.1. As explicated
in Fig. 5, the three locally resonant bandgaps are again delineated
here. The width of locally resonant bands increases with 𝜃 in all the
subplots. For 𝛩2 = 0.01, the two bandgaps NS1 and NS2 associated
with negative stiffness resonator can be perceived together, resulting
in a wider attenuation band. For increasing 𝛩2, the negative stiffness
bandgap NS2 moves far from the NS1 bandgap. To obtain the maximum
width of the attenuation band, the two merged bandgaps must be
placed adjacent. In the case of merging, there may be a possibility of no
bandgap or reduced attenuation band. It is also essential to comprehend
the attenuation level in these locally resonant bandgaps.

Fig. 7 elucidates the level of attenuation in the merged negative
stiffness controlled bandgaps. The black contour lines in each sub-
plot exhibit a high attenuation level in a particular locally resonant
bandgap, whereas the yellow contour lines show a low attenuation
level. In the case of 𝛩2 = 0.01, the attenuation level is low compared
to the 𝛩2 = 0.02 and 𝛩2 = 0.05, hence with increasing width of the
attenuation band due to the merging, the level of attenuation decreases.

Fig. 8 describes the merging of negative stiffness and mass-controlled
bandgaps on the frequency spectra. A specific value of the mass ratio
𝛩1 is defined in the range from 0.6 to 2.0 in each subplot, whereas the
mass ratio 𝛩2 = 0.05 is constant in each subplot. Hence, due to assumed
values of 𝛩1 and 𝛩2, the first two locally resonant bandgaps belong to
the negative stiffness resonators, and the third bandgap is associated
with the negative mass resonators. The negative stiffness-controlled
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Fig. 7. Visualization of attenuation level in various locally resonant bandgaps due
to the attached 3-dof double negative resonator to the host beam. The yellow color
exhibits the low attenuation level and the black color high attenuation level in various
locally resonant bandgaps. The attenuation level in each subplot are shown between
the of mass ratio 𝜃 and resonating excitation frequency ratio 𝜂𝑟1. The value of mass
ratio 𝛩2 is defined in each subplot in the range from 0.01 to 0.1 and the mass ratio
𝛩1 = 0.1. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 8. Visualization of the location of various locally resonant bandgaps due to the
attached 3-dof double negative resonator to the host beam. Green and white colors,
respectively, show the attenuation and propagation bands. The band structure subplots
are shown between the of mass ratio 𝜃 and resonating excitation frequency ratio 𝜂𝑟1.
The value of mass ratio 𝛩1 is defined in each subplot in the range from 0.6 to 2.0 and
the mass ratio 𝛩2 = 0.05. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

bandgap (NS1) width is constant throughout due to a fixed value of 𝛩2.
It implies NS1 is due to the spring–mass system (𝑚, 𝑘) in the negative
stiffness resonator. For 𝛩1 = 0.1, we can observe the two adjacent
bandgaps, NS2 and NM, leading to the enlarged attenuation bandgap.
These two bandgaps are entirely adjacent to each other after 𝜃 = 2.0.
Further increasing the value of 𝛩1 reduces the width of attenuation
band NM and is merged with NS2 for a higher value of 𝜃 close to 4.0.

Fig. 9 explicates the level of attenuation in the merged negative
stiffness and mass controlled bandgaps. In the case of 𝛩1 = 0.6, the
level of attenuation is low as compared to 𝛩1 = 1.0. Here, the bands
NS2 and NM1 come closer to increase the attenuation level, and further
in the subsequent subplots, the separation decreases along with the
attenuation level.

Table 1 shows the increase in average bandwidth after merging the
NS1 and NS2 attenuation bands. A substantial increase of 164% is ob-
served in the attenuation bandwidth, when NS1 and NS2 are adjacent.
Likewise, Table 2 explains the average bandwidth after merging the
NS2 and NM attenuation bands. Here, after getting perfectly adjacent
to each other, the merging of both NS2 and NM produces an increase
of 72.73% in the attenuation bandwidth.
5

Fig. 9. Visualization of attenuation level in various locally resonant bandgaps due
to the attached 3-dof double negative resonator to the host beam. The yellow color
exhibits the low attenuation level and the black color high attenuation level in various
locally resonant bandgaps. The attenuation level in each subplot are shown between
the of mass ratio 𝜃 and resonating excitation frequency ratio 𝜂𝑟1. The value of mass
ratio 𝛩1 is defined in each subplot in the range from 0.6 to 2.0 and the mass ratio
𝛩2 = 0.05. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Merging of NS1 and NS2.
Bandgap

[

𝜂𝑟1
]

𝑙

[

𝜂𝑟1
]

𝑢 ABW (%)

NS1 0.206 0.626 29.6
NS2 0.676 0.911 101
NS1+NS2 0.091 0.926 164.2

Table 2
Merging of NS2 and NM.
Bandgap

[

𝜂𝑟1
]

𝑙

[

𝜂𝑟1
]

𝑢 ABW (%)

NS2 1.006 1.126 11.25
NM 1.146 2.146 60.75
NS2+NM 1.006 2.156 72.73

where 𝐴𝐵𝑊 = [𝜂𝑟1]𝑢−[𝜂𝑟1]𝑙
{ [𝜂𝑟1]𝑢+[𝜂𝑟1]𝑙

2

} , which is the normalized arithmetic mean

based attenuation bandwidth.

5. Conclusions and future work

Locally resonant bandgaps for an elastic beam attached with peri-
odic 3-dof double negative resonator have been investigated analyti-
cally. A generalized form of the transfer matrix method in conjunction
with the Bloch–Floquet theorem has been derived to obtain the band
structure of the double negative metabeam. Due to the attached special
3-dof double negative resonator to the host beam, two negative stiffness
(NS1 and NS2) and one negative mass (NM) controlled locally resonant
bandgaps are observed on the frequency spectrum. These bandgaps
start with a lower edging frequency, which is the eigenfrequency of the
3-dof double negative resonator. The locally resonant bandgaps formed
due to the negative stiffness and mass properties of the mechanical
metamaterials are merged to obtain an elongated attenuation band for
wider band vibration control. Two negative stiffness (NS1 and NS2)
controlled resonant bandgaps are found to be merging for the mass
ratio 𝛩2 = 0.01. Negative stiffness (NS2) and negative mass (NM2)
controlled resonant bandgaps merge for the mass ratio 𝛩1 > 1.0 but
extent of merging shifts to higher mass ratio 𝜃 for increased 𝛩1. A
substantial increase of 164% is observed in the attenuation bandwidth
due to merging the two negative stiffness-controlled resonant bandgaps.

A possible extension of this study could be the double negative
curved metabeam, which can be applied in ring-type metastructures
[28]. Periodicity can be perceived by having repeated variations of
the boundary conditions. The effect of elastic support and buckling
constraints should also be considered in unit cells [29].
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Fig. A.10. Free body diagram of the double negative local resonator.
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Appendix A. Shear force on the metabeam unit cell due to the
attached 3-dof double negative resonator

Equations of motion the entire system can be written as

𝑚1�̈�1 + 𝑘1(𝑥1 − 𝑥2) = 0 (A.1)

𝑚2�̈�2 + 𝑘2(𝑦2 − 𝑦1) = 0 (A.2)

2𝐹 cos 𝜃 = 𝑘1(𝑥1 − 𝑥2) (A.3)

𝑚�̈�1 + 𝑘(𝑦1 −𝑤) + 𝑘2(𝑦1 − 𝑦2) +
𝐿
𝐷
𝑘1(𝑥1 − 𝑥2) = 0 (A.4)

2𝐹 sin 𝜃 = 𝑓𝑛 + 𝑘(𝑤 − 𝑦1) (A.5)

where 𝑥, 𝑦, and 𝑤 are displacements and 𝑓𝑛 is the shear force in-
troduced in the metabeam due to the attached 3-dof double negative
resonator. 𝐹 is the internal force-induced inside the bars. 𝜃 is the
half-angle between the bars (see Fig. A.10). Eqs. (A.3) and (A.5) give

𝑓𝑛 = 𝑘1(𝑥1 − 𝑥2) tan 𝜃 + 𝑘(𝑦1 −𝑤) (A.6)

where tan 𝜃 = 𝛼 = 𝐿
𝐷 is the aspect ratio of the 3-dof double negative

resonator.
From the basic kinematics, relation between displacements can be

written

𝑥2 = − 𝐿
2𝐷

[𝑦1 −𝑤] (A.7)

From Eqs. (A.1), (A.2) and (A.5) we can write the displacements 𝑥1,
𝑦2 and 𝑦1 respectively as

𝑥1 =
𝑘1𝑥2

2
(A.8)
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𝑘1 − 𝑚1𝜔
𝑦2 =
𝑘2𝑦1

𝑘2 − 𝑚2𝜔
2

(A.9)

𝑦1 =
𝑘𝑤 + 𝑘2𝑦2 − 𝛼𝑘1(𝑥1 − 𝑥2)

𝑘 + 𝑘2 − 𝑚𝜔2
(A.10)

Now with help of Eqs. (A.7)–(A.9), displacement 𝑦1 can be written
as function of displacement 𝑤 introduced in the metabeam due to the
3-dof double negative resonator

𝑦1 =

[

𝑘 − 𝛼2𝑘1
2

𝑚1𝜔
2

(

𝑘1−𝑚1𝜔
2
)

]

𝑤

[

(

𝑘 − 𝑚𝜔2
)

− 𝑘2𝑚2𝜔
2

(

𝑘2−𝑚2𝜔
2
) − 𝛼2𝑘1

2
𝑚1𝜔

2
(

𝑘1−𝑚1𝜔
2
)

] (A.11)

From Eq. (A.6), using Eqs. (A.7), (A.8) and (A.11), the shear force
𝑓𝑛 can be rewritten with non-dimensionalized terms as the function of
displacement 𝑤

𝑓𝑛 = 𝑤𝑘1
⎡

⎢

⎢

⎣

𝛼2

2
𝛺

2

𝛺1
2 −𝛺

2
− 1

𝜅1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1

1 −

{

𝜅2
𝛺2

𝛺22−𝛺
2 +

𝛺2

𝛺32

}

{

1−𝜅1
𝛼2
2

𝛺2

𝛺12−𝛺
2

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.12)

where the non-dimensionalized parameters 𝜅1 = 𝑘1
𝑘 , 𝜅2 = 𝑘2

𝑘 , 𝛺 = 𝜔
𝜔 ,

𝛺1 =
𝜔1
𝜔 , 𝛺2 =

𝜔2
𝜔 and 𝛺3 =

𝜔3
𝜔 .

The effective dynamic properties (𝐸𝑒𝑓𝑓 ) of the system can be de-
rived from the equation mentioned below after substituting the closed-
form expressions of 𝑦2 and 𝑦1 given in Eqs. (A.9) and (A.11), respec-
tively.

𝐸𝑒𝑓𝑓 = 𝑚�̇�1 + 𝑚2�̇�2 (A.13)

Appendix B. Eigenfrequencies of the 3-dof double negative res-
onator

Eqs. (A.8)–(A.10) can be rewritten as
(

𝑘1 − 𝑚1𝜔
2
)

𝑥1 − 𝑘1𝑥2 = 0 (B.1)

(

𝑘2 − 𝑚2𝜔
2
)

𝑦2 − 𝑘2𝑦1 = 0 (B.2)

(

𝑘 + 𝑘2 − 𝑚𝜔2
)

𝑦1 − 𝑘𝑤 − 𝑘2𝑦2 + 𝛼𝑘1(𝑥1 − 𝑥2) = 0 (B.3)

Using Eq. (A.7), 𝑥2 can be eliminated from Eqs. (B.1)–(B.3) and all three
equations can be condensed in form a matrix as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

𝑘1 − 𝑚1𝜔
2
)

0.5𝑘1𝛼 0

𝑘1𝛼
(

𝑘 + 𝑘2 + 0.5𝑘1𝛼2 − 𝑚𝜔2
)

−𝑘2

0 −𝑘2
(

𝑘2 − 𝑚2𝜔
2
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

𝑥1
𝑦1
𝑦2

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

0

0

0

⎫

⎪

⎬

⎪

⎭

(B.4)

By substituting the quantitative values of the system parameters
stated in Section 4, the matrix given in Eq. (B.4) can be solved for all
the eigenfrequencies of the 3-dof double negative resonator and can be
found as 𝜔 = 151.02 Hz, 500.51 Hz, 754.26 Hz.
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