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ORIGINAL ARTICLE

Static and dynamic analysis of homogeneous Micropolar-Cosserat panels

S. K. Singha , A. Banerjeeb , R. K. Varmaa , S. Adhikaric , and S. Dasd

aDepartment of Civil Engineering, Indian Institute of Technology Jammu, Jagti, Nagrota, India; bDepartment of Civil Engineering, Indian
Institute of Technology Delhi, India; cZienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK; dDepartment of
Civil Engineering, University of Windsor, Canada

ABSTRACT
This paper communicates an analytical study on computing the natural frequencies and in-plane
deflections caused by static forces in the panel walls using Euler-Bernoulli, Timoshenko,
Timoshenko and Goodier, Couple-stress, and Micropolar-Cosserat theory. The study highlights the
formulation of the transfer matrix via the state-space method in the spatial domain; from coupled
governing equations of motion that arises from the Micropolar-Cosserat theory. This theory cap-
tures the novel curvature of edges and moments of the panels at energy density level due to its
unique feature of asymmetric shear stresses; that emphasizes the loss of ellipticity of governing
equations. The analytical solution of the Micropolar-Cosserat theory yield appropriate results com-
pared to plane-stress simulation of the panels using finite element analysis.
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1. Introduction

Due to its lightweight, panel walls are used as an effective
alternative to the conventional bricks walls. Infill panel walls
provide a degree of thermal insulation, acoustic insulation,
weather resistance, improve the appearance of buildings, and
support the cladding system (Lawson et al., 2001); however,
it does not carry any static floor load. Panel walls are sub-
jected to the lateral load during an earthquake. In this paper,
the in-plane static and dynamic characteristics of homoge-
neous panels have been analytically evaluated. Panels are
often modeled employing beam or plane stress elements.
Current research has focused on developing new mathemat-
ical models which consider physical properties of materials
at micro and nano-scales [1]. The higher-order beam theo-
ries are capable of capturing the curvature of edges at small
scale parameters [2, 3]. Based on the underlying mechanics
beam theories are classified in the following classes:

(1) Euler-Bernoulli beam theory neglects the shear deform-
ation and rotary inertia of the cross-section, which
restricts it for thin beams only [4]. The governing equa-
tion of motion for free vibration can be written as:

Dx
@4uy
@x4

þ qA
@2uy
@t2

¼ 0: (1)

(2) Lord Rayleigh added the rotary inertia of the cross-section
[5, 6] in the governing equation of the Euler-Bernoulli
beam. The free vibration equation can be expressed as:

Dx
@4uy
@x4

þ qA
@2uy
@t2

� qI
@4uy
@x2@t2

¼ 0: (2)

(3) Timoshenko added the shear deformation of the
cross-section [5] in addition to Eq. (2). Thus,
Timoshenko beam equation can be written as:
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@2/
@x2
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¼ 0,

Dsj
@
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þ /

� �
� qA

@2uy
@t2

¼ 0:
(3)

(4) In the couple stress theory, axial deformation, two
higher-order material length scale parameters, and
micro-inertia [3] have also been considered in addition
to Eq. (3) and equation of motion can be written as:
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@x3
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@x

� �
� qA

@2uy
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� qAJ
4
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@x@t2
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@x2@t2

� �
¼ 0:

(4)

where, Dl ¼ EA,Dx ¼ EI,Ds ¼ GA and Dxz ¼ GAl2 are stiff-
ness parameters; E,A, I, J,G, q, j, andl represents Young
modulus, a cross-sectional area, second moment of area,
micro-inertia, shear modulus, density, Timoshenko shear
coefficient and characteristics length, respectively.
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Euler-Bernoulli beam theory neglects transverse shear
strains and miscarry the deflection and natural frequency in
case of thick beams where shear deformation effects are sig-
nificant [4]. Rayleigh proposed an improvement to the
Euler-Bernoulli beam theory by including the effect of rotary
inertia of the cross-section of the beam [7]. Timoshenko
proposed his theory where shear deformation of the cross-
section is also taken into account [8]. However, transverse
shear strain is ignored in Rayleigh theory [5]. These theories
are proved very fruitful to both theoretical as well as experi-
mental aspects [4]. In the classical continuum mechanics,
the motion of material particles are described by position
vectors identifying the location of each particle as a function
of time [9]. So, in the classical theories, every particle has
three displacements which are calculated by symmetric stress
tensor that is not sufficient for describing the micro and
nano-scales size of second-phase particles [10–12]. However,
in most of the engineering problems; micro and nano-scale
structures, the major concern in deformations is inelastic
range, and observed that strain gradient effect generally
holds the regime [13]. It is a significant fact that the size of
second-phase particles has an important effect on the
macroscopic behavior of materials [14]. The strain gradient
based theory of elasticity to investigate the particle size effect
find good agreements with the experiments as well as
numerical studies. The preservation of the planeness of
cross-section requires that the averaging length should be
larger than the beam depth [15, 16]. The couple stress the-
ory is a non-classical continuum theory based on macro-
deformation and micro-rotation in which the full curvature
vector is used to calculate the deformation in addition to
the conventional strain [3, 16, 17]. So, the mechanical
behavior of structures based on strain gradient is capable of
capturing the effect on small-scale particles, when the char-
acteristic size of structures is close to the material length
parameter [2, 18–20]. In the couple stress theory, the rota-
tion of the micro-structure and macro-structure is deemed
to be equal and no constitutive equation is written for asym-
metric shear stress vector. This vector is determined by con-
sidering the micro-structure rotational equation of motion
of the elements [3, 21]. Hence, the asymmetric part of the
shear stress does not contribute to the energy density [3,
16]. Euler-Bernoulli, Rayleigh, Timoshenko, and couple
stress theories have been successfully implemented for the
analysis of beams and extended for panels [22]. However,
these theories lack to predict the behavior such as shear
deformation and rotational inertia of cross-section, shear
deformation, strain gradient effects, and curvature moment
contribution at energy density level, respectively. Infill wall
shows the curvature of edges which is not predicted accur-
ately by these theories due to the absence of curvature vec-
tor mechanism based on the constitutive relation [3, 5,
23, 24].

In this present article, Micropolar-Cosserat linear elastic
beam theory has been considered to capture the curvature
behavior (based on the constitutive relation or at energy dens-
ity level) of the infill wall with appropriate stiffness parameters
[25, 26]. The assumption, and characteristic features of the

Micropolar-Cosserat continuum contains micro-structure
which can rotate independently from the surrounding
medium, and existence of couple stresses and asymmetric
shear stresses, respectively [26–28]. The initial theoretical
work was done by the Cosserat brothers [24], Mindlin [29],
and Nowacki [30]. Eringen [31] explained the micro-inertia
which describe the dynamics effects of microstructure. This
additional constant micro-rotation field throughout the width
of the beam converts the Timoshenko beam theory (first-
order shear deformation theory) into Micropolar-Cosserat
elastic beam theory [32, 33]. So, each element of Micropolar-
Cosserat continuum have three translational motion and three
rotational ones, which are assigned to macro-structures and
micro-structures, respectively [26, 34]. In Micropolar-
Cosserat theory, the mutual interaction between two adjacent
surface elements is expressed via the traction vector in add-
ition to the couple-stress vector. While, the effect of a surface
element on a neighboring one is expressible by a traction vec-
tor only; from the kinetic point of view in the classical con-
tinuum theory [26, 35, 36]. Dugem and Voitgt [12] suggested
that the relationship between two adjacent elements of the
body depends on the surface area element; employing force
and couple stress vector [37, 38]. However, the complete the-
ory of asymmetric elasticity was developed by the Cosserat
brothers [24]. The asymmetric elasticity is the unique features
of Micropolar-Cosserat theory to distinguish it from other
standard theories. The shear stress can be split into symmetric
and asymmetric shear stresses which facilitates the full curva-
ture tensor to capture the micro-rotation in addition to the
conventional strain [39, 40]. The symmetric shear stress
causes the deformation of macro-structure and asymmetric
shear stresses contribute to the rigid rotation of microstruc-
ture of the material. Hence, This theory provides the profi-
cient gear to curvature moment at micro-scale [14, 26].

In this work, a 1-D Micropolar-Cosserat elastic governing
equation of motion based on the linear law of variation of
displacement has been considered for analysis of panels.
Exact in-plane macro and micro displacement, and natural
frequency of the panels have been evaluated implementing
the transfer matrix approach and the state-space method [6,
41, 42]. The boundary condition taken by other authors cor-
responding to the Micropolar-Cosserat elastic continuum;
deflection and resultant force is equal to zero at fixed end
and free end, respectively [16, 25, 26]. These boundary con-
ditions are not sufficient to have zero value of the curvature
moment at free end section. So, it is necessary to have the
exact values as a part of the loading definition [3, 43]. In
the present paper, the curvature moment (or force) has been
considered due to asymmetric shear at free end to find the
in-plane static exact response. Another unique feature of
this work is a validation of theoretical independent micro-
rotation of panel with the help of static response of the
plane-stress element. Moreover, the study of various beam
theories like; Euler-Bernoulli, Timoshenko, Timoshenko and
Goodier exact analysis, Couple stress theory, and their com-
parison with analytical v/s finite elements analysis have done
for building confidence. The proposed methodology can be
extended for the composite and functionally graded panels
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very effectively, but for the brevity and develop the insight
on the theory, this paper is limited only for the analysis of
homogeneous panels [44–46].

2 Micropolar-Cosserat elastic panel theory

2.1. Two-dimensional equilibrium equations

The Micropolar-Cosserat solid can transmit normal as well
as bending stresses due to having an extra macro-rotational
degree of freedom. The sketch shown in Figure 1 depicts a
2-D free body diagram of the typical Micropolar-Cosserat
element associated with the varying stress field.

The plane-stress equilibrium equations of motion for
Micropolar-Cosserat element are written as follows

@rx
@x

þ @syx
@y

� q
@2ux
@t2

¼ 0, (5)

@ry
@y

þ @sxy
@x

� q
@2uy
@t2

¼ 0, (6)

@mxz

@x
þ @myz

@y
þ syx � sxyð Þ � qJ

@2wz

@t2
¼ 0, (7)

Unlike in the Micropolar-Cosserat theory, an additional
equilibrium equation for the curvature moment does not
appear in the modified couple stress theory [25, 47]. It can
be seen from Eq. (7) that the shear stresses are not necessar-
ily symmetric, which is the unique features of the
Micropolar-Cosserat theory to distinguish it from other
standard theory [48].

2.2. Stress-strain of Micropolar-Cosserat panel

The positive directions of the stress resultants, displace-
ments, and cross-sectional shape of the panel after the devel-
opment of force and couple stresses are shown in Figure 2.

Let us consider a 2-D homogeneous, isotropic and linear
elastic panel of a length L with rectangular cross-section of

constant width W, and thickness T. The equations of dis-
placement field based on the linear law of variation are

uxðx, y, tÞ ¼ y/ðx, tÞ, uyðx, y, tÞ ¼ uyðx, tÞ, and

wzðx, y, tÞ ¼ wðx, tÞ:
(8)

The normal strains are

�x ¼ @ux
@x

¼ y/0, and �y ¼
@uy
@y

¼ 0: (9)

The relatives asymmetric shear strains are

�xy ¼ @ux
@y

� wz

� �
¼ /� wð Þ, and

�yx ¼
@uy
@x

þ wz

� �
¼ u0y þ w
� �

:

(10)

Where ux, uy, /, wz, and w are the longitudinal, transverse,
rotation of the cross-section about the neutral axis of the
panel, rigid micro-rotation, and an independent micro-rota-
tion of micro-structure respectively. In the microstructures,
the rotating axis is called orthogonal directors and directors
of each material point are deformable in the Micropolar-
Cosserat solid [25, 49]. The symmetric and skew-symmetric
shear strains are defined, respectively as

cs ¼ u0y þ /
� �

, and ca ¼ u0y � /þ 2w
� �

: (11)

We can see that the symmetric part takes the same form
as the shear strain in the classical Timoshenko beam theory.
The skew-symmetric part is twice the difference between the
usual macro-rotation and the micro-rotation [36]. The cur-
vatures describe the bending of planer elements due to cou-
ple-stresses are

Kxz ¼ @wz

@x
, and Kyz ¼ @wz

@y
¼ 0: (12)

The localization of shear deformation at the material length
scale parameter has been quantified thus enabling both the
Cosserat modulus and characteristic length as an additional

Figure 1. (a) Normal and bending stresses acting on a planar Micropolar-Cosserat solid in a varying stress field, and (b) The symmetric and asymmetric parts of the
shear stresses.
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constitutive parameter present into the Micropolar-Cosserat
continuum [50, 51]. The isotropic stress-strain relationship
for one-dimensional Micropolar-Cosserat panel can be
written as

rx
sxy
syx
mxz

8>>>><
>>>>:

9>>>>=
>>>>;

¼

E 0 0 0

0 Gþ Gc G� Gc 0

0 G� Gc Gþ Gc 0

0 0 0 2Gl2

2
66664

3
77775

�x

�xy

�yx

Kxz

8>>>><
>>>>:

9>>>>=
>>>>;
, (13)

where Gc represents Cosserat modulus of the homoge-
neous panel.

The characteristics length represents a material property
and order of the magnitude as the maximum size of mater-
ial inhomogeneities with solely softening yield [52].
However, plastic nature also developing during severe
deformation of ductile materials with softening followed by
hardening [53]. In Micropolar-Cosserat continuum analysis,
the numerical value proposed for Gc is G

3 and ratio of l
L are

0.02083, for static and 0.01042, for dynamic analysis. In cou-
ple stress analysis, the numerical value of Gc is neglected
and ratio of l

L are 0.02083, for static and 0.01042, for
dynamic analysis [50, 51, 54–56].

2.3. Balance equations for Micropolar-Cosserat panel

Let us consider stress and displacement field do not vary
across the width. Stress-strain and couple stress components
are independent of z-coordinate. The elastic constants are
the function of x-coordinate. The applied load is so that, no
torsion occurs in the beam [25, 26]. The balanced equations
for 1-D Micropolar-Cosserat panel are expressed as

@Mx

@x
� Qyx � q

@2Ux

@t2
¼ 0, (14)

@Qxy

@x
� qA

@2uy
@t2

¼ 0, (15)

@Pxz
@x

þ Qyx � Qxyð Þ � qAJ
@2wz

@t2
¼ 0, (16)

where

Ux ¼
ð
A
uxydA and J, cubical element

¼ 2l2

1þ �
ðDeBorst;R:, & Sluys; L : J, et al:, 1991Þ:

The stress resultants to reduce the 2-D equilibrium equa-
tions into 1-D balanced equations are as follows

Mx ¼
ð
A
rxydA, Qxy ¼

ð
A
sxydA, Qyx ¼

ð
A
syxdA, and

Pxz ¼
ð
A
mxzdA:

(17)

From the isotropic stress-strain relationship Eq. (13) and
stress resultants Eq. (17), following can be expressed as

rx ¼ E�x ¼ Ey/0

Mx ¼ EI/0 ¼ Dx/
0,

(18)

sxy ¼ Gþ Gcð Þ�xy þ G� Gcð Þ�yx
Qxy ¼ Ds u0y þ /

� �
� Da u0y � /þ 2w

� �
,

(19)

syx ¼ G� Gcð Þ�xy þ Gþ Gcð Þ�yx
Qyx ¼ Ds u0y þ /

� �
þ Da u0y � /þ 2w

� �
,

(20)

mxz ¼ 2Gl2Kxz ¼ 2Gl2w0

Pxz ¼ 2Gl2A
@w
@x

¼ 2Dxzw
0,

(21)

where Da ¼ GcA is the Cosserat stiffness parameter for a
homogeneous panel. The stiffness parameters can also be
helpful to represent, a functionally graded material
[46, 49].

2.4. Governing equations of motion

2.4.1. Dynamic system
Governing equations of motion for 1-D Micropolar-Cosserat
panel are derived by substituting the value of stress and
force resultant Eqs. (18) to (21) into balance Eqs. (14) to
(16). They are as follows

Ds u00y þ /0
� �

� Da u00y � /0 þ 2w0
� �

� qA
@2uy
@t2

¼ 0,

(22)

Dx/
00 � Ds u0y þ /

� �
� Da u0y � /þ 2w

� �
� qI

@2/
@t2

¼ 0,

(23)

2Dxzw
00 þ 2Da u0y � /þ 2w

� �
� qAJ

@2w
@t2

¼ 0: (24)

Figure 2. (a) Micropolar-Cosserat elastic panel and (b) Relative strains and rigid rotation of micro-structure.
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2.4.2. Static system
By substituting time-dependent macro and micro displace-
ment is equal to zero into the dynamic system of Eqs. (22)
to (24), the equations derived are as follows

Ds u00y þ /0� �
� Da u00y � /0 þ 2w0� �

¼ 0, (25)

Dx/
00 � Ds u0y þ /

� �
� Da u0y � /þ 2w

� �
¼ 0, (26)

2Dxzw
00 þ 2Da u0y � /þ 2w

� �
¼ 0: (27)

3 Analysis of Micropolar-Cosserat elastic panel

3.1. In-plane static analysis

The steps followed for the series of solutions of the equilibrium
equations to find out in-plane static responses are elaborated
by Anssi T. Karttunen into Appendix A [25]. The solutions of
a static system is generated by the decoupling of Eqs. (25) to
(27) using mathematical tools such as MAPLE. 1-D micropo-
lar-Cosserat elastic panel consists of three displacements and
three force vector. Hence, six boundary conditions need to be
solved corresponding to the six-state vectors namely, uy, /, w,
Mx, Qxy and Pxz. The displacement equations in the form of
constant stiffness parameter are written as

uy ¼ c1 � c2x� 1
2
c3x

2 þ c4 a� bð Þx� x3

3

� �
� a c5e

bx � c6e
�bx

� 	
 �
,

(28)

/ ¼ c2 þ c3xþ c4 aþ bð Þ þ x2
� 

� d c5e
bx þ c6e

�bx
� 	h i

,

(29)

w ¼ c2 þ c3xþ c4x
2 þ c5e

bx þ c6e
�bx

� 	� �
, (30)

where

a ¼ Dx þ Dxz

Ds
, b ¼ Dxz

Da
, d ¼ 2Dxz

Dx
,

a2 ¼ 2Dxz Dx þ Dxzð ÞDa þ DsDxz½ �2
DxDsDa Dx þ 2Dxzð Þ Da � Dsð Þ , and

b2 ¼ 2DsDa Dx þ 2Dxzð Þ
DxDxz Da � Dsð Þ :

The force equations based on stiffness parameters are
derived with the help of stress or force resultants Eqs. (18)
to (21) and displacement Eqs. (28) to (30) are as follows

Mx ¼ Dx c3 þ 2c4x� db c5e
bx � c6e

�bx
� 	� �

, (31)

Qxy ¼ ½2 Dsaþ Dabð Þc4 þ fðDa � DsÞab� d Da þ Dsð Þ � 2Dag:::
::: ebxc5 þ e�bxc6
� 	

�,
(32)

Pxz ¼ 2Dxz c3 þ 2c4xþ b c5e
bx � c6e

�bx
� 	� �

: (33)

Substituting x ¼ 0, uy ¼ uy1 , / ¼ /1, w ¼ w1, Mx ¼ Mx1 ,
Qxy ¼ Qxy1 and Pxz ¼ Pxz1 in Eqs. (28) to (33). The matrix
relation between the state-vector and coefficients can be
expressed as

uy1
/1

w1

Mx1

Qxy1

Pxz1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;|fflfflfflffl{zfflfflfflffl}

Vð0Þ

¼

1 0 0 0 �a a

0 1 0 aþ b �d �d

0 1 0 0 1 1

0 0 Dx 0 �Dxdb Dxdb

0 0 0 s p p

0 0 2Dxz 0 2Dxzb �2Dxzb

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kð0Þ

c1
c2
c3
c4
c5
c6

8>>>>><
>>>>>:

9>>>>>=
>>>>>;|fflffl{zfflffl}

C

,
(34)

Similarly substituting x ¼ L, uy ¼ uy2 , / ¼ /2, w ¼ w2,
Mx ¼ Mx2 , Qxy ¼ Qxy2 and Pxz ¼ Pxz2 in Eqs. (28) to (33).
The matrix relation between the state-vector and coefficients
can be expressed as

uy2
/2

w2

Mx2

Qxy2

Pxz2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;|fflfflfflffl{zfflfflfflffl}

VðLÞ

¼

1 �L � 1
2
L2 a� bð ÞL� 1

3
L2 �aebL ae�bL

0 1 L L2 þ aþ bð Þ �debL �de�bL

0 1 L L2 ebL e�bL

0 0 Dx 2DxL �DxdbebL Dxdbe�bL

0 0 0 s pebL pe�bL

0 0 2Dxz 4DxzL 2DxzbebL �2Dxzbe�bL

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KðLÞ

c1
c2
c3
c4
c5
c6

8>>>>><
>>>>>:

9>>>>>=
>>>>>;|fflffl{zfflffl}

C

,

(35)

where, p ¼ ðDa � DsÞab� ðDa þ DsÞd � 2Da and s ¼ 2Dab
þ 2Dsa: From the Eqs. (34), and (35) we can write

C
� 

6�1 ¼ Kð0Þ� ��1
6�6 Vð0Þ� 

6�1, (36)

C
� 

6�1 ¼ KðLÞ� ��1
6�6 VðLÞ� 

6�1: (37)

By putting the value of the coefficient of Eq. (36) into Eq.
(37), the relation between the state vector for two boundary
values can be written as

VðLÞ� 
6�1 ¼ KðLÞ½ �6�6 Kð0Þ½ ��1

6�6|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ts

Vð0Þ� 
6�1: (38)

Let us assume, the transfer matrix of a static system

Ts
� �

6�6 ¼
T11 T12

T21 T22


 �
6�6

:

From the Eq. (38) we can write

D2

F2

� �
6�1

¼ T11 T12

T21 T22


 �
D1

F1

� �
6�1

, (39)

where Dk
� T ¼ uyk /k wk

� 
, Fk
� T ¼ Mxk

�
Qxyk

Pxzkg and k¼ 1, 2. From the Eq. (39), the relationship
between displacement, force, and transfer matrix is
expressed as

uy2
/2

w2

8><
>:

9>=
>; ¼ T11

� �
3�3

uy1
/1

w1

8><
>:

9>=
>;þ T12

� �
3�3

Mx1

Qxy1

Pxz1

8><
>:

9>=
>;, (40)

Mx2

Qxy2

Pxz2

8><
>:

9>=
>; ¼ T21

� �
3�3

uy1
/1

w1

8><
>:

9>=
>;þ T22

� �
3�3

Mx1

Qxy1

Pxz1

8><
>:

9>=
>;: (41)

A homogeneous panel is solved as a 1-D cantilever elastic
panel. Hence, for fixed end, fD1g ¼ 0 and for free end,
Mx2 ¼ 0 but Qxy2 6¼ 0 and Pxz2 6¼ 0: It can be derived from
Eqs. (40) and (41)
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uy2
/2
w2

8<
:

9=
; ¼ T12

� �
3�3 T22
� ��1

3�3

0
Qxy2
Pxz2

8<
:

9=
;, (42)

where flexibility and stiffness matrix of cantilever panel

are, F
� �

3�3 ¼ T12
� �

3�3 T22
� ��1

3�3 and Ks
� �

3�3 ¼ F
� ��1

3�3,

respectively. The value of fD2gT ¼ 1
L ½F�3�3, means curvature

moment, Pxz2 ¼ 2GKxz2 l
2: The Eqs. (37) and (42) the value

of coefficient matrix is

C
� 

6�1 ¼ Kc½ ��1
6�3 T22½ ��1

3�3|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Kt

0
Qxy2
Pxz2

8<
:

9=
;

3�1

, (43)

where

Kt
� �¼

� a

Dxb 1þ dð Þ 0
a

2Dxzb 1þ dð Þ
0 � aþ b

q
0

1
Dx 1þ dð Þ 0

d
2Dxz 1þ dð Þ

0
1þ d
q

0

� 1
2Dxb 1þ dð Þ

aþ b
2q

1
4Dxzb 1þ dð Þ

1
2Dxb 1þ dð Þ

aþ b
2q

� 1
4Dxzb 1þ dð Þ

2
6666666666666666666664

3
7777777777777777777775
6�3

, and

(44)

q ¼ Da � Dsð Þfab aþ bð Þ � d a� bð Þ � 2ag:
Substitute the Eq. (44) into Eq. (43), and upshots of the Eq.
(43) is used to find out macro and micro displacements of

homogeneous panel via Eqs. (28) to (30). Yield stress and
force resultants can be obtained by putting the values of dis-
placements into the Eqs. (18) to (21).

3.2. Finite element analysis for static response

The FE model (Plane-stress element) for the plot of dis-
placements is shown in Figure 3. The volume and surface
area of panel are LWT and 2ðLW þ LT þWTÞ, respectively.
The detailed description of FE model are given as

(1) Geometry: 2-D planer deformable shell element.
(2) Section: Homogeneous solid.
(3) Mesh size: 0.025.
(4) Mesh controls: Quad-dominated.
(5) Element shape: Quad.
(6) Element type: CPS4R.

3.3. Comparative results of static panel

Consider a homogeneous cantilever panel with geometric
and material properties to study the comparative macro and
micro-displacements. Modulus of elasticity, E ¼ 2:1� 1011

N/m2, Poisson ratio, � ¼ 0:30, q¼ 7850 kg/m3, L ¼ 1 to 3
m, W ¼ 0:15 to 2:75 m and constant T¼ 0.15m. The
Micropolar-Cosserat analysis, Timoshenko and Goodier
exact cantilever analysis [43] and Timoshenko couple stress
analysis [3] with respect to FE analysis at 1N/m2 surface
traction for the varying dimensions are summarized
as follows,

3.3.1. Lateral displacement and stiffness
Deflection and stiffness of cantilever panels are found dir-
ectly from FE analysis. Typical graphs for comparative

Figure 3. In-plane static displacement (m) due to the surface traction force.
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analysis of lateral deflection and stiffness are shown in
Figures 4 and 5, respectively.

(1) Timoshenko and Goodier exact cantilever [43] expres-
sion for displacement

ux ¼
Qxyy

6Dx
ð6L� 3xÞxþ ð2þ �Þ y2 �W2

4

� �
 �
,

uy ¼
Qxy

6Dx
3�y2ðL� xÞ þ ð4þ 5�ÞW

2x
4

þ ð3L� xÞx2

 �

:

(45)

(2) Timoshenko couple stress [3] expression for displace-
ment

ux ¼
Qxyyf

2
1� eð Þ cosh kðx� LÞ

cosh kL
� 1

� �
� g

x2

2
� Lx

� �" #
,

uy ¼
Qxyf

2
1þ eð Þ x� sinh kðx� lÞ þ sinh kL

k cosh kL

� �


þg
Lx2

2
� x3

6

� ��
,

(46)

where

k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ds

1
Dx

þ 1
2Dxz

� �s
, e ¼ 1

k2
k2Dx � 2Ds

Dx þ Dxz

 !
,

f ¼ 1
Ds

Dxz þ Dx

2Dxz þ Dx

� �
and,

g ¼ 2Ds

Dx þ Dxz

� �
:

3.3.2. Rotation of cross-section
The rotation of cross-section is derived with the help of lon-
gitudinal and lateral deflection of a panel which are found
from FE analysis. Typical sketch and graph for comparison
of rotation of cross-section is shown in Figures 6 and 7,
respectively. The rotation of cross-section about the neutral
axis is expressed as

/ ¼ � ux
y
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB2

x þ AB2
y

q
y

2
4

3
5
, (47)

where, ABx ¼ �y sin h, ABy ¼ yð1� cos hÞ, y ¼ W
2 , w ¼

micro� rotation, and bending slope, h ¼ @uy
@x :

3.3.3. Rotation of micro-structure
The sketch and graph of relative rotation of micro-structure
based on the displacement field are shown in Figures 6 and
8, respectively. The average rotations of micro-structure are

w ¼ 1
2

/� @uy
@x

� �
(48)

Using the Eq. (47) into Eq. (48), micro-rotation in based on
lateral and longitudinal displacement

w ¼ 1
2

� ux
y
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB2

x þ AB2
y

q
y

� @uy
@x

2
4

3
5

(49)

The comparison of FE analysis and Micropolar-Cosserat
shows the good agreements with the in-plane static
response; macro displacement and micro-rotation concern-
ing the ratio of volume to surface area of the panel. The
error appears in the macro-displacement and micro-rotation
is due to imperfection in localization of deformation upon
mesh refinement sensitivity. The localization associated with
strain softening is neither necessary nor sufficient in setting

Figure 4. Lateral deflection of the homogeneous panel.

Figure 6. Macro and micro-rotation of a panel.

Figure 5. Stiffness of the homogeneous panel.
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the constant width of the shear band and energy dissipation
during the time of computation [50, 57, 58]. The FE analysis
v/s Timoshenko and Goodier’s exact solution or
Timoshenko couple stress analysis graph also shows the
same pattern corresponding to the response. In the case of
Timoshenko and Goodier’s cantilever, error are caused by
the incompatibility between the boundary conditions for
complex shear stress at the corners. The top and bottom
faces enforce a zero stress boundary condition at the cor-
ners, while the applied uniform traction enforces non-zero
shear stress boundary conditions at the same places [43]. In
the case of couple stress analysis, this error is due to the
asymmetric part of shear stress which does not contribute to
energy density into the displacement field of structural sys-
tem [3, 25].

3.4. Natural frequencies of the panel

The dynamic system of coupled Eqs. (22) to (24) have no
classical representation. So, It is necessary to represent the
coupled system as a two-scale matrix via sufficient and
necessary decoupling conditions [42]. The separation vari-
able matrix of coupled equations is expressed as

Ds � Da 0 0

0 Dx 0

0 0 2Dxz

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

u00y
/00

w00

( )
|fflfflffl{zfflfflffl}

U00

þ
0 Ds þ Da �2Da

�Ds � Da 0 0

2Da 0 0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

u0y
/0

w0

( )
|fflfflffl{zfflfflffl}

U 0

þ
qAx2 0 0

0 � Ds � Da � qIx2
� 	

�2Da

0 �2Da 4Da þ qAJx2

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kd

uy
/

w

( )
|fflffl{zfflffl}

U

¼ 0:

(50)

The generalized formulation of Eq. (50) via the graphical
representation of state-space method are as follows:

MU 00 þ DU 0 þ KdU ¼ 0

U 00 þM�1DU 0 þM�1KdU ¼ 0,
(51)

U 00

U 0

n o
6�1|fflfflfflfflffl{zfflfflfflfflffl}

X0

¼ �M�1D �M�1Kd

I3 0


 �
6�6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z

U 0

U

n o
6�1|fflfflfflfflffl{zfflfflfflfflffl}

X

X
� 0 ¼ Z

� �
X
� 

:

(52)

The solution of the above system of linear differential equa-

tions, X
� 0 ¼ Z

� �
X
� 

is X
�  ¼ fexx C

� 
or X
�  ¼

SðxÞ� �
C
� 

[59, 60]. Where, f and x are eigenvector and
eigenvalue of Z

� �
, respectively. The solution of a dynamic

system is summarized as

U 0

U

( )
6�1

¼ feXx|{z}
sðxÞ

C
� 

6�1

U 0

U

( )
6�1

¼ SðxÞ� �
6�6 C
� 

6�1:

(53)

The state vector (or V matrix) by using displacement uy, w,
/ and resultants force Eqs. (18) to (21) can be expressed as

uy
/

w

Mx

Qxy

Pxz

8>>>>><
>>>>>:

9>>>>>=
>>>>>;|fflfflffl{zfflfflffl}

V

¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 Dx 0 0 0 0

Ds þ Da 0 0 0 Ds � Da �2Da

0 0 2Dxz 0 0 0

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

U 0

U

( )
6�1

,

(54)

however, the formulation can be generalized as

V
�  ¼ R

� � U 0

U

� �
6�1

: (55)

From the Eqs. (53) and (55), the relation between state vec-
tor and coefficient is expressed as

VðxÞ� 
6�1 ¼ R

� �
6�6 SðxÞ� 

6�6 C
� 

6�1: (56)

The relation between state vector V1 and V2 by using end
conditions, x¼ 0 and x¼ L is expressed as

VðLÞ� 
6�1 ¼ R½ �6�6 SðLÞf g6�6 R½ ��1

6�6 Sð0Þf g�1
6�6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Td

Vð0Þ� 
6�1:

(57)

Let us assume, the transfer matrix of a dynamic system

Td
� �

6�6 ¼
T11 T12

T21 T22


 �
6�6

,

so, Eq. (57) can be written as

VðLÞ� 
6�1 ¼

T11 T12

T21 T22


 �
6�6

Vð0Þ� 
6�1: (58)

The values of forcing frequency (or x) for which the
transfer matrix coefficient, T22

� �
3�3 are zero. Those value

are natural frequencies (or xn) of a homogeneous canti-
lever panel.

3.5. Finite element analysis for natural frequency

The FE model (Plane-stress element) for the plot of natural
frequencies is shown in Figure 9. The volume and surface
area of panel are LWT and 2ðLW þ LT þWTÞ, respectively.
The detailed description of FE model are given as

(1) Geometry: 2-D planer deformable shell element.
(2) Section: Homogeneous solid.
(3) Mesh size: 0.025.
(4) Mesh controls: Quad-dominated.
(5) Element shape: Quad.
(6) Element type: CPS8.

3.6. Comparative analysis of natural frequency

Consider a homogeneous cantilever panel with geometric and
material properties to study the comparative natural frequen-
cies. The young modulus, E ¼ 2:1� 1011 N/m2, Poisson ratio,
� ¼ 0:30, q¼ 7850kg/m3, L ¼ 1 to 3 m, W ¼ 0:15 to 2:75
m and constant T¼ 0.15m.The normalized frequencies for
Micropolar-Cosserat analysis, Timoshenko [61] and Euler [62]
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beam theory with respect to the FE analysis for varying dimen-
sions are shown in Figure 10. The expression of normalized
frequency for homogeneous cantilever panel

Nf ¼ xn

ffiffiffiffiffiffiffiffi
qL2

G

r
: (59)

The natural frequency’s response of Micropolar-Cosserat
theory is very closer to FE analysis with respect to the ratio
of volume to surface area of the panels. However,
Timoshenko’s and Euler’s natural frequencies are found to
have more differences with respect to FE analysis. This is
caused by the existence of micro-rotational waves which are
not found in classical theories [63–65]. It is observed that
the micro-elastic characteristics are not sufficient for the
realistic dispersion of waves. The micro-inertia needed in
addition to micro-elastic characteristics [26, 66, 67].

4. Summary of results

The summary of result from the study of static and dynamic
systems based on classical and non-classical theories are
as follows:

4.1. Static system

� This system is capable to predict the presence of curva-
ture or micro-rotational field of displacement.

� Transfer matrix method is used for the snapshot of the
macro and micro displacements of the panels.

� FE analysis of panel and simulations with Timoshenko-
coupled stress, Timoshenko and Goodier’s exact canti-
lever, and Micropolar-Cosserat analysis are presented.

� The comparative study shows that differences in macro
and micro-deflection and stiffness are up to 3% if the
width of infill walls is limited up to 0:75L:

4.2. Dynamic system

� This system is capable to predict the presence of the dis-
persive phenomenon of flexural waves.

� The natural frequencies of the panels are evaluated using
the transfer matrix approach in conjunction with state-

Figure 10. Normalized frequency of the homogeneous panel.

Figure 7. Rotation of the cross-section about the neutral axis.

Figure 8. Average micro-rotation of structure based on displacement field of
plane-stress element.

Figure 9. FE model based on static stiffness for the natural frequency of first
mode; 533.22 Hz.
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space method. This enables to decouple all the three
coupled partial differential equations of motion.

� FE analysis of panel and simulations with Micropolar-
Cosserat theory, Timoshenko shear deformation theory,
and Euler theory are presented.

� The comparative study shows that differences in natural
frequencies are up to 5% if the width of infill walls is
limited up to 0:75L:

5. Conclusions

One-dimensional Micropolar-Cosserat elastic beam theory is
used to evaluate the transverse displacements, stiffness, rota-
tion of cross-section, independent rotation of micro-struc-
ture, and natural frequencies of the homogeneous panels.
The comparison of different theories show that Micropolar-
Cosserat theory gives closer result in the case of in-plane
static macro-displacement, independent micro-rotation, and
natural frequencies with the plane-stress finite element
model. Timoshenko and Goodier’s exact cantilever analysis,
and Timoshenko couple stress analysis also find the best
agreement even for higher volume-to-surface ratio.
However, other theories like Timoshenko and Euler-
Bernoulli predict the results in acceptable limits only in case
of the low volume to surface area ratio. The conclusions
emphasize on the contribution of the paper and novelty of
this work includes

� The proposed analytical approach of transfer matrix in
this work, can be used to evaluate the static and dynamic
response for any type of boundary conditions.

� In the present paper, the curvature moment (or force)
has been considered due to asymmetric shear at free end
to find the exact in-plane static response.

� The validation of theoretical independent micro-rotation
of panel with the help of static response of the plane-
stress element is another unique feature of this work.

� The illustration of various beam theories like; Euler-
Bernoulli, Timoshenko, Timoshenko and Goodier’s exact
analysis, Couple stress theory, and their comparison with
analytical v/s finite elements analysis has not been pre-
sented before elsewhere.

� The analytical results evidenced a good agreement with
finite element analysis due to incorporation of proposed
exact boundary condition at free end.

Symbols Description

L Length
W Width
T Thickness
A Cross-section area
I Second moment of area
q Density
� Poisson ratio
E Young modulus
G Shear modulus
G c Cosserat modulus
k Shear coefficient
l Characteristics length

ux Longitudinal deflection
uy Transverse deflection
/ Rotation of cross-section
wz Rigid micro-rotation
w Independent micro-rotation
�x, �y Normal strains
�xy, �yx Transverse strains
cs Symmetric shear strain
ca Asymmetric shear strain
Kxz,Kyz Plane-stress curvatures
rx,ry Normal stresses
sxy, syx Shear stresses
mxz, myz Curvature moments
Mx Moment force
Qxy, Qyx Shear Force
Pxz Curvature force
f Eigenvector
x Eigenvalue
xn Natural frequency
Nf Normalized frequency
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