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A B S T R A C T

The stochastic behaviour of materials and loading is of great importance for buckling and analysis of prestressed
beam and frame structures. In this paper, the stochastic stiffness and stress stiffness matrices are developed
for stochastic analysis and buckling analysis. The bending rigidity and the buckling load are modelled as
stochastic fields. The spectral decomposition known as the Karhunen–Loéve expansion has been used to expand
the random fields. Using the Karhunen–Loéve expansion, the stiffness and stress stiffness closed-form matrices
are formulated in terms of discrete parameters. The matrices are developed considering both classical Euler–
Bernoulli theory and Timoshenko beam theory. Two case studies involving a pinned-pinned column and a
frame structure is used to demonstrate the effectiveness of the proposed methods.
. Introduction

In columns and frame structures prestressing can be of special inter-
st. The influence of membrane forces on the lateral deflections can be
onsidered by including the stress stiffening effect in the finite element
FE) analysis. Including the stress stiffening in the FE model also makes
t possible to evaluate the buckling failure mechanism [1,2]. Buckling
ailure in columns is characterized by large deflections perpendicular to
he column axis when exposed to axial compression [2,3]. Long slender
eams loaded with axial compression are often more at risk than shorter
hicker beams, as the critical buckling load will be reached before the
ritical yield load.

The critical Euler load, at which linear buckling occurs, was first
escribed by Euler in 1744 [1]. It is a well-known failure mode and
ethods for determining the buckling load have been developed inten-

ively since the first publication [4,5]. The linear buckling problem is
n eigenvalue problem, which is relatively easy to solve in the case of
imple structures [6–8].

It is often required to assess the uncertainties in engineering prob-
ems during the design phase. Uncertainties in loading, material prop-
rties and geometry or even human error can be included in the design
y predetermined safety factors [2]. These factors can be found in
tandards and guidelines such as the Eurocode [9] depending on the
ngineering problem at hand. Another method is to use probabilistic
esign, where the overall safety level (or probability of failure) is
alculated [10].

The stochastic finite element method (SFEM) is one possible method
o analyse the uncertainties in structural responses when spatial ran-
omness is present in the structure [11–13]. SFEM is an extension to the
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classic deterministic FEM, making it suitable also for problems that are
otherwise difficult to assess analytically. SFEMs are well developed and
have been applied to different types of practical engineering problems
as described in the review paper by Arregui-Mena et al. [14]. Different
approaches can be used in the context of SFEM, including Monte Carlo
simulation, perturbation approaches and Spectral SFEM. These methods
have all been developed extensively over the years [11,12,15,16].

A great deal of research effort has been carried out in the field of
stochastic finite element analysis (SFEA) of buckling. Lin and Kam [17]
used the perturbation approach to formulate a stochastic FE (SFE)
model for buckling of frames with uncertainty in geometric imperfec-
tions, material and sectional properties. The geometric imperfections
were modelled using a Fourier series where the amplitudes were treated
as random variables. Köylüoğlu et al. [18] predicted the mean and
coefficient of variation of the stochastic buckling load using the SFEM
for columns. The bending rigidity was modelled as a Gaussian field
using three random variables by the weighted integral method [19],
and Monte Carlo simulation was used for estimating the response vari-
ability. The critical buckling load was considered deterministic. Ramu
and Ganesan [20] considered randomly fluctuating Young’s modulus
and stochastic axial loads in buckling of a column. The perturbation
approach was used to express the eigenvalues and eigenvectors to
determine the mean and covariances. Ramu and Ganesan [21] obtained
the stochastic response of a column resting on a continuous Winkler
foundation and discrete elastic supports. The Young’s modulus, mass
distribution and axial load were considered stochastic distributions.
Vryzidis et al. [22], investigated the stochastic stability of steel tubes
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with random imperfections. The geometric imperfections in the steel
tubes were modelled as a 2D univariate homogeneous stochastic field
using a spectral representation method. A Monte Carlo based SFE
formulation was implemented to investigate the response. A stochastic
meshfree method for buckling analysis of columns was proposed by
Gupta and Arun [23]. The stochastic fields were discretized using the
Karhunen–Loéve (KL) expansion and the method was used to esti-
mate the response statistics of the buckling load considering different
boundary conditions. Stochastic formulation of Timoshenko and Euler–
Bernoulli theory using wavelet FE theory was described by Vadlamani
and Arun [24].
From this literature review, it can be concluded that significant effort
has been put into stochastic analysis of beams and columns. However,
to the best of the authors knowledge, no implementable closed-form
and explicit solutions to both the stochastic stiffness matrix and the
stochastic stress stiffness matrix considering random variability in the
bending rigidity and prestress have been given previously. The main
motivation of this paper is to develop explicit expressions to capture
the effect of randomness in buckling and prestressed structures. Devel-
oping closed-form stiffness matrices makes it possible to easily include
the stochastic stiffness in any general FE framework. Furthermore,
closed-form stochastic matrices reduce the necessity of excessive Monte
Carlo simulations compared to methods where the matrices are not
directly provided. Adhikari and Friswell [25], developed closed-form
solutions for the stochastic stiffness matrix considering classical Euler–
Bernoulli beam theory. The KL expansion was used as basis for the
random field expansion and up to 13 terms of the expansion were
included. These matrices were used for model-updating of a stochastic
undamped system. Adhikari and Friswell [25], did not consider the
case of stochastic stress stiffening or stochastic buckling. Furthermore,
only Euler–Bernoulli beam theory was used for the developed matrices
excluding Timoshenko beam theory.

In the context of SFEA, the random fields can be discretized into
random variables using the Karhunen–Loéve expansion [26,27]. The KL
expansion is often used for stochastic field representation in the context
of SFEM [11,12,28]. Generally, for complex random fields including
more dimensions and certain correlation functions, numerical methods
need to be used. But for 1D fields, analytical expressions for the KL
expansion is given in the literature [11,25].

An additional aim of this paper is to develop a framework for
predicting the stochastic response of beam buckling and prestressed
frames, considering both the Euler–Bernoulli and Timoshenko beam
theory. In the investigated literature, the stochastic analysis of beams
and columns are often made only considering Euler–Bernoulli beam
theory. Vadlamani and Arun [24], developed a stochastic formulation
for Timoshenko beams using wavelet FE theory, but to the authors
knowledge, no other effort has been made for including Timoshenko
beam theory for SFEM of buckling and prestressed frames.
Based on the literature review the following gaps in already published
methods for stochastic buckling analysis have been identified:

• Closed-form solutions to the stochastic stiffness and stress stiffness
matrix for Euler–Bernoulli beams and Timoshenko beams have
not been provided previously for use with classic SFEM.

• No research effort has been carried out to use the KL expansion
for field discretization for column buckling problems in the case
of the regular FEM. The benefit of using the KL expansion is its
simplicity and the presence of an analytical solution for 1D fields.

• Previous works have mostly considered the classical Euler–
Bernoulli beam theory. As influence from shear is relevant for
shorter thicker beams, stochastic analysis of beams considering
Timoshenko beam theory is required.

In this paper, the KL expansion is used to develop the closed-
orm stochastic stiffness and stress stiffness matrix for beam and frame
tructures. The closed-form stochastic matrices are developed consider-
2

ng both classical Euler–Bernoulli beam theory and Timoshenko beam
theory. The developed matrices are easy to implement in the regular
FE formulations, making it possible to do SFEA without considerable
effort. Furthermore, the closed-form matrices allows for efficient and
fast pre-processing of the FE models, as the stochastic stiffness matrices
are computationally fast to assemble. The developed framework is used
on two numerical examples considering buckling of a beam structure
and a prestressed frame structure.
The outline of the paper is: In Section 2 the spectral decomposition of
stochastic fields using the KL expansion is described and discussed for
Gaussian fields. In Section 3 the KL expansion is used to expand the
stiffness and stress stiffness matrices for an Euler–Bernoulli beam. This
formulation is expanded to Timoshenko beams in Section 4. Based on
the derived stochastic matrices buckling analysis of a beam structure
and stochastic analysis of a prestressed frame structure is presented in
Section 6. Finally, in Section 7, a set of conclusions is drawn.

2. Spectral decomposition of stochastic fields

In most static and dynamic problems some uncertainty, being in
either geometry, loading or material properties can be expected. In
these problems, the random parameters can be treated as random fields
(stochastic fields) and SFEM can be used. Both dynamic and static
problems considering randomness in stiffness, mass and damping, have
previously been investigated inside the framework of SFEM [15,28–31].
In this paper, the stochastic response of stress stiffened beam and frame
structures including critical Euler loads, are considered.
Consider a random field 𝐻(𝒓, 𝜃) with its covariance function 𝐶𝐻 (𝒓𝟏, 𝒓𝟐)
defined in the space . 𝜃 is a outcome from the random sample space 𝜔,
thus 𝜃 ∈ 𝜔. Each realization 𝜃𝑖 corresponds to a single field (or function)
𝐻(𝒓, 𝜃𝑖). Generally, random fields are difficult to handle mathematically
in the context of stochastic partial differential equations, such as the
equations of motions [25]. However, one possible method to handle
this is by discretizing the random fields based on random variables. In
this paper, the Karhunen–Loéve expansion is used for discretizing the
random fields.
The KL expansion given in Eq. (1), is a generalized Fourier type series
based on the decomposition of the covariance function.

𝐹 (𝒓, 𝜃) = 𝐹0(𝒓) +
∞
∑

𝑗=1

√

𝜆𝑗𝜉𝑗 (𝜃)𝜑𝑗 (𝒓) (1)

Where 𝜉𝑗 (𝜃) are uncorrelated random variables of some distribution
type and 𝐹0(𝒓) is the deterministic part of the random field. In the rest
of the paper (⋅)0 refers to the deterministic part of (⋅). 𝜆𝑗 and 𝜑(𝒓) are
he eigenvalues and eigenfunctions of the integral equation given in
q. (2). Eq. (2) is a Fredholm Integral of the second kind.

∫
𝐶𝑓 (𝒓𝟏, 𝒓𝟐)𝜑𝑗 (𝒓𝟏) 𝑑𝒓𝟏 = 𝜆𝑗𝜑𝑗 (𝒓𝟐), ∀𝑗 = 1, 2,… (2)

The KL series can be truncated to some finite number of terms, de-
pending on the desired accuracy of the discretization. Generally, the
Fredholm integral in Eq. (2) can be difficult to solve analytically, thus
numerical integration methods are proposed [32,33]. In this paper, the
random fields considered are one dimensional. For one dimensional
random fields, analytical solutions to the integral equation can be found
in literature [11,25]. The exponential autocovariance function is used
in this paper and is expressed in Eq. (3).

𝐶
(

𝑥1, 𝑥2
)

= exp
(− |

|

𝑥1 − 𝑥2||
𝑏

)

(3)

Where 𝑏 is the correlation length. The correlation length reflects the
rate at which the correlation function decays between two points.
If the correlation length is very large, the random field will behave
as a single random variable system. If the correlation length is very
small it results in a delta-correlated field. Exponentially decaying au-
tocovariance is a popular choice when homogeneous random fields
are used in stochastic analysis. A modified exponential autocovariance
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Fig. 1. Eigenfunctions scaled with eigenvalues for the first 10 KL terms. An exponential
covariance function and unit domains have been used. The correlation length is 𝑏 = 𝐿∕5.

function [34], is sometimes preferred due to the non-differentiability
of the exponential autocovariance function at its peak. In this paper,
however, the correlation lengths are relatively long, reducing the error
occurring due to the non-differentiability [11].
The random field 𝐹 (𝑥, 𝜃) can be expanded as shown in Eq. (4), given
that the mean is zero and that the domain is given in the interval
−𝑎 ≤ 𝑥 ≤ 𝑎.

𝐹 (𝑥, 𝜃) =
∞
∑

𝑗=1
𝜉(𝜃)

√

𝜆𝑗𝜑𝑗 (𝑥) (4)

Where analytical solutions have been derived for the eigenvalues and
eigenfunctions [11,16,25]. The eigenvalues and eigenfunctions for odd
𝑗 are given as:

𝜆𝑗 =
2𝑐

𝜔2
𝑗 + 𝑐2

, 𝜑𝑗 (𝑥) =
cos(𝜔𝑗𝑥)

√

𝑎 + sin(2𝜔𝑗𝑎)
2𝜔𝑗

where tan(𝜔𝑗𝑎) =
𝑐
𝜔𝑗

(5)

and for even 𝑗 they are given as:

𝜆𝑗 =
2𝑐

𝜔2
𝑗 + 𝑐2

, 𝜑𝑗 (𝑥) =
sin(𝜔𝑗𝑥)

√

𝑎 − sin(2𝜔𝑗𝑎)
2𝜔𝑗

where tan(𝜔𝑗𝑎) =
𝜔𝑗

−𝑐
(6)

Where 𝑐 = 1∕𝑏. In practice the infinite series needs to be truncated
to a finite number of terms. In [25], the number of terms to retain
is described based on the ’amount of information’ to keep. This is
directly correlated to the eigenvalues, 𝜆𝑗 . In Fig. 1, an example of
the eigenfunctions scaled by the eigenvalues using Eqs. (5) and (6)
is plotted. As seen from Fig. 1, the amplitude of the eigenfunctions
decrease with increasing index 𝑗. Thus, the influence of the eigenfunc-
tions in the discretized stochastic field decreases with increased number
of KL terms. If one desire to keep 90% of the information in the KL
expansion, the required number of KL terms, 𝑁 can be determined
as

√

𝜆𝑛∕
√

𝜆1 = 0.1 [25]. The discretization is highly dependent on
the correlation length 𝑏. The greater the correlation length, the lesser
number of KL terms is required as a high correlation length reduces the
number of variables needed to describe the random field. In Fig. 2, the
eigenvalues found using Eqs. (5) and (6) are plotted for two different
correlation lengths, 𝑏 = 𝐿∕2 and 𝑏 = 𝐿∕5, with 𝐿 = 0.4. The number
of KL terms required to obtain a 90% level of information is plotted.
As seen from the plot a total number of 10 KL terms is required for
𝑏 = 𝐿∕2, whereas 19 KL terms are required for 𝑏 = 𝐿∕5.

3. Stochastic prestressed Euler–Bernoulli beams

The equation of motion for a static Euler–Bernoulli beam with
random bending stiffness and axial load distribution is given in Eq. (7)
[35].

𝜕2
(

𝐸𝐼(𝑥, 𝜃)
𝜕2𝑌 (𝑥)

)

+ 𝜕
(

𝑃 (𝑥, 𝜃)
𝜕𝑌 (𝑥)

)

= 𝑝(𝑥) (7)
3

𝜕𝑥2 𝜕𝑥2 𝜕𝑥 𝜕𝑥
Fig. 2. Number of KL terms required to obtain a level of retained information of 90%
for different correlation lengths.

Where 𝑌 (𝑥) is the transverse displacement, 𝐸𝐼(𝑥, 𝜃) is the flexural
rigidity, 𝑃 (𝑥, 𝜃) is axial load and 𝑝(𝑥) is the applied forcing. It is assumed
that the bending stiffness, 𝐸𝐼(𝑥, 𝜃) and axial force, 𝑃 (𝑥, 𝜃) are random
fields given in the form:

𝐸𝐼(𝑥, 𝜃) = 𝐸𝐼0(1 + 𝜀1𝐹1(𝑥, 𝜃)) (8)

𝑃 (𝑥, 𝜃) = 𝑃0(1 + 𝜀2𝐹2(𝑥, 𝜃)) (9)

where 𝜀𝑖 are deterministic constants given as 0 < 𝜀𝑖 ≪ 1 (𝑖 = 1, 2).
The stochastic fields 𝐹𝑖(𝑥, 𝜃) are taken to have zero mean, unit standard
deviation and unit covariance. Therefore, 𝜀𝑖 acts as strength parameters
that quantify the amount of randomness in the random fields, that are
used to model the distributed parameters of the system [25]. When the
random fields are Gaussian, the exponential decaying autocorrelation
structure translates to both the random fields 𝐸𝐼(𝑥, 𝜃) and 𝑃 (𝑥, 𝜃). This
is due to the fact that Gaussian random fields are invariant under linear
translation. Randomness in the bending rigidity, 𝐸𝐼(𝑥, 𝜃), can be caused
by small variations in the geometry or Young’s modulus. Axial load
variation dominates certain engineering problems. For example, the
self-weight of the system can be considered by a stochastic field. For
reliability analysis considering the buckling phenomenon an additional
stochastic 𝑃 (𝑥, 𝜃) can also be included as an additional uncertainty
in the model. The expression for 𝐸𝐼(𝑥, 𝜃) in Eq. (8) can be used to
formulate the stochastic element stiffness matrix as:

𝑲𝒆(𝜃) = ∫

𝑙𝑒

0
𝑵 ′′(𝑥)𝐸𝐼(𝑥, 𝜃)𝑵 ′′⊺(𝑥) 𝑑𝑥

= ∫

𝑙𝑒

0
𝐸𝐼0(1 + 𝜀1𝐹1(𝑥, 𝜃))𝑵 ′′(𝑥)𝑵 ′′⊺(𝑥) 𝑑𝑥 (10)

Where 𝑵(𝑥) is the shape function for a Euler–Bernoulli beam. Following
the notation from Adhikari and Friswell [25] the shape function can be
defined as 𝑵(𝑥) = 𝜞𝒔(𝑥), where:

𝜞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 −3
𝑙2𝑒

2
𝑙3𝑒

0 1 −2
𝑙𝑒

1
𝑙2𝑒

0 0 3
𝑙2𝑒

−2
𝑙3𝑒

0 0 −1
𝑙𝑒

1
𝑙2𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝒔(𝑥) =
[

1 𝑥 𝑥2 𝑥3
]⊺ (11)

Using the KL decomposition to expand the stochastic field in Eq. (10)
we get:

𝑲𝒆(𝜃) = 𝑲𝒆𝟎 + 𝜟𝑲𝒆(𝜃) (12)

Where the deterministic part of Eq. (12) is given by:

𝑲𝒆𝟎 = 𝐸𝐼0
𝑙𝑒
𝑵 ′′(𝑥)𝑵 ′′⊺(𝑥) 𝑑𝑥 (13)
∫0
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Extending Eq. (13) results in the deterministic stiffness matrix that can
be found in most FE textbooks like [8]:

𝑲𝒆𝟎 =
𝐸𝐼0
𝑙3𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

12 6𝑙𝑒 −12 6𝑙𝑒
6𝑙𝑒 4𝑙2𝑒 −6𝑙𝑒 2𝑙2𝑒
−12 −6𝑙𝑒 12 −6𝑙𝑒
6𝑙𝑒 2𝑙2𝑒 −6𝑙𝑒 4𝑙2𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(14)

The random part of Eq. (12) is given by Eq. (15):

𝜟𝑲𝒆(𝜃) = 𝜀1
𝑁𝐾
∑

𝑗=1
𝜉𝐾𝑗 (𝜃)

√

𝜆𝐾𝑗𝑲𝒆𝑗 (15)

here 𝑁𝐾 corresponds to the number of KL terms in the spectral
ecomposition. 𝜉𝐾𝑗 are uncorrelated random Gaussian variables with
ero mean and unit standard deviation. The constant matrices 𝑲𝒆𝑗 are
xpressed by Eq. (16), for which Adhikari and Friswell [25] developed
losed-form expressions.

𝒆𝑗 = 𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝐾𝑗 (𝑥𝑒 + 𝑥)𝑵 ′′(𝑥)𝑵 ′′⊺(𝑥) 𝑑𝑥 (16)

Where 𝜑𝐾𝑗 are the eigenfunctions from the solution to Fredholm Inte-
gral Eqs. (5) and (6). 𝑥𝑒 is the starting position of the relevant element.
It should be noted that the KL expansion is used to discretize the
stochastic field over the full length of the physical member (including
all finite elements). Thus, 𝑥𝑒 ensures that the correct part of the field
is coupled to the correct finite element in the considered member.

Extending the work of Adhikari and Friswell [25], the stress stiff-
ening matrix 𝑲𝝈 , including the stochastic expression for 𝑃 (𝑥, 𝜃) can be
derived. The stress stiffening matrix is given as:

𝑲𝝈𝒆(𝜃) = ∫

𝑙𝑒

0
𝑵 ′(𝑥)𝑃 (𝑥, 𝜃)𝑵 ′⊺(𝑥) 𝑑𝑥

= ∫

𝑙𝑒

0
𝑃0(1 + 𝜀2𝐹2(𝑥, 𝜃))𝑵 ′(𝑥)𝑵 ′⊺(𝑥) 𝑑𝑥 (17)

Using the KL expansion on the stochastic field 𝐹2(𝑥, 𝜃) we get:

𝑲𝝈𝒆(𝜃) = 𝑲𝝈𝒆𝟎 + 𝜟𝑲𝝈𝒆(𝜃) (18)

Where the deterministic part is given in Eq. (19)

𝑲𝝈𝒆𝟎 = 𝑃0 ∫

𝑙𝑒

0
𝑵 ′(𝑥)𝑵 ′⊺(𝑥) 𝑑𝑥 (19)

Which, when extended, results in the deterministic stress stiffening
matrix:

𝑲𝝈𝒆𝟎 =
𝑃0
𝑙𝑒

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6
5

𝑙𝑒
10 − 6

5
𝑙𝑒
10

𝑙𝑒
10

2𝑙2𝑒
15 − 𝑙𝑒

10 − 𝑙2𝑒
30

− 6
5 − 𝑙𝑒

10
6
5 − 𝑙𝑒

10
𝑙𝑒
10 − 𝑙2𝑒

30 − 𝑙𝑒
10 − 2𝑙2𝑒

15

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

The random part of Eq. (18) is given as:

𝜟𝑲𝝈𝒆(𝜃) = 𝜀2
𝑁𝜎
∑

𝑗=1
𝜉𝜎𝑗 (𝜃)

√

𝜆𝜎𝑗𝑲𝝈𝒆𝑗 (21)

Where 𝑁𝜎 is the number of KL terms in the expansion of the random
field of 𝑃 (𝑥, 𝜃) and 𝜉𝜎𝑗 (𝜃) are uncorrelated Gaussian random variables

ith zero mean and unit standard deviation. The constant matrices of
he stress stiffness matrix can be expressed as Eq. (22):

𝝈𝒆𝑗 = 𝑃0 ∫

𝑙𝑒

0
𝜑𝜎𝑗 (𝑥𝑒 + 𝑥)𝑵 ′(𝑥)𝑵 ′⊺(𝑥) 𝑑𝑥 (22)

Where the eigenfunctions from the KL expansion are defined in Eq. (5)
and (6). Closed-form expressions of the matrices are derived in Ap-
pendix A.
After using the closed-form expressions to obtain the element stiffness
𝑲 (𝜃) and stress stiffness 𝑲 (𝜃) the usual methods can be used to
4

𝒆 𝝈𝒆 𝐸
assemble the global stiffness matrices. The global stiffness matrices will
likewise be in the form of a deterministic part and a random part:

𝑲 = 𝑲𝟎 + 𝜟𝑲(𝜃) (23)

𝑲𝝈 = 𝑲𝝈𝟎 + 𝜟𝑲𝝈 (𝜃) (24)

where the deterministic parts, 𝑲𝟎 and 𝑲𝝈𝟎 are the general deterministic
global stiffness matrix and global stress stiffness matrix, which can be
found in FE textbooks like [8]. The random parts can be assembled as:

𝜟𝑲(𝜃) = 𝜀1
𝑁𝐾
∑

𝑗=1
𝜉𝐾𝑗 (𝜃)

√

𝜆𝐾𝑗𝑲𝑗 (25)

𝜟𝑲𝝈 (𝜃) = 𝜀2
𝑁𝜎
∑

𝑗=1
𝜉𝜎𝑗 (𝜃)

√

𝜆𝜎𝑗𝑲𝝈 𝑗 (26)

Where the element matrices 𝑲𝒆𝑗 and 𝑲𝝈𝒆𝑗 have been assembled into
the global matrices 𝑲𝑗 and 𝑲𝝈 𝑗 . The number of random variables 𝑁𝑘
and 𝑁𝜎 depends on the truncation of the KL expansion.

4. Stochastic prestressed Timoshenko beams

For shorter and thicker beams where the influence of shear de-
formation and rotational bending influences the deformation results,
the Timoshenko beam theory [2,36,37] can be used. Similar to the
stochastic matrices developed using the Euler–Bernoulli beam theory
described above, the stochastic stiffness matrix and stochastic stress
stiffness matrix, considering Timoshenko beam theory are derived.

The equation of motion for static Timoshenko beams with random
bending rigidity and axial load distribution is given in Eq. (27) [35].

𝜕2

𝜕𝑥2

(

𝐸𝐼(𝑥, 𝜃)
𝜕2𝑌 (𝑥)
𝜕𝑥2

)

+ 𝜕
𝜕𝑥

(

𝐸𝐼(𝑥, 𝜃)
𝑘𝐴𝐺

𝜕𝑝(𝑥)
𝜕𝑥

)

+ 𝜕
𝜕𝑥

(

𝑃 (𝑥, 𝜃)
𝜕𝑌 (𝑥)
𝜕𝑥

)

= 𝑝(𝑥)
(27)

Where 𝑌 (𝑥) is the transverse displacement, 𝐸𝐼(𝑥, 𝜃) is the flexural
rigidity, 𝑃 (𝑥, 𝜃) is axial load and 𝑝(𝑥) is the applied forcing. 𝑘 is a
constant known as the Timoshenko shear constant that depend on the
cross section details. For rectangular sections 𝑘 = 5∕6, can be used [38].
𝐴 is the cross section area and 𝐺 is the shear modulus.

It is assumed that the bending stiffness, 𝐸𝐼(𝑥, 𝜃) and axial force,
𝑃 (𝑥, 𝜃) are random fields given in the form:

𝐸𝐼(𝑥, 𝜃) = 𝐸𝐼0(1 + 𝜀1𝐹1(𝑥, 𝜃)) (28)

𝑃 (𝑥, 𝜃) = 𝑃0(1 + 𝜀2𝐹2(𝑥, 𝜃)) (29)

here 𝜀𝑖 again are deterministic constants given as 0 < 𝜀𝑖 ≪ 1 (𝑖 = 1, 2).
The stochastic fields 𝐹𝑖(𝑥, 𝜃) are taken to have zero mean, unit standard
deviation and unit covariance.

4.1. Stochastic stiffness matrix

The expressions for 𝐸𝐼(𝑥, 𝜃) can be used to formulate the stochastic
element stiffness matrix:

𝑲𝒆 = 𝑲𝒃𝒆 +𝑲𝒔𝒆 = ∫

𝑙𝑒

0
𝑵 ′′

𝒃 (𝑥)𝐸𝐼(𝑥, 𝜃)𝑵 ′′
𝒃
⊺(𝑥)𝑑𝑥

+ 𝐺(𝐴∕𝑘)∫

𝑙𝑒

0
𝑵 ′

𝒔(𝑥)𝐸𝐼(𝑥, 𝜃)𝑵 ′
𝒔
⊺(𝑥)𝑑𝑥

= ∫

𝑙𝑒

0
𝐸𝐼0(1 + 𝜖1𝐹1(𝑥, 𝜃))𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃
⊺(𝑥)𝑑𝑥+

𝐺(𝐴∕𝑘)∫

𝑙𝑒

0
𝐸𝐼0(1 + 𝜖1𝐹1(𝑥, 𝜃))𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥)𝑑𝑥

(30)

here the contribution from bending 𝑲𝒃𝒆 and shear 𝑲𝒔𝒆 to the stiff-
ess have been separated. The shear modulus can be found as 𝐺 =
∕ 2(1 + 𝜈) for isotropic materials where 𝜈 is Poisson’s ratio. The shape
( )
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4

𝑃

𝜞

functions follow the notation used for the Euler–Bernoulli beams with
𝑵𝒃(𝑥) = 𝜞 𝒃𝒔𝒃(𝑥) and 𝑵𝒔(𝑥) = 𝜞 𝒔𝒔𝒔(𝑥):

𝒃 = 1
1 +𝛷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 −3
𝑙2𝑒

2
𝑙3𝑒

0 1 +𝛷 −2
𝑙𝑒

− 1
2
𝜙
𝑙𝑒

1
𝑙2𝑒

0 0 3
𝑙2𝑒

−2
𝑙3𝑒

0 0 −1
𝑙𝑒

+ 1
2
𝛷
𝑙𝑒

1
𝑙2𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝒃(𝑥) =
[

1 𝑥 𝑥2 𝑥3
]⊺ (31)

nd

𝒔 =
𝛷

1 +𝛷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − 1
𝑙𝑒

0 − 1
2

0 1
𝑙𝑒

0 − 1
2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝒔𝒃(𝑥) =
[

1 𝑥
]⊺ (32)

here 𝛷 is defined as:

= 12𝐸𝐼
𝐺(𝐴∕𝑘)𝐿2

(33)

𝛷 gives the relative importance of the shear deformation to the
bending deformation. Setting it to 𝛷 = 0, results in the general Euler–
Bernoulli shape functions and stiffness matrix. 𝛷 will be stochastic in
nature as it consists of both 𝐸𝐼(𝑥, 𝜃) and the shear modulus 𝐺 which
depends on 𝐸. However, in the following derivations 𝛷 is consid-
ered deterministic. Including the expression for the shear modulus for
isotropic materials in Eq. (33) results in:

𝛷 = 12𝐸𝐼
𝐸

2(1+𝜈) (𝐴∕𝑘)𝐿
2
=

24𝐼𝑘(1 + 𝜈)
𝐴𝐿2

(34)

s observed from Eq. (34), the resulting expression for 𝛷 does not
epend on the Young’s modulus, 𝐸. Only geometrical parameters 𝐼 and
are required. Assuming a rectangular cross section with height ℎ and
idth 𝑤, Eq. (34) can be rewritten into:

=
24𝐼𝑘(1 + 𝜈)

𝐴𝐿2
=

24𝑘 ⋅ 1
12𝑤ℎ3(1 + 𝜈)

𝑤ℎ𝐿2
=

2𝑘ℎ2(1 + 𝜈)
𝐿2

(35)

As seen from Eq. (35), 𝛷 is a function of ℎ. Thus, the variability of 𝛷
is larger with increasing randomness in ℎ. However, the impact of 𝛷
is small in the deterministic case, thus including randomness in 𝛷 will
lead to an even smaller contribution in the stiffness and stress stiffness
matrix.

Using the KL decomposition to expand the stochastic field in Eq.
(30), we get:

𝑲𝒆(𝜃) = 𝑲𝒃𝒆𝟎 + 𝜟𝑲𝒃𝒆(𝜃) +𝑲𝒔𝒆𝟎 + 𝜟𝑲𝒔𝒆(𝜃) (36)

Where the deterministic parts of Eq. (36) are given in Eqs. (37) and
(38) and the random parts are given in Eqs. (39) and (40).

𝑲𝒃𝒆𝟎 = 𝐸𝐼0 ∫

𝑙𝑒

0
𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃
⊺(𝑥) 𝑑𝑥 (37)

𝑲𝒔𝒆𝟎 =
12
𝑙2𝑒𝛷

𝐸𝐼0 ∫

𝑙𝑒

0
𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥) 𝑑𝑥 (38)

𝜟𝑲𝒃𝒆(𝜃) = 𝜀1
𝑁𝑏
∑

𝑗=1
𝜉𝑏𝑗 (𝜃)

√

𝜆𝑏𝑗𝑲𝒃𝒆𝑗 (39)

𝑲𝒔𝒆(𝜃) = 𝜀1
𝑁𝑠
∑

𝑗=1
𝜉𝑠𝑗 (𝜃)

√

𝜆𝑠𝑗𝑲𝒔𝒆𝑗 (40)
5

he deterministic parts of the equations can be given as the following
eterministic stiffness matrix:

𝒆𝟎 = 𝑲𝒃𝒆𝟎 +𝑲𝒔𝒆𝟎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

12
1+𝛷

𝐸𝐼0
𝑙3𝑒

6
1+𝛷

𝐸𝐼0
𝑙2𝑒

− 12
1+𝛷

𝐸𝐼0
𝑙3𝑒

6
1+𝛷

𝐸𝐼0
𝑙2𝑒

6
1+𝛷

𝐸𝐼0
𝑙2𝑒

4+𝛷
1+𝛷

𝐸𝐼0
𝑙𝑒

− 6
1+𝛷

𝐸𝐼0
𝑙2𝑒

2−𝛷
1+𝛷

𝐸𝐼0
𝑙𝑒

− 12
1+𝛷

𝐸𝐼0
𝑙3𝑒

− 6
1+𝛷

𝐸𝐼0
𝑙2𝑒

12
1+𝛷

𝐸𝐼0
𝑙3𝑒

− 6
1+𝛷

𝐸𝐼0
𝑙2𝑒

6
1+𝛷

𝐸𝐼0
𝑙2𝑒

2−𝛷
1+𝛷

𝐸𝐼0
𝑙𝑒

− 6
1+𝛷

𝐸𝐼0
𝑙2𝑒

4+𝛷
1+𝛷

𝐸𝐼0
𝑙𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

In Eqs. (39) and (40), the constants 𝑁𝑏 and 𝑁𝑠 are the number of terms
retained in the KL expansion and 𝜉𝑏𝑗 and 𝜉𝑠𝑗 are uncorrelated Gaussian
random variables with zero mean and unit standard deviation. As both
the bending contribution 𝑲𝒃(𝜃) and the shear contribution 𝑲𝒔(𝜃) in
he stiffness matrix are derived from a random field of 𝐸𝐼(𝑥, 𝜃), in all
ractical cases 𝑁𝑏 = 𝑁𝑠 and 𝜉𝑏𝑗 = 𝜉𝑠𝑗 . The constant matrices 𝑲𝒃𝒆𝒋 and
𝒔𝒆𝒋 can be expressed as:

𝒃𝒆𝑗 = 𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑏𝑗 (𝑥𝑒 + 𝑥)𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃
⊺(𝑥) 𝑑𝑥 (42)

𝒔𝒆𝑗 =
12
𝑙2𝑒𝛷

𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑠𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥) 𝑑𝑥 (43)

he eigenfunctions from the KL expansion are given in Eq. (5) and (6).
losed-form expressions are derived in Appendix B. Lastly the global
tiffness matrix can be assembled using traditional methods in the form
iven in Eq. (23) to (26).

.2. Stochastic stress stiffening matrix

The stress stiffening matrix, including the random field of the force
(𝑥, 𝜃) is given for a single element as:

𝑲𝝈𝒆 = 𝑃 (𝑥, 𝜃)∫

𝑙𝑒

0
𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥)

= ∫

𝑙𝑒

0
𝑃0(1 + 𝜀2𝐹2(𝑥, 𝜃))𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥)𝑑𝑥

(44)

Where the shape function, 𝑵𝝈 is the sum of the shape functions for
bending and shear, expressed as 𝑵𝝈 (𝑥) = 𝜞 𝝈𝒔𝝈 (𝑥):

𝝈 = 1
1 +𝛷

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 +𝛷 −𝛷
𝑙𝑒

− 3
𝑙2𝑒

2
𝑙3𝑒

0 1 + 𝛷
2 − 2

𝑙𝑒
− 1

2
𝛷
𝑙𝑒

1
𝑙2𝑒

0 𝛷
𝑙𝑒

3
𝑙2𝑒

− 2
𝑙3𝑒

0 −𝛷
2

1
2
𝛷
𝑙𝑒
− 1

𝑙𝑒
1
𝑙2𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and

𝒔𝝈 (𝑥) =
[

1 𝑥 𝑥2 𝑥3
]⊺ (45)

Using the KL decomposition to expand the stochastic field in Eq. (44),
we get:

𝑲𝝈𝒆(𝜃) = 𝑲𝝈𝒆𝟎 + 𝜟𝑲𝝈𝒆(𝜃) (46)

The deterministic and random part of the stress stiffening matrix are
given as Eqs. (47) and (48).

𝑲𝝈𝒆𝟎 = 𝑃0 ∫

𝑙𝑒

0
𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥) 𝑑𝑥 (47)

𝜟𝑲𝝈𝒆(𝜃) = 𝜀2
𝑁𝜎
∑

𝑗=1
𝜉𝜎𝑗 (𝜃)

√

𝜆𝜎𝑗𝑲𝝈𝒆𝑗 (48)

where the deterministic matrix can be expressed as:

𝑲𝝈𝒆𝟎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

6∕5+2𝛷+𝛷2

(1+𝛷)2
𝑙𝑒∕10
(1+𝛷)2

−6∕5−2𝛷−𝛷2

(1+𝛷)2
𝑙𝑒∕10
(1+𝛷)2

𝑙𝑒∕10
(1+𝛷)2

2𝑙2𝑒 ∕15+𝑙
2
𝑒𝛷∕6+𝑙2𝑒𝛷

2∕12
(1+𝛷)2

− 𝑙𝑒∕10
(1+𝛷)2

−𝑙2𝑒 ∕30−𝑙
2
𝑒𝛷∕6−𝑙2𝑒𝛷

2∕12
(1+𝛷)2

−6∕5−2𝛷−𝛷2

(1+𝛷)2
− 𝑙𝑒∕10

(1+𝛷)2
6∕5+2𝛷+𝛷2

(1+𝛷)2
− 𝑙𝑒∕10

(1+𝛷)2

𝑙𝑒∕10
(1+𝛷)2

−𝑙2𝑒 ∕30−𝑙
2
𝑒𝛷∕6−𝑙2𝑒𝛷

2∕12
(1+𝛷)2

− 𝑙𝑒∕10
(1+𝛷)2

2𝑙2𝑒 ∕15+𝑙
2
𝑒𝛷∕6+𝑙2𝑒𝛷

2∕12
(1+𝛷)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)
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𝜉
u

𝑲

In Eq. (48), 𝑁𝜎 is the number of terms retained in the KL expansion and
𝜎𝑗 is the uncorrelated Gaussian random variables with zero mean and
nit standard deviation. The constant matrix 𝑲𝝈𝒆𝑗 can be expressed as:

𝝈𝒆𝑗 = 𝑃0 ∫

𝑙𝑒

0
𝜑𝜎𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥) 𝑑𝑥 (50)

Where the eigenfunctions from the KL expansion are given in Eq. (5)
and (6). Closed-form expressions are derived in Appendix B. Lastly the
global stiffness matrix can be assembled using traditional methods, in
the form given in Eq. (23) to (26).

5. Stochastic analysis

The expressions for the stochastic Euler–Bernoulli and Timoshenko
beams are of special interest in two types of problems, namely classic
beams and Euler buckling (eigenvalue buckling) analysis. In the context
of SFEM, these two types of analysis are further described in this
section.

5.1. Assumption of small deformations

The developed stochastic matrices in Sections 3 and 4 are based
on the assumption of small deformations. This assumption is valid
as long as the beams and columns are initially straight. However, if
considerable initial bending is present or if the membrane deformation
is highly coupled to the bending deformation, this assumption is no
longer valid. In these cases, the buckling loads can be overestimated
and non-linear analysis can be used instead [8]. The developed matrices
in this paper are, however, useful in the preliminary design stages for a
given structure or for simple structures. Using the stochastic matrices,
the stochastic output can be estimated and the sensitivity to bending
rigidity or axial loading can be determined.

5.2. Stochastic response of prestressed beams

Stress stiffening is used to describe the lateral deflection of beams
and columns influenced by membrane forces [8]. When compressive
membrane loads are added to a beam, the resistance to bending is
decreased. The effect of membrane loading can be taken into account
using the stress stiffening matrix, which is developed for stochastic
beams in the above. The prestressing can be taken into account in the
FE analysis by adding the stress stiffness matrix to the element stiffness
matrix, as expressed in Eq. (51) [8].

𝑲 total = 𝑲 +𝑲𝝈 (51)

The general FE approach for solving the displacements can be then be
used:

𝑭 = 𝑲 total𝒖 (52)

Where 𝑭 is the externally applied force (deterministic) and 𝒖 are the
deflections.
Stochastic analysis can be performed using classical Euler–Bernoulli
beam theory or Timoshenko beam theory, using the developed closed-
form solutions provided in Appendices A and B. This results in the
formal definition of the total stochastic stiffness given as:

𝑲 total =
(

𝑲𝟎 + 𝜟𝑲(𝜃)
)

+
(

𝑲𝝈𝟎 + 𝜟𝑲𝝈 (𝜃)
)

(53)

In the case where the influence of stress stiffening should be in-
cluded in the model, the beam forces, 𝑃 (𝑥, 𝜃), are required. The beam
forces can be found using the general finite element approach and then
be included in the assembly of the stress stiffness matrix. This means
that a two-step calculation is necessary. In the first step, the beam forces
can be found using the general FE formulation. From these forces, the
stress stiffness matrix can be found and in the second step, the final FE
6

analysis can be performed. Randomness in 𝐸𝐼(𝑥, 𝜃) will not influence
𝑃 (𝑥, 𝜃) in the case of simple beam buckling problems. External forces
that are influenced by the beam properties, such as self-weight will,
however, result in variations in 𝑃 (𝑥, 𝜃). For the case of frame-structures,
the distribution of forces will be altered based on the randomness in
rigidity. For example, if the stiffness of one of the members changes,
it will change the force distribution. The force in the frame itself will,
however, remain constant.

5.3. Generalized random matrix eigenvalue problems

Buckling is the loss of stability in the equilibrium. For simple beam
and columns (sometimes denoted beam–columns) the eigenbuckling, or
bifurcation, has been described intensively for both analytical [1,3] and
numerical solutions [6–8]. Buckling can be considered a special case of
stress stiffness analysis, where the membrane forces get so high that
static stability is lost.

In the case of buckling, the governing equations of motion as given
in Eq. (7) and (27) are considered. These equations neglect the inertia
terms, making them static cases. In FE formulation, the corresponding
deterministic buckling loads and buckling modes can be expressed
as an eigenvalue problem in Eq. (54) [8]. To solve the eigenvalue
problem, the stress stiffness matrix, 𝑲𝝈,𝒓𝒆𝒇 , is needed. The matrix can
be determined with any arbitrary reference external load, 𝑹𝒓𝒆𝒇 . The
arbitrary load is used to calculate the forces 𝑃 in the beams and
columns, which are required to establish the stress stiffness matrix [8].

[

𝑲 + 𝜆𝑐𝑟,𝑗𝑲𝝈,𝒓𝒆𝒇
]

𝝋𝒋 = 0 (54)

𝑲 is the general static stiffness matrix. The matrices are provided
for the stochastic case in the above. 𝜆𝑐𝑟 are the eigenvalues (critical
buckling multipliers) corresponding to the reference load and 𝜑𝑖 are the
eigenvectors (buckling modes). These should not be confused with the
eigenvalues and eigenfunctions used with the KL expansion. Thus, for
the traditional eigenbuckling problem, the resulting critical buckling
load is predicted by the critical buckling factor 𝜆𝑐𝑟:

𝑷 𝒄𝒓 = 𝜆𝑐𝑟𝑹𝒓𝒆𝒇 (55)

For simple cases, where only a single axial load is applied to the
structure, a unit load can be applied. This results in the 𝜆𝑐𝑟 values
corresponding directly to the critical load. Generally, only the first
few eigenvalues and critical buckling loads are of interest. The higher
modes are of less interest, as lower modes will result in buckling earlier
than the higher modes.
Using the KL expansions for the stress stiffness matrix and stiffness
matrix, the random eigenvalue problem can be expressed as:
[(

𝑲𝟎 + 𝜟𝑲(𝜃)
)

+ 𝜆𝑐𝑟,𝑗
(

𝑲𝝈𝟎 + 𝜟𝑲𝝈
)]

𝝋𝒋 = 0 (56)

Where each 𝜆𝑐𝑟,𝑗 corresponds to a critical buckling multiplier for the
reference load. 𝜆𝑐𝑟,𝑗 will be stochastic.
Eq. (56) can be solved using direct Monte Carlo analysis. Another
possibility is to use the first-order perturbation approach for eigenvalue
problems [39]:

𝜆𝑖 = 𝜆0𝑖 + 𝝓⊺
𝟎𝒊
(

𝜟𝑲 − 𝜆0𝑖𝜟𝑲𝝈
)

𝝓𝟎𝒊 (57)

Where 𝜆0𝑖 and 𝝓𝟎𝒊 are the deterministic eigenvalues and eigenvectors
of the buckling problem. Eq. (57) is only valid, when the eigenvectors
are scaled such that:

𝝓⊺
𝟎𝒊𝑲𝝈𝟎𝝓𝟎𝒊 = [𝐼] (58)

Generally, the first-order perturbation approach is applicable for the
first critical buckling loads. When higher-order buckling loads are
sought, higher-order perturbation or other methods like the chaos
expansion methods [40], should be used.
In the cases where the axial forces are not simple to estimate, a two-step

calculation is required similar to the analysis described in Section 5.2.
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Table 1
Material and geometric properties of the redundant frame structure.
Beam properties Distribution Mean STD Correlation length, 𝑏

Bending stiffness, 𝐸𝐼 Gaussian 256 Nm2 12.8 Nm2 𝑏 = 1∕5
Force, 𝐹 Deterministic 10 kN – –
Pretension, 𝑃 Deterministic 500 N – –
Shear coefficient, 𝑘 Deterministic 5/6 – –
Cross section height, ℎ Deterministic 30 mm – –
Cross section width, 𝑤 Deterministic 8 mm – –
Fig. 3. Frame structure and corresponding FE model.
In the first step, the initial deflections in the structure are estimated and
used to evaluate the element forces. The element forces are required to
find the stress stiffness matrix. In the next step, the stochastic buckling
equation Eq. (56) can be solved. When the element forces are found
considering stochastic bending rigidity, 𝐸𝐼(𝑥, 𝜃) the resulting forces
will be stochastic. Thus, the stochastic stress stiffness matrix, which
is built on the assumption that 𝑃 (𝑥, 𝜃) can be directly found from the
stochastic element forces. Additional randomness from self-weight or
residual stresses can be included additionally by adding it to 𝑃 (𝑥, 𝜃).

6. Numerical case studies

In this section, two numerical case studies are presented to esti-
mate the response statistics using the developed stochastic matrices.
In these case studies, the statistical moments are predicted using direct
Monte Carlo analysis. In the case of buckling analysis, the perturbation
approach has additionally been used for comparison. The matrices
developed using the Timoshenko and classical Euler–Bernoulli theories
are used and the output statistics have been compared.

In the first case study, the deflections in a prestressed redundant
frame structure, that was investigated by [41], are evaluated. The
analysis has been performed considering random variability in the
bending rigidity. A deterministic preload has been added to the model.
In the second case study, a simple pinned-pinned column is analysed
by considering random variability in both the bending rigidity 𝐸𝐼 and
axial self-weight 𝑃 , to show the methodology for buckling analysis.
Results are obtained using both direct Monte Carlo sampling and the
perturbation approach.

6.1. Case study of stochastic redundant frame structure

In this case study, a redundant frame structure [41], with variability
in the bending rigidity 𝐸𝐼(𝑥) has been considered. The frame includes a
bolting mechanism, which makes it possible to apply pretension in one
of the diagonal frame members. The redundant structure is shown in
Fig. 3, together with the corresponding FE model developed. The frame
is built by rectangular cross-sections of 8 × 30 mm. In-plane bending
7

is considered in the FE analysis. The two bottom edge nodes are fixed
and simply supported respectively and two loads are applied as shown
in Fig. 3(b).

It should be noted that two nodes are present in the frame on top
of each other. This results in two diagonal frame members, which are
not sharing a node at the centre, effectively uncoupling them.
Two numerical cases have been investigated. In the first case, no pre-
tension has been applied but stress stiffening effects have been included
and in the second case, a pretension force of 𝑃 = 500 N (compression)
has been applied. In this numerical example, the pretension, 𝑃 , is
considered deterministic. For small loads, the frame with the shown
tightening mechanism will be able to transfer both compression and
tension loads.
The unperturbed physical and geometric properties are given in
Table 1. The bending rigidity is assumed modelled using a Gaussian
distribution with a coefficient of variation of 8%. The correlation
length is assumed to be 𝑏 = 1∕5. Each of the frame members is
modelled using their own KL expansion. This resembles the case where
6 individual members are used in the frame structure. Thus, zero
correlation between the members is assumed. For the simulation of
correlated random fields on multiple and non-convex domains, we refer
to [42] for further details. The level of retained information has been
set to 10%. This means that the longest frame members (the diagonals)
require 21 KL terms, the horizontal frame members require 19 terms
and the vertical members require 13 KL terms in the KL expansion.

The FE model is discretized using 30 elements for each frame
members, resulting in a total element count of 180. This has been
verified by a deterministic convergence study of the vertical deflection
in the centre-node of the prestressed frame member, (highlighted in
Fig. 3(b)). The convergence study is made on the non-prestressed model
but considering stress stiffening effects. The mesh convergence study
is shown in Fig. 4(a). If no stress stiffening effect was included, that
is by excluding the stress stiffening matrix in Eq. (41), the deflection
would converge faster. As the stochastic field is discretized through the
FE mesh, five perturbations of 𝐸𝐼(𝑥, 𝜃) are plotted in Fig. 4(b), for the
left vertical frame member. As seen from the plot, the perturbations

are rather fine with no steep changes, indicating a sufficiently refined
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Fig. 4. Mesh convergence study and perturbation plots of 𝐸𝐼(𝑥𝜃).
mesh. The KL expansion is independent of the FE mesh, however,
when applying the stochastic field to the FE model, the field has to
be discretized to the mesh. Thus, a too course FE mesh will result in
an unrealistic discretization of the stochastic field and thereby result in
errors in the stochastic analysis.

The formulation given in Eq. (52) has been considered in a Monte
Carlo calculation scheme where the total stochastic stiffness is found
using Eq. (53). Both Timoshenko and Euler–Bernoulli beam theories
have been applied. The analysis is considered in two steps. In the first
step, the deflections and resulting axial forces in each element are
found, based on the stochastic bending rigidity. The axial forces in each
frame element are found using:

𝑃𝑒 =
𝐸𝐴
𝐿𝑒

[(

𝑢2 − 𝑢1
)

𝑙 +
(

𝑣2 − 𝑣1
)

𝑚
]

(59)

Where 𝑢 and 𝑣 is the horizontal and lateral node deflections and 𝑙
and 𝑚 are the direction cosines in the frame element axis. In these
calculations, 𝐸 is considered deterministic but could be accounted for
by the KL expansion given in the above sections.

It should be noted that the structure in this example is build up
by frame elements as compared to the formulation given in Sections 3
and 4 for beam elements. This means that an additional degree of
freedom (axial) has to be added and that rotation of the deterministic
and stochastic stiffness matrices are required. This rotation can made
using the traditional rotation matrix 𝑻 , such that the rotated stiffness
and stress stiffness matrix can be found by 𝑲𝒓𝒐𝒕 = 𝑻 ⊺𝑲𝑻 . The rotation
matrix can be found in most books on FE analysis such as [8]. The
frame elements [8], have three DOF’s, that is two translational DOF’s
and one rotational DOF, at each node. The axial degree of freedom is
added to the stiffness matrices developed in Sections 3 and 4. As the
axial degree of freedom is included in the stiffness matrix only and as
it only depends on 𝐸 and 𝐴 it has been considered deterministic.

A total of 10,000 MC samples have been generated and used for the
stochastic analysis. This has been verified by a convergence study, that
showed that the mean and standard deviation of the output statistics
converges around 6,000 to 10,0000 MC samples. To compare the results
of the numerical study, the vertical deflection in the centre-node has
been investigated. In Table 2, the results are given for the case where
no pretension is added in the FE model and in Table 3, the results are
given for the case where a pretension of 𝑃 = 500 N is added.

It can be observed from the results from the stochastic analysis in
Tables 2 and 3 that the Euler–Bernoulli and Timoshenko beam theories
give nearly the same standard deviations and mean deflections. This
is also observed in the cases with and without preloading. As the
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Table 2
Vertical deflections at centre-node from stochastic analysis for the case without
pretension added.

Theory Method Mean 𝑢 STD of 𝑢

Euler–Bernoulli Deterministic −0.328 mm –
Timoshenko Deterministic −0.344 mm –
Euler–Bernoulli MCS −0.374 mm 0.141 mm
Timoshenko MCS −0.373 mm 0.124 mm

Table 3
Vertical deflections at centre-node from stochastic analysis for the case where
pretension of 𝑃 = 500 N is added.

Theory Method Mean 𝑢 STD of 𝑢

Euler–Bernoulli Deterministic −0.383 mm –
Timoshenko Deterministic −0.383 mm –
Euler–Bernoulli MCS −0.385 mm 0.160 mm
Timoshenko MCS −0.384 mm 0.156 mm

frame members are relatively thin and long, the difference between
Euler–Bernoulli and Timoshenko beam theories is also expected to be
small. The preload 𝑃 = 500 N in the diagonal frame member results in
smaller differences between deterministic and stochastic results, as seen
in Table 3. As the preload is considered deterministic, it is expected
that the deterministic and stochastic values will come closer. The beam
forces in the diagonal preloaded frame member are approximately 65
kN, thus the additional preload of 500 N corresponds to 0.77% of the
beam forces. This increase of force in the frame member effectively
reduces the variability observed in output response.

6.2. Case study of stochastic buckling of a pinned-pinned column

In this case study, a simple pinned-pinned column with variability
in the bending rigidity 𝐸𝐼(𝑥, 𝜃) and the beam load 𝑃 (𝑥, 𝜃) is considered
for eigenbuckling. The variation in 𝑃 (𝑥, 𝜃) is included in the case study
for completeness. The column is shown in Fig. 5(a) and the unperturbed
physical and geometric properties are given in Table 4. In the FE model,
the mean of the force 𝑃 (𝑥, 𝜃) is equal to 1. This results in the output
critical load amplifier, 𝜆𝑐𝑟 from the calculations, being equal to the
stochastic load required for the column to buckle, 𝑃𝑐𝑟. The slenderness
ratio, calculated as

(

𝐺𝐴𝐿2) ∕ (𝐸𝐼) is for the mean values calculated to
320.51. The slenderness ratio determines the effect of the Timoshenko
beam formulation compared to the Euler–Bernoulli beam formulation.
The lower the slenderness ratio, the higher the influence of shear
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Fig. 5. Pinned-Pinned column and mesh convergence study of deterministic model.
Table 4
Material and geometric properties of pinned-pinned column.
Beam properties Distribution Mean STD Correlation length, 𝑏

Length, 𝐿 Deterministic 0.5 m – –
Bending stiffness, 𝐸𝐼 Gaussian 360 kNm2 28.8 kNm2 𝑏 = 𝐿∕5
Force, 𝑃 Gaussian 1 N 0.05 N 𝑏 = 𝐿∕2
Shear coefficient, 𝑘 Deterministic 5/6 – –
Cross section height, ℎ Deterministic 100 mm – –
Cross section width, 𝑤 Deterministic 60 mm – –
deformations on the results. From the formulation, it is seen that lower
and thicker beams and columns result in lower ratios. From classical
Euler–Bernoulli beam theory, the critical load for a pinned-pinned
column like the one in Fig. 5(a), is 14.21 MN.

The column has been analysed using the Euler–Bernoulli and Tim-
oshenko beam theories for comparison. The FE model of the column
is developed using 40 elements. The convergence study of the critical
buckling load using deterministic Timoshenko beam theory is shown
in Fig. 5(b) and shows that the FE model converges by using 18
elements. However, the discretization of the stochastic field through the
FE elements are rather coarse with 20 elements as seen from Fig. 6(a).
Instead, 40 elements have been used, resulting in a finer discretization
of the stochastic fields as seen in Fig. 6(b).

In the buckling calculations, it is assumed that both variational
parameters can be modelled by a Gaussian random field. For the
bending rigidity a 8% variation is assumed and a correlation length
of 𝑏 = 𝐿∕5. The critical buckling load is assumed to have a correlation
length of 𝑏 = 𝐿∕2 and a 5% variation. The KL expansion is truncated
to obtain a 10% level of retained information. This corresponds to 19
KL terms for the rigidity 𝐸𝐼 and 10 KL terms for the load 𝑃 . This
also corresponds to the eigenvalue plots shown in Fig. 2. As the load
𝑃 (𝑥, 𝜃) only needs 10 KL terms, the KL discretization of the stiffness
𝐸𝐼 , has been used for the study of required elements shown in Fig. 6.
Smaller correlation lengths results in a higher number of KL terms and
in practice means that more fluctuations of the field can be expected.
To obtain the output statistics, both direct Monte Carlo simulations
of the stochastic fields and the perturbation approach are used. The
uncorrelated random Gaussian variables, 𝜉𝑗 (𝜃) for each KL expansions,
are generated using a random number generator and have been used
as input in the stochastic analysis. A total of 10,000 MC simulations
for each random field have been generated. As multiple uncorrelated
random variables are required in the KL distribution, the number of MC
simulations is corrected for 19 and 10 KL terms respectively. Thus, for
the bending rigidity where 19 KL terms are required a total of 190,000
random variables are generated.
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Table 5
Critical buckling loads 𝑃𝑐𝑟 from stochastic buckling analysis of pinned-pinned column.

Theory Method Mean 𝑃𝑐𝑟 STD of 𝑃𝑐𝑟 Diff. Mean Diff. STD

Bernoulli Euler MCS 14.16 MN 924.5 kN Ref. Ref.
Timoshenko MCS 13.81 MN 894.7 kN −2.49% −3.23%
Bernoulli Euler Pert. App. 14.20 MN 921.7 kN 0.25% −0.31%
Timoshenko Pert. App. 13.84 MN 892.0 kN −2.25% −3.51%

Table 6
Critical buckling loads 𝑃𝑐𝑟 from stochastic buckling analysis of cantilever beam.

Theory Method Mean 𝑃𝑐𝑟 STD of 𝑃𝑐𝑟 Diff. Mean Diff. STD

Bernoulli Euler MCS 3.54 MN 0.24 kN Ref. Ref.
Timoshenko MCS 3.52 MN 0.23 kN −0.63% −0.83%
Bernoulli Euler Pert. App. 3.55 MN 0.23 kN 0.19% −0.41%
Timoshenko Pert. App. 3.55 MN 0.23 kN −0.44% −1.23%

The eigenbuckling load multiplier is calculated from the eigenvalue
problem given in Eq. (56), for each of the MC simulations. The critical
load for obtaining buckling can then be determined as 𝑃𝑐𝑟 = 𝜆𝑖𝑃 .
Only the first critical load corresponding to the first mode of flexure
is estimated. From the critical loads, the statistics are estimated and
provided in Table 5. The statistical moments using the perturbation
approach is predicted using additional MC simulations and Eq. (57).
Other methods for determining the statistical moments using the per-
turbation approach can be found in [43]. It can be observed that the
Euler–Bernoulli beam theory predicts the mean of the buckling load
higher than the Timoshenko beam theory using both the Monte Carlo
simulation method and the perturbation approach. This is also to be
expected, as the Timoshenko beam theory will reduce the buckling
load. It can also be seen that the two theories in combination with
the perturbation method and the Monte Carlo simulation, results in
almost the same mean and standard deviations. The highest difference
between method is observed to be 2.25% for the mean value and
3.51% for the standard deviation. In Fig. 7, the probability density
functions (PDF) are presented for the Euler–Bernoulli and Timoshenko



Engineering Structures 249 (2021) 113312M.L. Larsen et al.
Fig. 6. Example of perturbations of 𝐸𝐼 considering various number of elements.
Fig. 7. Probability density functions of critical buckling loads for pinned-pinned column.
Fig. 8. Probability density functions of critical buckling loads for fixed-free column.
10
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Table 7
Material and geometric properties of pinned-pinned column exposed to self-weight.

Beam properties Distribution Mean STD Correlation length, 𝑏

Length, 𝐿 Deterministic 0.5 m – –
Bending stiffness, 𝐸𝐼 Gaussian 360 kNm2 28.8 kNm2 𝑏 = 𝐿∕5
Density, 𝜌 Gaussian 7850 kg/m3 392.5 kg/m3 𝑏 = 𝐿∕2
Force, 𝑃1 Deterministic 14.2a/13.9bMN – –
Shear coefficient, 𝑘 Deterministic 5/6 – –
Cross section height, ℎ Deterministic 100 mm – –
Cross section width, 𝑤 Deterministic 60 mm – –

aCritical buckling force using Euler–Bernoulli beam theory.
bCritical buckling force using Timoshenko beam theory.
.

Table 8
Critical buckling factors 𝜆𝑐𝑟 from stochastic buckling analysis of pinned-pinned column

Theory Method Mean 𝜆𝑐𝑟 STD of 𝜆𝑐𝑟 Diff. Mean Diff. STD

Bernoulli Euler MCS 0.99571 0.06506 Ref. Ref.
Timoshenko MCS 0.99569 0.06511 −0.002% 0.070%
Bernoulli Euler Pert. App. 1.00 0.06485 0.250% −0.331%
Timoshenko Pert. App. 1.00 0.06489 0.245% −0.266%

beam theories. As observed from Fig. 7 that the results from the Monte
Carlo simulation and perturbation approach are very similar. It should
be noted, that both the Monte Carlo approach and the perturbation
approach and the beam theories rely on the KL expansion, which is
truncated to a finite number of terms. Thus, both methods will result
in approximated output statistics.

The output statistics of the buckling problem is sensitive to the bound-
ary conditions. For example, changing the column in Fig. 5(a) to being
fixed-free (cantilever beam), but keeping the rest of the assumptions,
produces the results shown in Table 6. As observed from the results, the
standard deviations considerably decrease and the relative differences
between methods and theories likewise decrease. This indicates that
the results are highly influenced by the boundary conditions. The PDFs
in Fig. 8 are showing the same trend as in Fig. 7, as the results from
the Monte Carlo simulation and perturbation approach are very close.
So it can be concluded that both the Monte Carlo simulation and the
perturbation approach give the same predictions.

In the above examples, the force 𝑃 (𝑥, 𝜃) has been considered
stochastic for completeness. A real life example could be in the case
where self-weight is included in the FE model. Thus, considering the
pinned-pinned beam in Fig. 5(a) the force through the beam could be
modelled by:

𝑃 (𝑥, 𝜃) = (𝐿𝐴𝑔 − 𝐴𝑔𝑥)𝜌(𝑥, 𝜃) + 𝑃1 (60)

Where the density 𝜌(𝑥, 𝜃) is considered a stochastic variable and 𝐴 and
𝑔 is the cross sectional area and gravitational constant, respectively.
𝑃1 is a deterministic force added on top of the beam. The result from
the buckling analysis, the critical buckling factor, 𝜆𝑐𝑟, should be scaled
with the reference loads, see Eq. (55) to obtain the critical loads.
In the following case study the deterministic buckling forces for the
first buckling mode including self-weight has been applied as external
loading 𝑃1. The bending rigidity and density is considered stochastic
following the properties given in Table 7.

Five perturbations of the stochastic force 𝑃 (𝑥, 𝜃) is shown in Fig. 9.
The force will increase stochastically from the top to the bottom of the
beam, due to the stochastic density.

The resulting stochastic load factors, 𝜆𝑐𝑟 from the analysis including
self-weight is given in Table 8. As seen from the table, the results show
similar tendencies for both theories and methods. It can be concluded
that including the self-weight of the system results in stochastic critical
load factors.
11
Fig. 9. Five perturbations of 𝑃 (𝑥, 𝜃).

7. Conclusions

In this paper, closed-form solutions for the stochastic stiffness and
stress stiffness matrix for beams and frames have been developed con-
sidering classical Euler–Bernoulli and Timoshenko beam theories. The
developed matrices are based on the Karhunen–Loéve expansion and
allow for simple implementation of additional KL terms, which results
in more accurate stochastic analysis. The main motivation for develop-
ing the closed-form matrices arises from the fact that many engineering
structures are at risk of local buckling. The proposed matrices include
random variability in bending stiffness and prestress/buckling loads.
The matrices can be applied to other random properties, following the
methodology outlined in the paper. Furthermore, the assembly of the
closed-form matrices is easy and corresponds to assembling general
deterministic matrices in the FE formulation. The KL expansion is
also independent of the number of elements, meaning that increased
number of elements do not require additional random variables in the
stochastic formulation. Thus, it can be easily implemented for random
fields in stochastic buckling analysis of beams and frames by reducing
the necessity for crude Monte Carlo sampling of each parameter for
each element. The novel aspects in this paper include:

a. Development of explicit closed-form solutions to the stochastic
stiffness matrix and stochastic stress stiffness matrix consider-
ing variability in the bending rigidity and preload using the
Karhunen–Loevé expansion.

b. Development of the stochastic stiffness and stress stiffness ma-
trices for Timoshenko beam theory.
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c. Stochastic analysis and stochastic buckling analysis of
prestressed beams and frames using the Timoshenko beam the-
ory.

Two numerical case studies are presented in this paper to test
he developed matrices and framework. In the first case study, the
tochastic response of a prestressed frame structure is predicted and in
he second case study, an eigenbuckling problem has been considered.
he closed-form stochastic matrices, which consider random variability

n the forces and bending rigidity are assembled. Subsequently, the
roblems including the stochastic matrices are solved using Monte
arlo simulation and the perturbation approach. It can be concluded

rom the two case studies that the proposed closed-form stochastic
atrices using both Euler–Bernoulli and Timoshenko beam theories can

e used for stochastic analysis with confidence.
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ppendix A. Closed-form expressions of stochastic stress stiffness
atrix of Euler–Bernoulli beam

This appendix derives the closed-form expressions for the random
art of the element stress stiffness matrix is derived based on Euler–
ernoulli beam theory.
or notational purposes the shape functions 𝑵(𝑥) is expressed as the
roduct of 𝑵(𝑥) = 𝜞𝒔(𝑥) as shown in Eq. (11). The constant matrix
iven in Eq. (22) is expressed as:

𝝈𝒆𝑗 = 𝑃0 ∫

𝑙𝑒

0
𝜑𝜎𝑗 (𝑥𝑒 + 𝑥)𝑵 ′(𝑥)𝑵 ′⊺(𝑥) 𝑑𝑥 (A.1)

A.1. Odd

By inserting the analytical expression for the eigenfunctions of the
KL expansion given in Eq. (5), the constant matrix for odd 𝑗 can be
expressed as:

𝑲𝝈𝒆𝑗 =
𝑃0

√

𝑎 + sin(2𝜔𝑗𝑎)
2𝜔𝑗

𝜞
[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′(𝑥)𝒔′⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺ (A.2)

=
𝑃0

𝜔5
𝑗 𝑙6𝑒

√

𝑎 + sin(2𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝝈𝒆𝑗 (A.3)
12
where 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝝈𝒆𝑗
is expressed by:

�̃�𝝈𝒆𝑗 = 𝜔5
𝑗 𝑙

6
𝑒𝜞

[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′(𝑥)𝒔′⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺

= 𝜔5
𝑗 𝑙

6
𝑒𝜞 ∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 1 2𝑥 3𝑥2

0 2𝑥 4𝑥2 6𝑥3

0 3𝑥2 6𝑥3 9𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺
(A.4)

The elements of the symmetric matrix �̃�𝝈𝒆𝑗 is then expressed as:

�̃�𝝈𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗12 −�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗14
�̃�𝜎𝑒𝑗22 −�̃�𝜎𝑒𝑗12 �̃�𝜎𝑒𝑗24

�̃�𝜎𝑒𝑗11 −�̃�𝜎𝑒𝑗14
�̃�𝜎𝑒𝑗44

⎤

⎥

⎥

⎥

⎥

⎦

(A.5)

�̃�𝜎𝑒𝑗11 = −72𝑆1 𝑙𝑒2𝜔𝑗
2 + 72𝑆2 𝑙𝑒2𝜔𝑗

2 − 432𝐶1 𝑙𝑒 𝜔𝑗
−432𝐶2 𝑙𝑒 𝜔𝑗 + 864𝑆1 − 864𝑆2

(A.6)

�̃�𝜎𝑒𝑗12 = 6𝐶2 𝑙𝑒4𝜔𝑗
3 − 24𝑆1 𝑙𝑒3𝜔𝑗

2 + 60𝑆2 𝑙𝑒3𝜔𝑗
2 − 180𝐶1 𝑙𝑒2𝜔𝑗

−252𝐶2 𝑙𝑒2𝜔𝑗 + 432𝑆1 𝑙𝑒 − 432𝑆2 𝑙𝑒
(A.7)

�̃�𝜎𝑒𝑗14 = 6𝐶1 𝑙𝑒4𝜔𝑗
3 − 60𝑆1 𝑙𝑒3𝜔𝑗

2 + 24𝑆2 𝑙𝑒3𝜔𝑗
2 − 252𝐶1 𝑙𝑒2𝜔𝑗

−180𝐶2 𝑙𝑒2𝜔𝑗 + 432𝑆1 𝑙𝑒 − 432𝑆2 𝑙𝑒
(A.8)

�̃�𝜎𝑒𝑗22 = −𝑆2 𝑙𝑒6𝜔𝑗
4 + 8𝐶2 𝑙𝑒5𝜔𝑗

3 − 8𝑆1 𝑙𝑒4𝜔𝑗
2 + 44𝑆2 𝑙𝑒4𝜔𝑗

2

−72𝐶1 𝑙𝑒3𝜔𝑗 − 144𝐶2 𝑙𝑒3𝜔𝑗 + 216𝑆1 𝑙𝑒2 − 216𝑆2 𝑙𝑒2
(A.9)

�̃�𝜎𝑒𝑗24 = 2𝐶1 𝑙𝑒5𝜔𝑗
3 + 2𝐶2 𝑙𝑒5𝜔𝑗

3 − 22𝑆1 𝑙𝑒4𝜔𝑗
2 + 22𝑆2 𝑙𝑒4𝜔𝑗

2

−108𝐶1 𝑙𝑒3𝜔𝑗 − 108𝐶2 𝑙𝑒3𝜔𝑗 + 216𝑆1 𝑙𝑒2 − 216𝑆2 𝑙𝑒2

(A.10)
�̃�𝜎𝑒𝑗44 = 𝑆1 𝑙𝑒6𝜔𝑗

4 + 8𝐶1 𝑙𝑒5𝜔𝑗
3 − 44𝑆1 𝑙𝑒4𝜔𝑗

2 + 8𝑆2 𝑙𝑒4𝜔𝑗
2

−144𝐶1 𝑙𝑒3𝜔𝑗 − 72𝐶2 𝑙𝑒3𝜔𝑗 + 216𝑆1 𝑙𝑒2 − 216𝑆2 𝑙𝑒2

(A.11)

where
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(A.12)

.2. Even

For even 𝑗, the stress stiffness matrix can be expressed based on
q. (6) as:

𝝈𝒆𝑗 =
𝑃0

√

𝑎 − sin(2𝜔𝑗𝑎)
2𝜔𝑗

𝜞
[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′(𝑥)𝒔′⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺ (A.13)

=
𝑃0

𝜔5
𝑗 𝑙6𝑒

√

𝑎 − sin(2𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝝈𝒆𝑗 (A.14)

where 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝝈𝒆𝑗
is expressed by:

�̃�𝝈𝒆𝑗 = 𝜔5
𝑗 𝑙

6
𝑒𝜞

[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′(𝑥)𝒔′⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺

= 𝜔5
𝑗 𝑙

6
𝑒𝜞 ∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 2𝑥 3𝑥2

0 2𝑥 4𝑥2 6𝑥3

0 3𝑥2 6𝑥3 9𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺
(A.15)

The elements of the symmetric matrix �̃�𝝈𝒆𝑗 is then expressed as:

�̃�𝝈𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗12 −�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗14
�̃�𝜎𝑒𝑗22 −�̃�𝜎𝑒𝑗12 �̃�𝜎𝑒𝑗24

�̃�𝜎𝑒𝑗11 −�̃�𝜎𝑒𝑗14
̃

⎤

⎥

⎥

⎥

⎥

(A.16)
⎣

𝐾𝜎𝑒𝑗44 ⎦
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�̃�𝜎𝑒𝑗11 = 72𝐶1 𝑙𝑒2𝜔𝑗
2 − 72𝐶2 𝑙𝑒2𝜔𝑗

2 − 432𝑆1 𝑙𝑒 𝜔𝑗
−432𝑆2 𝑙𝑒 𝜔𝑗 − 864𝐶1 + 864𝐶2

(A.17)

�̃�𝜎𝑒𝑗12 = 6𝑆2 𝑙𝑒4𝜔𝑗
3 + 24𝐶1 𝑙𝑒3𝜔𝑗

2 − 60𝐶2 𝑙𝑒3𝜔𝑗
2 − 180𝑆1 𝑙𝑒2𝜔𝑗

−252𝑆2 𝑙𝑒2𝜔𝑗 − 432𝐶1 𝑙𝑒 + 432𝐶2 𝑙𝑒
(A.18)

�̃�𝜎𝑒𝑗14 = 6𝑆1 𝑙𝑒4𝜔𝑗
3 + 60𝐶1 𝑙𝑒3𝜔𝑗

2 − 24𝐶2 𝑙𝑒3𝜔𝑗
2 − 252𝑆1 𝑙𝑒2𝜔𝑗

−180𝑆2 𝑙𝑒2𝜔𝑗 − 432𝐶1 𝑙𝑒 + 432𝐶2 𝑙𝑒
(A.19)

�̃�𝜎𝑒𝑗22 = 𝐶2 𝑙𝑒6𝜔𝑗
4 + 8𝑆2 𝑙𝑒5𝜔𝑗

3 + 8𝐶1 𝑙𝑒4𝜔𝑗
2 − 44𝐶2 𝑙𝑒4𝜔𝑗

2

−72𝑆1 𝑙𝑒3𝜔𝑗 − 144𝑆2 𝑙𝑒3𝜔𝑗 − 216𝐶1 𝑙𝑒2 + 216𝐶2 𝑙𝑒2

(A.20)
�̃�𝜎𝑒𝑗24 = 2𝑆1 𝑙𝑒5𝜔𝑗

3 + 2𝑆2 𝑙𝑒5𝜔𝑗
3 + 22𝐶1 𝑙𝑒4𝜔𝑗

2 − 22𝐶2 𝑙𝑒4𝜔𝑗
2

−108𝑆1 𝑙𝑒3𝜔𝑗 − 108𝑆2 𝑙𝑒3𝜔𝑗 − 216𝐶1 𝑙𝑒2 + 216𝐶2 𝑙𝑒2

(A.21)
�̃�𝜎𝑒𝑗44 = −𝐶1 𝑙𝑒6𝜔𝑗

4 + 8𝑆1 𝑙𝑒5𝜔𝑗
3 + 44𝐶1 𝑙𝑒4𝜔𝑗

2 − 8𝐶2 𝑙𝑒4𝜔𝑗
2

−144𝑆1 𝑙𝑒3𝜔𝑗 − 72𝑆2 𝑙𝑒3𝜔𝑗 − 216𝐶1 𝑙𝑒2 + 216𝐶2 𝑙𝑒2

(A.22)

where:

𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)
𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)

(A.23)

Appendix B. Closed-form expressions of stochastic stiffness matrix
of Timoshenko beam

This appendix derives the closed-form expressions for the random
part of the element stiffness matrix based on Timoshenko beam theory.
For simplicity, the stiffness is divided into the contribution from the
bending stiffness and the contribution from the shear stiffness as shown
in Eq. (B.1):

𝑲𝒆 = 𝑲𝒃𝒆 +𝑲𝒔𝒆 = ∫

𝑙𝑒

0
𝐸𝐼0(1 + 𝜖1𝐹1(𝑥, 𝜃))𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃
⊺(𝑥)𝑑𝑥

+ 12
𝑙2𝑒𝛷 ∫

𝑙𝑒

0
𝐸𝐼0(1 + 𝜖1𝐹1(𝑥, 𝜃))𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥)𝑑𝑥

(B.1)

For notational purposes the shape function 𝑵𝒃(𝑥) is expressed as the
product of 𝑵𝒃(𝑥) = 𝜞 𝒃𝒔𝒃(𝑥) as shown in Eq. (31). 𝑵𝒔(𝑥) is expressed
as the product of 𝑵𝒔(𝑥) = 𝜞 𝒔𝒔𝒔(𝑥) as shown in Eq. (32). The constant
matrix given in Eq. (42) for the bending contribution is expressed as:

𝑲𝒃𝒆𝑗 = 𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑏𝑗 (𝑥𝑒 + 𝑥)𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃 (𝑥)

⊺(𝑥) 𝑑𝑥 (B.2)

B.1. Contribution from bending — odd

Inserting the solution to the eigenfunctions from the KL expansion
given in Eq. (5), the constant matrix for odd 𝑗 can be expressed as:

𝑲𝒃𝒆𝑗 =
𝐸𝐼0

√

𝑎 + sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

𝜞 𝒃

[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′′𝒃 (𝑥)𝒔

′′
𝒃
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒃 (B.3)

=
𝐸𝐼0

(1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗

√

𝑎 + sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝒃𝒆𝑗 (B.4)

here 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝒃𝒆𝑗
an be expressed as:

�̃�𝒃𝒆𝑗 = (1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗𝜞 𝒃

[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′′𝒃 (𝑥)𝒔

′′
𝒃
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒃

= (1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗𝜞 𝒃 ∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0
0 0 4 12𝑥
0 0 12𝑥 36𝑥2

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺
𝒃

(B.5)
13
The elements in the symmetric matrix �̃�𝒃𝒆𝑗 can then be expressed as:

�̃�𝒃𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�𝑏𝑒𝑗11 �̃�𝑏𝑒𝑗12 −�̃�𝑏𝑒𝑗11 �̃�𝑏𝑒𝑗14

�̃�𝑏𝑒𝑗22 −�̃�𝑏𝑒𝑗12 �̃�𝑏𝑒𝑗24

�̃�𝑏𝑒𝑗11 −�̃�𝑏𝑒𝑗14

�̃�𝑏𝑒𝑗44

⎤

⎥

⎥

⎥

⎥

⎦

(B.6)

�̃�𝜎𝑒𝑗11 = 36𝑆1 𝑙𝑒
2𝜔𝑗

2 − 36𝑆2 𝑙𝑒
2𝜔𝑗

2 + 144𝐶1 𝑙𝑒 𝜔𝑗

+144𝐶2 𝑙𝑒 𝜔𝑗 − 288𝑆1 + 288𝑆2
(B.7)

�̃�𝜎𝑒𝑗12 = −6𝛷𝑆1 𝑙𝑒
3𝜔𝑗

2 − 6𝛷𝑆2 𝑙𝑒
3𝜔𝑗

2 + 12𝑆1 𝑙𝑒
3𝜔𝑗

2 − 24𝑆2 𝑙𝑒
3𝜔𝑗

2

−12𝐶1 𝛷 𝑙𝑒
2𝜔𝑗 + 12𝐶2 𝛷 𝑙𝑒

2𝜔𝑗 + 60𝐶1 𝑙𝑒
2𝜔𝑗 + 84𝐶2 𝑙𝑒

2𝜔𝑗

−144𝑆1 𝑙𝑒 + 144𝑆2 𝑙𝑒
(B.8)

�̃�𝜎𝑒𝑗14 = 6𝛷𝑆1 𝑙𝑒
3𝜔𝑗

2 + 6𝛷𝑆2 𝑙𝑒
3𝜔𝑗

2 + 24𝑆1 𝑙𝑒
3𝜔𝑗

2 − 12𝑆2 𝑙𝑒
3𝜔𝑗

2

+12𝐶1 𝛷 𝑙𝑒
2𝜔𝑗 − 12𝐶2 𝛷 𝑙𝑒

2𝜔𝑗 + 84𝐶1 𝑙𝑒
2𝜔𝑗 + 60𝐶2 𝑙𝑒

2𝜔𝑗

−144𝑆1 𝑙𝑒 + 144𝑆2 𝑙𝑒

(B.9)

�̃�𝜎𝑒𝑗22 = 𝛷2𝑆1 𝑙𝑒
4𝜔𝑗

2 −𝛷2𝑆2 𝑙𝑒
4𝜔𝑗

2 − 4𝛷𝑆1 𝑙𝑒
4𝜔𝑗

2 − 8𝛷𝑆2 𝑙𝑒
4𝜔𝑗

2

+4𝑆1 𝑙𝑒
4𝜔𝑗

2 − 16𝑆2 𝑙𝑒
4𝜔𝑗

2 − 12𝐶1 𝛷 𝑙𝑒
3𝜔𝑗 + 12𝐶2 𝛷 𝑙𝑒

3𝜔𝑗

+24𝐶1 𝑙𝑒
3𝜔𝑗 + 48𝐶2 𝑙𝑒

3𝜔𝑗 − 72𝑆1 𝑙𝑒
2 + 72𝑆2 𝑙𝑒

2

(B.10)
�̃�𝜎𝑒𝑗24 = −𝛷2𝑆1 𝑙𝑒

4𝜔𝑗
2 +𝛷2𝑆2 𝑙𝑒

4𝜔𝑗
2 − 2𝛷𝑆1 𝑙𝑒

4𝜔𝑗
2 + 2𝛷𝑆2 𝑙𝑒

4𝜔𝑗
2

+8𝑆1 𝑙𝑒
4𝜔𝑗

2 − 8𝑆2 𝑙𝑒
4𝜔𝑗

2 + 36𝐶1 𝑙𝑒
3𝜔𝑗 + 36𝐶2 𝑙𝑒

3𝜔𝑗

−72𝑆1 𝑙𝑒
2 + 72𝑆2 𝑙𝑒

2

(B.11)
�̃�𝜎𝑒𝑗44 = 𝛷2𝑆1 𝑙𝑒

4𝜔𝑗
2 −𝛷2𝑆2 𝑙𝑒

4𝜔𝑗
2 + 8𝛷𝑆1 𝑙𝑒

4𝜔𝑗
2 + 4𝛷𝑆2 𝑙𝑒

4𝜔𝑗
2

+16𝑆1 𝑙𝑒
4𝜔𝑗

2 − 4𝑆2 𝑙𝑒
4𝜔𝑗

2 + 12𝐶1 𝛷 𝑙𝑒
3𝜔𝑗 − 12𝐶2 𝛷 𝑙𝑒

3𝜔𝑗

+48𝐶1 𝑙𝑒
3𝜔𝑗 + 24𝐶2 𝑙𝑒

3𝜔𝑗 − 72𝑆1 𝑙𝑒
2 + 72𝑆2 𝑙𝑒

2

(B.12)

where:
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(B.13)

B.2. Contribution from bending — even

For even 𝑗 the bending contribution to the stiffness matrix can be
expressed based on Eq. (6) as:

𝑲𝒃𝒆𝑗 = 𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑏𝑗 (𝑥𝑒 + 𝑥)𝑵 ′′

𝒃 (𝑥)𝑵
′′
𝒃
⊺(𝑥) 𝑑𝑥 (B.14)

𝑲𝒃𝒆𝑗 =
𝐸𝐼0

√

𝑎 − sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

𝜞 𝒃

[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′′𝒃 (𝑥)𝒔

′′
𝒃
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒃 (B.15)

=
𝐸𝐼0

(1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗

√

𝑎 − sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝒃𝒆𝑗 (B.16)

where 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝒃𝒆𝑗
an be expressed as:

�̃�𝒃𝒆𝑗 = (1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗𝜞 𝒃

[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′′𝒃 (𝑥)𝒔

′′
𝒃
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒃

= (1 +𝛷)2 𝑙6𝑒𝜔
3
𝑗𝜞 𝒃 ∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0
0 0 4 12𝑥
0 0 12𝑥 36𝑥2

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺
𝒃

(B.17)

he elements in the symmetric matrix �̃�𝒃𝒆𝑗 can then be expressed as:

̃
𝒃𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

�̃�𝑏𝑒𝑗11 �̃�𝑏𝑒𝑗12 −�̃�𝑏𝑒𝑗11 �̃�𝑏𝑒𝑗14

�̃�𝑏𝑒𝑗22 −�̃�𝑏𝑒𝑗12 �̃�𝑏𝑒𝑗24

�̃�𝑏𝑒𝑗11 −�̃�𝑏𝑒𝑗14

⎤

⎥

⎥

⎥

⎥

⎥

(B.18)
⎣ �̃�𝑏𝑒𝑗44 ⎦
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m

F
p
g

𝑲

C

g

�̃�𝜎𝑒𝑗11 = −36𝐶1 𝑙𝑒
2𝜔𝑗

2 + 36𝐶2 𝑙𝑒
2𝜔𝑗

2 + 144𝑆1 𝑙𝑒 𝜔𝑗

+144𝑆2 𝑙𝑒 𝜔𝑗 + 288𝐶1 − 288𝐶2

(B.19)

�̃�𝜎𝑒𝑗12 = 6𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

2 + 6𝐶2 𝛷 𝑙𝑒
3𝜔𝑗

2 − 12𝐶1 𝑙𝑒
3𝜔𝑗

2 + 24𝐶2 𝑙𝑒
3𝜔𝑗

2

−12𝑆1 𝛷 𝑙𝑒
2𝜔𝑗 + 12𝑆2 𝛷 𝑙𝑒

2𝜔𝑗 + 60𝑆1 𝑙𝑒
2𝜔𝑗 + 84𝑆2 𝑙𝑒

2𝜔𝑗

+144𝐶1 𝑙𝑒 − 144𝐶2 𝑙𝑒
(B.20)

�̃�𝜎𝑒𝑗14 = −6𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

2 − 6𝐶2 𝛷 𝑙𝑒
3𝜔𝑗

2 − 24𝐶1 𝑙𝑒
3𝜔𝑗

2 + 12𝐶2 𝑙𝑒
3𝜔𝑗

2

+12𝑆1 𝛷 𝑙𝑒
2𝜔𝑗 − 12𝑆2 𝛷 𝑙𝑒

2𝜔𝑗 + 84𝑆1 𝑙𝑒
2𝜔𝑗 + 60𝑆2 𝑙𝑒

2𝜔𝑗

+144𝐶1 𝑙𝑒 − 144𝐶2 𝑙𝑒
(B.21)

�̃�𝜎𝑒𝑗22 = −𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

2 + 𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

2 + 4𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

2 + 8𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

2

−4𝐶1 𝑙𝑒
4𝜔𝑗

2 + 16𝐶2 𝑙𝑒
4𝜔𝑗

2 − 12𝑆1 𝛷 𝑙𝑒
3𝜔𝑗 + 12𝑆2 𝛷 𝑙𝑒

3𝜔𝑗

+24𝑆1 𝑙𝑒
3𝜔𝑗 + 48𝑆2 𝑙𝑒

3𝜔𝑗 + 72𝐶1 𝑙𝑒
2 − 72𝐶2 𝑙𝑒

2

(B.22)
�̃�𝜎𝑒𝑗24 = 𝐶1 𝛷2𝑙𝑒

4𝜔𝑗
2 − 𝐶2 𝛷2𝑙𝑒

4𝜔𝑗
2 + 2𝐶1 𝛷 𝑙𝑒

4𝜔𝑗
2 − 2𝐶2 𝛷 𝑙𝑒

4𝜔𝑗
2

−8𝐶1 𝑙𝑒
4𝜔𝑗

2 + 8𝐶2 𝑙𝑒
4𝜔𝑗

2 + 36𝑆1 𝑙𝑒
3𝜔𝑗 + 36𝑆2 𝑙𝑒

3𝜔𝑗

+72𝐶1 𝑙𝑒
2 − 72𝐶2 𝑙𝑒

2

(B.23)
�̃�𝜎𝑒𝑗44 = −𝐶1 𝛷2𝑙𝑒

4𝜔𝑗
2 + 𝐶2 𝛷2𝑙𝑒

4𝜔𝑗
2 − 8𝐶1 𝛷 𝑙𝑒

4𝜔𝑗
2 − 4𝐶2 𝛷 𝑙𝑒

4𝜔𝑗
2

−16𝐶1 𝑙𝑒
4𝜔𝑗

2 + 4𝐶2 𝑙𝑒
4𝜔𝑗

2 + 12𝑆1 𝛷 𝑙𝑒
3𝜔𝑗 − 12𝑆2 𝛷 𝑙𝑒

3𝜔𝑗

+48𝑆1 𝑙𝑒
3𝜔𝑗 + 24𝑆2 𝑙𝑒

3𝜔𝑗 + 72𝐶1 𝑙𝑒
2 − 72𝐶2 𝑙𝑒

2

(B.24)

where:
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(B.25)

B.3. Contribution from shear — odd

The constant matrix given in Eq. (43) for the odd shear contribution
to the stochastic stiffness can be expressed as:

𝑲𝒔𝒆𝑗 =
12
𝑙2𝑒𝛷

𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑠𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥) 𝑑𝑥 (B.26)

Inserting the solutions to the eigenfunctions from the KL expansion
given in Eq. (5), the constant matrix for odd 𝑗 is:

𝑲𝒔𝒆𝑗 =
12𝐸𝐼0

𝑙2𝑒𝛷
√

𝑎 + sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

𝜞 𝒔

[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝒔(𝑥)𝒔

′
𝒔
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒔

(B.27)

=
3𝐸𝐼0

𝛷 (1 +𝛷)2 𝑙4𝑒𝜔𝑗

√

𝑎 + sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝒔𝒆𝑗 (B.28)

here 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝒔𝒆𝑗
an be expressed as:

�̃�𝒔𝒆𝑗 = 4 (1 +𝛷)2 𝑙2𝑒𝜔𝑗𝜞 𝒔

[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝒔(𝑥)𝒔

′
𝒔
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒔

= 4 (1 +𝛷)2 𝑙2𝑒𝜔𝑗𝜞 𝒔 ∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))

[

0 0
0 1

]

𝑑𝑥𝜞 ⊺
𝒔

(B.29)

The elements in the symmetric matrix �̃�𝒔𝒆𝑗 can then be expressed as:

�̃�𝒔𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗12 −�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗12
�̃�𝑠𝑒𝑗22 −�̃�𝑠𝑒𝑗12 �̃�𝑠𝑒𝑗22

�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗34
�̃�𝑠𝑒𝑗22

⎤

⎥

⎥

⎥

⎥

⎦

(B.30)

�̃�𝑠𝑒𝑗11 = 4𝛷2𝑆1 − 4𝛷2𝑆2 (B.31)

�̃�𝑠𝑒𝑗12 = 2𝛷2𝑆1 𝑙𝑒 − 2𝛷2𝑆2 𝑙𝑒 (B.32)
̃ 2 2 2 2
14

𝐾𝑠𝑒𝑗22 = 𝛷 𝑆1 𝑙𝑒 −𝛷 𝑆2 𝑙𝑒 (B.33)
�̃�𝑠𝑒𝑗34 = −2𝛷2𝑆1 𝑙𝑒 + 2𝛷2𝑆2 𝑙𝑒 (B.34)

where:
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(B.35)

B.4. Contribution from shear — even

For even 𝑗 the shear contribution to the stiffness matrix can be
expressed based on Eq. (6) as:

𝑲𝒔𝒆𝑗 =
12
𝑙2𝑒𝛷

𝐸𝐼0 ∫

𝑙𝑒

0
𝜑𝑠𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝒔(𝑥)𝑵
′
𝒔
⊺(𝑥) 𝑑𝑥 (B.36)

𝒔𝒆𝑗 =
12𝐸𝐼0

𝑙2𝑒𝛷
√

𝑎 − sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

𝜞 𝒔

[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝒔(𝑥)𝒔

′
𝒔
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒔

(B.37)

=
3𝐸𝐼0

𝛷 (1 +𝛷)2 𝑙4𝑒𝜔𝑗

√

𝑎 − sin(𝑎𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝒔𝒆𝑗 (B.38)

where 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝒔𝒆𝑗
can be expressed as:

�̃�𝒔𝒆𝑗 = 4 (1 +𝛷)2 𝑙2𝑒𝜔𝑗𝜞 𝒔

[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝒔(𝑥)𝒔

′
𝒔
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺
𝒔

= 4 (1 +𝛷)2 𝑙2𝑒𝜔𝑗𝜞 𝒔 ∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))

[

0 0
0 1

]

𝑑𝑥𝜞 ⊺
𝒔

(B.39)

he elements in the symmetric matrix �̃�𝒔𝒆𝑗 can then be expressed as:

̃ 𝒔𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗12 −�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗12
�̃�𝑠𝑒𝑗22 −�̃�𝑠𝑒𝑗12 �̃�𝑠𝑒𝑗22

�̃�𝑠𝑒𝑗11 �̃�𝑠𝑒𝑗34
�̃�𝑠𝑒𝑗22

⎤

⎥

⎥

⎥

⎥

⎦

(B.40)

�̃�𝑠𝑒𝑗11 = −4𝐶1 𝛷2 + 4𝐶2 𝛷2 (B.41)

�̃�𝑠𝑒𝑗12 = −2𝐶1 𝛷2𝑙𝑒 + 2𝐶2 𝛷2𝑙𝑒 (B.42)

�̃�𝑠𝑒𝑗22 = −𝐶1 𝛷2𝑙𝑒2 + 𝐶2 𝛷2𝑙𝑒2 (B.43)

�̃�𝑠𝑒𝑗34 = 2𝐶1 𝛷2𝑙𝑒 − 2𝐶2 𝛷2𝑙𝑒 (B.44)

here:
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(B.45)

ppendix C. Closed-form expressions of stochastic stress stiffness
atrix of Timoshenko beam

This appendix derives the closed-form expressions for the random
art of the element stress stiffness matrix for Timoshenko beams. The
atrix is defined as given in Eq. (44) as:

𝑲𝝈𝒆 = ∫

𝑙𝑒

0
𝑃0(1 + 𝜀2𝐹2(, 𝜃))𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥)𝑑𝑥 (C.1)

or notational purposes the shape function 𝑵𝝈 (𝑥) is expresses as the
roduct 𝑵𝝈 (𝑥) = 𝜞 𝝈𝒔𝝈 (𝑥) as shown in Eq. (45). The constant matrix
iven in Eq. (50) is expressed as:

𝝈𝒆𝑗 = 𝑃0 ∫

𝑙𝑒

0
𝜑𝜎𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥) 𝑑𝑥 (C.2)

.1. Odd

Inserting the solution to the eigenfunctions from the KL expansion
iven in Eq. (5), the constant matrix of odd 𝑗 can be expressed as:
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𝑲

𝑲𝝈𝒆𝑗 =
𝑃0

√

𝑎 + sin(2𝜔𝑗𝑎)
2𝜔𝑗

𝜞
[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝝈 (𝑥)𝒔

′
𝝈
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺ (C.3)

=
𝑃0

4 (1 +𝛷)2 𝑙6𝑒𝜔
5
𝑗

√

𝑎 + sin(2𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝝈𝒆𝑗 (C.4)

here 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝝈𝒆𝑗
s expressed by:

�̃�𝝈𝒆𝑗 = 4 (1 +𝛷)2 𝑙6𝑒𝜞
[

∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝝈 (𝑥)𝒔

′
𝝈
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺

= 4 (1 +𝛷)2 𝑙6𝑒𝜞 ∫

𝑙𝑒

0
cos(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 1 2𝑥 3𝑥2

0 2𝑥 4𝑥2 6𝑥3

0 3𝑥2 6𝑥3 9𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺

(C.5)

he elements of the symmetric matrix �̃�𝝈𝒆𝑗 is then expressed as:

̃
𝝈𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗12 −�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗14

�̃�𝜎𝑒𝑗22 −�̃�𝜎𝑒𝑗12 �̃�𝜎𝑒𝑗24

�̃�𝜎𝑒𝑗11 −�̃�𝜎𝑒𝑗14

�̃�𝜎𝑒𝑗44

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(C.6)

�̃�𝜎𝑒𝑗11 = 4𝑆1 𝛷2𝑙𝑒
4𝜔𝑗

4 − 4𝑆2 𝛷2𝑙𝑒
4𝜔𝑗

4 − 48𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

3 − 48𝐶2 𝛷 𝑙𝑒
3𝜔𝑗

3

+96𝛷 𝑙𝑒
2𝜔𝑗

2𝑆1 − 96𝛷 𝑙𝑒
2𝜔𝑗

2𝑆2 − 288𝑆1 𝑙𝑒
2𝜔𝑗

2 + 288𝑆2 𝑙𝑒
2𝜔𝑗

2

−1728𝐶1 𝑙𝑒 𝜔𝑗 − 1728𝐶2 𝑙𝑒 𝜔𝑗 + 3456𝑆1 − 3456𝑆2

(C.7)
�̃�𝜎𝑒𝑗12 = 2𝑆1 𝛷2𝑙𝑒

5𝜔𝑗
4 + 2𝑆2 𝛷2𝑙𝑒

5𝜔𝑗
4 + 4𝑆2 𝛷 𝑙𝑒

5𝜔𝑗
4 + 4𝐶1 𝛷2𝑙𝑒

4𝜔𝑗
3

−4𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

3 − 20𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

3 − 4𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

3 + 24𝐶2 𝑙𝑒
4𝜔𝑗

3

+96𝑆1 𝛷 𝑙𝑒
3𝜔𝑗

2 + 48𝑆2 𝛷 𝑙𝑒
3𝜔𝑗

2 − 96𝑆1 𝑙𝑒
3𝜔𝑗

2 + 240𝑆2 𝑙𝑒
3𝜔𝑗

2

+144𝐶1 𝛷 𝑙𝑒
2𝜔𝑗 − 144𝐶2 𝛷 𝑙𝑒

2𝜔𝑗 − 720𝐶1 𝑙𝑒
2𝜔𝑗 − 1008𝐶2 𝑙𝑒

2𝜔𝑗

+1728𝑆1 𝑙𝑒 − 1728𝑆2 𝑙𝑒
(C.8)

�̃�𝜎𝑒𝑗14 = −2𝑆1 𝛷2𝑙𝑒
5𝜔𝑗

4 − 2𝑆2 𝛷2𝑙𝑒
5𝜔𝑗

4 − 4𝑆1 𝛷 𝑙𝑒
5𝜔𝑗

4 − 4𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

3

+4𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

3 − 4𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

3 − 20𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

3 + 24𝐶1 𝑙𝑒
4𝜔𝑗

3

−48𝑆1 𝛷 𝑙𝑒
3𝜔𝑗

2 − 96𝑆2 𝛷 𝑙𝑒
3𝜔𝑗

2 − 240𝑆1 𝑙𝑒
3𝜔𝑗

2 + 96𝑆2 𝑙𝑒
3𝜔𝑗

2

−144𝐶1 𝛷 𝑙𝑒
2𝜔𝑗 + 144𝐶2 𝛷 𝑙𝑒

2𝜔𝑗 − 1008𝐶1 𝑙𝑒
2𝜔𝑗 − 720𝐶2 𝑙𝑒

2𝜔𝑗

+1728𝑆1 𝑙𝑒 − 1728𝑆2 𝑙𝑒
(C.9)

�̃�𝜎𝑒𝑗22 = 𝑆1 𝛷2𝑙𝑒
6𝜔𝑗

4 − 𝑆2 𝛷2𝑙𝑒
6𝜔𝑗

4 − 4𝑆2 𝛷 𝑙𝑒
6𝜔𝑗

4 + 4𝐶1 𝛷2𝑙𝑒
5𝜔𝑗

3

+4𝐶2 𝛷2𝑙𝑒
5𝜔𝑗

3 − 4𝑆2 𝑙𝑒
6𝜔𝑗

4 − 8𝐶1 𝛷 𝑙𝑒
5𝜔𝑗

3 + 24𝐶2 𝛷 𝑙𝑒
5𝜔𝑗

3

+32𝐶2 𝑙𝑒
5𝜔𝑗

3 − 8𝑆1 𝛷2𝑙𝑒
4𝜔𝑗

2 + 8𝑆2 𝛷2𝑙𝑒
4𝜔𝑗

2 + 56𝑆1 𝛷 𝑙𝑒
4𝜔𝑗

2

+88𝑆2 𝛷 𝑙𝑒
4𝜔𝑗

2 − 32𝑆1 𝑙𝑒
4𝜔𝑗

2 + 176𝑆2 𝑙𝑒
4𝜔𝑗

2 + 144𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

−144𝐶2 𝛷 𝑙𝑒
3𝜔𝑗 − 288𝐶1 𝑙𝑒

3𝜔𝑗 − 576𝐶2 𝑙𝑒
3𝜔𝑗 + 864𝑆1 𝑙𝑒

2

−864𝑆2 𝑙𝑒
2

(C.10)
�̃�𝜎𝑒𝑗24 = −𝑆1 𝛷2𝑙𝑒

6𝜔𝑗
4 + 𝑆2 𝛷2𝑙𝑒

6𝜔𝑗
4 − 2𝑆1 𝛷 𝑙𝑒

6𝜔𝑗
4 + 2𝑆2 𝛷 𝑙𝑒

6𝜔𝑗
4

−4𝐶1 𝛷2𝑙𝑒
5𝜔𝑗

3 − 4𝐶2 𝛷2𝑙𝑒
5𝜔𝑗

3 − 8𝐶1 𝛷 𝑙𝑒
5𝜔𝑗

3 − 8𝐶2 𝛷 𝑙𝑒
5𝜔𝑗

3

+8𝐶1 𝑙𝑒
5𝜔𝑗

3 + 8𝐶2 𝑙𝑒
5𝜔𝑗

3 + 8𝑆1 𝛷2𝑙𝑒
4𝜔𝑗

2 − 8𝑆2 𝛷2𝑙𝑒
4𝜔𝑗

2

+16𝑆1 𝛷 𝑙𝑒
4𝜔𝑗

2 − 16𝑆2 𝛷 𝑙𝑒
4𝜔𝑗

2 − 88𝑆1 𝑙𝑒
4𝜔𝑗

2 + 88𝑆2 𝑙𝑒
4𝜔𝑗

2

−432𝐶1 𝑙𝑒
3𝜔𝑗 − 432𝐶2 𝑙𝑒

3𝜔𝑗 + 864𝑆1 𝑙𝑒
2 − 864𝑆2 𝑙𝑒

2

15

(C.11)
�̃�𝜎𝑒𝑗44 = 𝑆1 𝛷2𝑙𝑒
6𝜔𝑗

4 − 𝑆2 𝛷2𝑙𝑒
6𝜔𝑗

4 + 4𝑆1 𝛷 𝑙𝑒
6𝜔𝑗

4 + 4𝐶1 𝛷2𝑙𝑒
5𝜔𝑗

3

+4𝐶2 𝛷2𝑙𝑒
5𝜔𝑗

3 + 4𝑆1 𝑙𝑒
6𝜔𝑗

4 + 24𝐶1 𝛷 𝑙𝑒
5𝜔𝑗

3 − 8𝐶2 𝛷 𝑙𝑒
5𝜔𝑗

3

+32𝐶1 𝑙𝑒
5𝜔𝑗

3 − 8𝑆1 𝛷2𝑙𝑒
4𝜔𝑗

2 + 8𝑆2 𝛷2𝑙𝑒
4𝜔𝑗

2 − 88𝑆1 𝛷 𝑙𝑒
4𝜔𝑗

2

−56𝑆2 𝛷 𝑙𝑒
4𝜔𝑗

2 − 176𝑆1 𝑙𝑒
4𝜔𝑗

2 + 32𝑆2 𝑙𝑒
4𝜔𝑗

2 − 144𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

+144𝐶2 𝛷 𝑙𝑒
3𝜔𝑗 − 576𝐶1 𝑙𝑒

3𝜔𝑗 − 288𝐶2 𝑙𝑒
3𝜔𝑗 + 864𝑆1 𝑙𝑒

2

−864𝑆2 𝑙𝑒
2

(C.12)

where:

𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(C.13)

C.2. Even

For even 𝑗 the stress stiffness matrix can be expressed based on
Eq. (6), as:

𝑲𝝈𝒆𝑗 = 𝑃0 ∫

𝑙𝑒

0
𝜑𝜎𝑗 (𝑥𝑒 + 𝑥)𝑵 ′

𝝈 (𝑥)𝑵
′
𝝈
⊺(𝑥) 𝑑𝑥 (C.14)

𝑲𝝈𝒆𝑗 =
𝑃0

√

𝑎 − sin(2𝜔𝑗𝑎)
2𝜔𝑗

𝜞
[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝝈 (𝑥)𝒔

′
𝝈
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺ (C.15)

=
𝑃0

4 (1 +𝛷)2 𝑙6𝑒𝜔
5
𝑗

√

𝑎 − sin(2𝜔𝑗𝑎)
2𝜔𝑗

�̃�𝝈𝒆𝑗 (C.16)

where 𝑎 = 𝐿∕2 and 𝐿 corresponds to the full length of the beam. �̃�𝝈𝒆𝑗
is expressed by:

�̃�𝝈𝒆𝑗 = 4 (1 +𝛷)2 𝑙6𝑒𝜞
[

∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))𝒔′𝝈 (𝑥)𝒔

′
𝝈
⊺(𝑥) 𝑑𝑥

]

𝜞 ⊺

= 4 (1 +𝛷)2 𝑙6𝑒𝜞 ∫

𝑙𝑒

0
sin(𝜔𝑗 (𝑥𝑒 + 𝑥))

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 1 2𝑥 3𝑥2

0 2𝑥 4𝑥2 6𝑥3

0 3𝑥2 6𝑥3 9𝑥4

⎤

⎥

⎥

⎥

⎥

⎦

𝑑𝑥𝜞 ⊺

(C.17)

The elements of the symmetric matrix �̃�𝝈𝒆𝑗 is then expressed as:

�̃�𝝈𝒆𝑗 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗12 −�̃�𝜎𝑒𝑗11 �̃�𝜎𝑒𝑗14

�̃�𝜎𝑒𝑗22 −�̃�𝜎𝑒𝑗12 �̃�𝜎𝑒𝑗24

�̃�𝜎𝑒𝑗11 −�̃�𝜎𝑒𝑗14

�̃�𝜎𝑒𝑗44

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(C.18)

�̃�𝜎𝑒𝑗11 = −4𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

4 + 4𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

4 − 48𝛷𝑆1 𝑙𝑒
3𝜔𝑗

3 − 48𝛷𝑆2 𝑙𝑒
3𝜔𝑗

3

−96𝐶1 𝛷 𝑙𝑒
2𝜔𝑗

2 + 96𝐶2 𝛷 𝑙𝑒
2𝜔𝑗

2 + 288𝐶1 𝑙𝑒
2𝜔𝑗

2 − 288𝐶2 𝑙𝑒
2𝜔𝑗

2

−1728𝑆1 𝑙𝑒 𝜔𝑗 − 1728𝑆2 𝑙𝑒 𝜔𝑗 − 3456𝐶1 + 3456𝐶2

(C.19)
�̃�𝜎𝑒𝑗12 = −2𝐶1 𝛷2𝑙𝑒

5𝜔𝑗
4 − 2𝐶2 𝛷2𝑙𝑒

5𝜔𝑗
4 − 4𝐶2 𝛷 𝑙𝑒

5𝜔𝑗
4 + 4𝛷2𝑆1 𝑙𝑒

4𝜔𝑗
3

−4𝛷2𝑆2 𝑙𝑒
4𝜔𝑗

3 − 20𝛷𝑆1 𝑙𝑒
4𝜔𝑗

3 − 4𝛷𝑆2 𝑙𝑒
4𝜔𝑗

3 + 24𝑆2 𝑙𝑒
4𝜔𝑗

3

−96𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

2 − 48𝐶2 𝛷 𝑙𝑒
3𝜔𝑗

2 + 96𝐶1 𝑙𝑒
3𝜔𝑗

2 − 240𝐶2 𝑙𝑒
3𝜔𝑗

2

+144𝛷𝑆1 𝑙𝑒
2𝜔𝑗 − 144𝛷𝑆2 𝑙𝑒

2𝜔𝑗 − 720𝑆1 𝑙𝑒
2𝜔𝑗 − 1008𝑆2 𝑙𝑒

2𝜔𝑗

−1728𝐶1 𝑙𝑒 + 1728𝐶2 𝑙𝑒
(C.20)

�̃�𝜎𝑒𝑗14 = 2𝐶1 𝛷2𝑙𝑒
5𝜔𝑗

4 + 2𝐶2 𝛷2𝑙𝑒
5𝜔𝑗

4 + 4𝐶1 𝛷 𝑙𝑒
5𝜔𝑗

4 − 4𝛷2𝑆1 𝑙𝑒
4𝜔𝑗

3

+4𝛷2𝑆2 𝑙𝑒
4𝜔𝑗

3 − 4𝛷𝑆1 𝑙𝑒
4𝜔𝑗

3 − 20𝛷𝑆2 𝑙𝑒
4𝜔𝑗

3 + 24𝑆1 𝑙𝑒
4𝜔𝑗

3

+48𝐶1 𝛷 𝑙𝑒
3𝜔𝑗

2 + 96𝐶2 𝛷 𝑙𝑒
3𝜔𝑗

2 + 240𝐶1 𝑙𝑒
3𝜔𝑗

2 − 96𝐶2 𝑙𝑒
3𝜔𝑗

2

−144𝛷𝑆1 𝑙𝑒
2𝜔𝑗 + 144𝛷𝑆2 𝑙𝑒

2𝜔𝑗 − 1008𝑆1 𝑙𝑒
2𝜔𝑗 − 720𝑆2 𝑙𝑒

2𝜔𝑗

−1728𝐶1 𝑙𝑒 + 1728𝐶2 𝑙𝑒

(C.21)
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�̃�𝜎𝑒𝑗22 = −𝐶1 𝛷2𝑙𝑒
6𝜔𝑗

4 + 𝐶2 𝛷2𝑙𝑒
6𝜔𝑗

4 + 4𝐶2 𝛷 𝑙𝑒
6𝜔𝑗

4 + 4𝐶2 𝑙𝑒
6𝜔𝑗

4

+4𝛷2𝑆1 𝑙𝑒
5𝜔𝑗

3 + 4𝛷2𝑆2 𝑙𝑒
5𝜔𝑗

3 − 8𝛷𝑆1 𝑙𝑒
5𝜔𝑗

3 + 24𝛷𝑆2 𝑙𝑒
5𝜔𝑗

3

+8𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

2 − 8𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

2 + 32𝑆2 𝑙𝑒
5𝜔𝑗

3 − 56𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

2

−88𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

2 + 32𝐶1 𝑙𝑒
4𝜔𝑗

2 − 176𝐶2 𝑙𝑒
4𝜔𝑗

2 + 144𝛷𝑆1 𝑙𝑒
3𝜔𝑗

−144𝛷𝑆2 𝑙𝑒
3𝜔𝑗 − 288𝑆1 𝑙𝑒

3𝜔𝑗 − 576𝑆2 𝑙𝑒
3𝜔𝑗 − 864𝐶1 𝑙𝑒

2

+864𝐶2 𝑙𝑒
2

(C.22)
�̃�𝜎𝑒𝑗24 = 𝐶1 𝛷2𝑙𝑒

6𝜔𝑗
4 − 𝐶2 𝛷2𝑙𝑒

6𝜔𝑗
4 + 2𝐶1 𝛷 𝑙𝑒

6𝜔𝑗
4 − 2𝐶2 𝛷 𝑙𝑒

6𝜔𝑗
4

−4𝛷2𝑆1 𝑙𝑒
5𝜔𝑗

3 − 4𝛷2𝑆2 𝑙𝑒
5𝜔𝑗

3 − 8𝛷𝑆1 𝑙𝑒
5𝜔𝑗

3 − 8𝛷𝑆2 𝑙𝑒
5𝜔𝑗

3

−8𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

2 + 8𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

2 + 8𝑆1 𝑙𝑒
5𝜔𝑗

3 + 8𝑆2 𝑙𝑒
5𝜔𝑗

3

−16𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

2 + 16𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

2 + 88𝐶1 𝑙𝑒
4𝜔𝑗

2 − 88𝐶2 𝑙𝑒
4𝜔𝑗

2

−432𝑆1 𝑙𝑒
3𝜔𝑗 − 432𝑆2 𝑙𝑒

3𝜔𝑗 − 864𝐶1 𝑙𝑒
2 + 864𝐶2 𝑙𝑒

2

(C.23)
�̃�𝜎𝑒𝑗44 = −𝐶1 𝛷2𝑙𝑒

6𝜔𝑗
4 + 𝐶2 𝛷2𝑙𝑒

6𝜔𝑗
4 − 4𝐶1 𝛷 𝑙𝑒

6𝜔𝑗
4 − 4𝐶1 𝑙𝑒

6𝜔𝑗
4

+4𝛷2𝑆1 𝑙𝑒
5𝜔𝑗

3 + 4𝛷2𝑆2 𝑙𝑒
5𝜔𝑗

3 + 24𝛷𝑆1 𝑙𝑒
5𝜔𝑗

3 − 8𝛷𝑆2 𝑙𝑒
5𝜔𝑗

3

+8𝐶1 𝛷2𝑙𝑒
4𝜔𝑗

2 − 8𝐶2 𝛷2𝑙𝑒
4𝜔𝑗

2 + 32𝑆1 𝑙𝑒
5𝜔𝑗

3 + 88𝐶1 𝛷 𝑙𝑒
4𝜔𝑗

2

+56𝐶2 𝛷 𝑙𝑒
4𝜔𝑗

2 + 176𝐶1 𝑙𝑒
4𝜔𝑗

2 − 32𝐶2 𝑙𝑒
4𝜔𝑗

2 − 144𝛷𝑆1 𝑙𝑒
3𝜔𝑗

+144𝛷𝑆2 𝑙𝑒
3𝜔𝑗 − 576𝑆1 𝑙𝑒

3𝜔𝑗 − 288𝑆2 𝑙𝑒
3𝜔𝑗 − 864𝐶1 𝑙𝑒

2

+864𝐶2 𝑙𝑒
2

(C.24)

where:
𝑆1 = sin(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = sin(𝜔𝑗𝑥𝑒)

𝐶1 = cos(𝜔𝑗 (𝑥𝑒 + 𝑙𝑒)), 𝑆2 = cos(𝜔𝑗𝑥𝑒)
(C.25)
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