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Abstract
The closed-form analytical expression of the objective function of a single degree of freedom system with the tuned mass

damper, subjected to Gaussian white noise and Kaimal forcing spectrum, is derived implementing the H2 optimization

technique. To illustrate the procedure, a wind turbine tower with and without the tuned mass damper, subjected to wind

load, has been presented. The Kaimal spectrum has been considered to model the effects of wind load. Usually, the

parameters of the tuned mass damper is optimized by implementing theH2 optimization technique on Gaussian white noise

even though the system is subject to any other forcing spectrum. Obtaining an analytical closed-form expression of the

objective function for a tuned mass damper system considering a real spectrum is very challenging as a real spectrum may

contain fractional order of the frequency. Therefore, either objective function can be obtained numerically or an analytical

form can be obtained but only for Gaussian white noise as an input forcing spectrum. To address the above-mentioned

issue, in this paper, the concept of near identity spectrum is introduced to idealize the Kaimal spectrum with high accuracy

from which a closed-form expression of the objective function can be established. Further, histogram plots of the response

reduction have been made to show a comparison between the tuned mass damper system optimized with Gaussian white

noise and the Kaimal spectrum. The results showed that the displacement response of the tuned mass damper system

subjected to the Kaimal spectrum yields better performance if it is optimized according to the Kaimal spectrum rather than

Gaussian white noise and vice versa.
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1. Introduction

A tuned mass damper (TMD) is a vibration control device
which can be attached to a vibrating member (primary
system) subjected to the dynamic forces or base excitation.
A mass connected by a parallel spring and dashpot element
with the primary system is the most common form of
a TMD and was first proposed by Ormondroyd, (1928).
The parameters of a TMD, that is, spring stiffness and
damping coefficient can be obtained by implementing two
analytical optimization techniques, namely H∞ and H2

optimization.
The H∞ optimization technique can be used to estimate

the optimum parameters when the primary system is sub-
jected to harmonic force/motion (Hahnkamm 1933; Brock
1946; Snowdon 1974; Warburton 1982). Minimization of
the maximum amplitude magnification factor (called H∞

norm) of the primary system is the key principle of the H∞

optimization technique (Nishihara and Matsuhisa 1997;
Ren 2001; Liu and Liu 2005; Wong and Cheung 2008;
Cheung and Wong 2009). Den Hartog (1985) derived the

optimum parameters of the TMD system based on the fixed
point theory for minimizing the maximum vibration ve-
locity response of a single degree of freedom (SDOF)
system under harmonic excitation. Anh and Nguyen (2014)
proposed an approach to determine the approximate ana-
lytical solutions for the H∞ optimization of the dynamic
vibration absorber (DVA) attached to the damped primary
structure subjected to force excitation by replacing with an
equivalent undamped structure. A closed-form expression
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of the optimum parameters of a TMD can be obtained
using the H∞ optimization technique if and only if
damping is not considered in the primary system (Ioi and
Ikeda 1978; Randall et al., 1981; Thompson 1981; Soom
and Lee 1983). For damped primary systems, several
numerical and series solutions have been proposed for
obtaining the optimum parameters as given in the state-
of-the-art (Sekiguchi and Asami 1984; Yamaguchi
and Harnpornchai 1993; Tsai and Lin 1993; Asami
Hosokawa, 1995; Zuo 2009). Liu and Coppola (2010)
used numerical approaches, namely Chebyshev’s
equioscillation theorem to study the optimum design of
the damped primary system. Chun et al. (2015) studied
the H∞ optimal design of a DVA variant for suppressing
high-amplitude vibrations of damped primary systems
using the diversity-guided cyclic-network-topology-
based constrained particle swarm optimization (Div-
CNTCPSO) technique. In contrary, the primary objec-
tive of the H2 optimization technique is to reduce the
total vibration energy of the system’s overall frequency
by minimizing the area under the frequency response
curve (Warburton 1982; Asami et al., 1991, 2001).
Several literature have proposed H2 optimization tech-
niques to estimate the optimum parameters of TMD
systems (Adhikari et al., 2016; Asami et al., 2002;
Chowdhury et al., 2021; Adhikari and Banerjee 2021).
Ghosh and Basu (2007) obtained a closed-form ex-
pression for optimum tuning ratio of the damped TMD
system subjected to harmonic load and GWN. Zuo
(2009) conducted decentralized H2 and H∞ control
methods to optimize the parameters of spring stiffness
and damping coefficients for random and harmonic
vibration. Cheung and Wong (2011) derived H2 opti-
mum parameters of a DVA to minimize the total vi-
bration energy or the mean square motion of a single
degree of freedom (SDOF) system under random force
excitations. Chowdhury et al. (2022) compared the H2

and H∞ optimization methods to identify the optimal
system parameters of different vibration control devices
subjected to Gaussian white noise (GWN) and harmonic
motion. All the studies mentioned above are conducted
using GWN when the amplitude is constant over the
frequency range. However, no one derived a closed-
form expression of the objective function from which
the optimum parameter of the TMD can be determined
while the TMD is subjected to a forcing spectrum other
than GWN.

Motivated from the above-mentioned research gap,
in the present study, a forcing spectrum is considered in
which the amplitude is variable over the frequency
domain which is more realistic in nature. As an ex-
ample of a real spectrum, in this study, the Kaimal
spectrum is considered. The Kaimal spectrum is of-
ten used to model the effect of wind load for off-
shore structures, tall buildings, cable stayed bridges,

transmission towers etc. (Ankireddi and Yang 1996;
IEC 2005; Det 2013; Tian and Gai 2015; Li et al.,
2021). Since the function of the Kaimal spectrum
usually contains fractional power of excitation fre-
quency, the use of the H2 optimization technique to
estimate closed-form expression of the objective
function can sometimes be arduous (Colwell and Basu
2009). To overcome the fractional power in the spec-
trum, a near identity spectrum (NIS) similar to the
Kaimal spectrum is proposed in this paper, which helps
in omitting the fractional power of excitation fre-
quency. Finally, a closed-form expression can be ob-
tained for the objective function after implementation
of the H2 optimization technique. The time displace-
ment responses have been compared between a tradi-
tional wind turbine and wind turbine attached with
a TMD system. Finally, histogram plots have been
made to show a comparison between the optimum
parameters of the TMD system optimized for GWN and
the Kaimal spectrum.

2. Methodology

2.1. Frequency Response Function

A single degree of freedom (SDOF) system equipped
with a passive TMD is considered in the present study as
shown in Figure 1. Since, the two degree of freedom
system given in Figure 1 can be considered as the model
given by Asami et al. (2002) and defining several non-
dimensional parameters such as mass ratio

�
μ ¼ m2

m1

�
,

natural frequency of primary system
�
ω1 ¼

ffiffiffiffi
k1
m1

q �
, pri-

mary system damping ratio
�
ζ 1 ¼ c1

2m1ω1

�
, natural fre-

quency of the TMD
�
ω2 ¼

ffiffiffiffi
k2
m2

q �
, TMD damping ratio�

ζ 2 ¼ c2
2m2ω2

�
, frequency ratio

�
ν ¼ ω2

ω1

�
and non-dimensional

excitation frequency
�
λ ¼ ω

ω1

�
, and substituting these

parameters in the equation of motion of two degree of
freedom system, frequency response function (FRF) can
be established as

Figure 1. A tuned mass damper (TMD) system subjected to

random wind load (Kaimal spectrum).
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HðλÞ ¼ ν2 þ ðiλÞ2 þ 2ζ 2νðiλÞ
ðiλÞ4 þ ð2ζ 1 þ 2νζ 2 þ 2μνζ 2ÞðiλÞ3þ�

1þ ν2 þ μν2 þ 4νζ 1ζ 2
�ðiλÞ2þ�

2ζ 1ν
2 þ 2ζ 2ν

�ðiλÞ þ ν2

0
@

1
A

(1)

2.2. Kaimal spectrum

Since our two degree of freedom system is subjected to
wind force which is considered as random load. Thus,
following the DNV code (Det 2013), the Kaimal spectrum
(KS) is used to incorporate the effect of wind load. The
theoretical KS for fixed point reference point in space can be
written as

Suu,kðωÞ ¼
σ2
U

4Lk
U

� �
1þ 3ωLk

πU

� �5
3

(2)

where Lk is the integral length scale, U is the mean wind
speed, σU is the standard deviation of mean wind speed and f
is the excitation frequency in Hz. The spectral density of the
turbulent thrust force on the rotor SFF,wind,k(ω) following
(Arany et al., 2015) can be written as

SFF,wind,kðωÞ ¼ ρ2a
D4π2

16
C2

TU
2
σ2
U
~Suu,kðωÞ (3)

where

~Suu,kðωÞ ¼ Suu,kðωÞ
σ2U

(4)

and

σU ¼ IU (5)

where D is the diameter of the rotor, ~Suu,kðωÞ is the
normalized Kaimal spectrum, ρa is the density of air, CT is
the thrust coefficient, and I is the turbulence intensity. The
thrust coefficient can be estimated using (Frohboese et al.,
2010) as

CT ¼ 7

U
(6)

Since, angular excitation frequency ω is the only variable
and all other parameters can be considered as a constant.
Thus, equation (3) can be written as

SFF,kðωÞ ¼ α

ðβωþ 1Þ53
(7)

2.3. Objective function

Since our TMD system is subjected to random load, to
estimate the optimum parameters such as optimum fre-
quency ratio (νopt) and TMD damping ratio (ζ 2opt), the H2

optimization technique (Asami et al., 2002) is used. In this
method, standard deviation is considered as the objective
function which is to be minimized. Thus, the standard
deviation of displacement response can be derived fol-
lowing (Adhikari et al., 2016) as

σ2xx ¼ E
�
x2ðtÞ� ¼ Rxxð0Þ ¼

Z∞
�∞

SFFðωÞjHðωÞj2dω

¼ ω1

Z∞
�∞

SFFðλÞjHðλÞj2dλ
(8)

For simplification, equation (7) can be written in the form

SFF ,kðλÞ ¼ α

ðβωþ 1Þ53
¼ α

ðχλþ 1Þ53
(9)

where χ = βω andω = 2πf. Now, substituting equation (9) in
equation (8), we obtain

σ2xx ¼ γ
Z ∞

�∞

1

ðχλþ 1Þ53
jHðλÞj2dλ (10)

where, γ = αω1

2.4. Validation for Gaussian White Noise

When the TMD system is subjected to GWN, the power
spectral density (PSD) will be considered as constant wrt λ.
Thus, equation (8) can be normalized as

Imin ¼ σ2xx
2πω1SFF,k

¼ 1

2π
×

Z ∞

�∞
jHðλÞj2dλ (11)

where Imin is the performance index which is a non-
dimensional form of variance. Now, to evaluate the in-
tegration of equation (11), Newland, (1993) suggested
a methodology in which the integrand must be in the form of

HðλÞ ¼ B0 þ ðiλÞB1 þ ðiλÞ2B2 þ/ðiλÞn�1Bn�1

A0 þ ðiλÞA1 þ ðiλÞ2A2 þ/ðiλÞnAn

(12)

Since equation (1) is a 4th order polynomial of λ,
substituting n = 4 in equation (12), we obtain

HðλÞ ¼ B0 þ iλB1 � λ2B2 � iλ3B3

A0 þ iλA1 � λ2A2 � iλ3A3 þ λ4A4

(13)

Now, comparing equation (1) and equation (13), we obtain
the coefficients as
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B0 ¼ ν2,B1 ¼ 2ζ 2ν,B2 ¼ 1,B3 ¼ 0
A1 ¼ 2ζ 1ν

2 þ 2ζ 2ν
A2 ¼ 1þ ν2 þ μν2 þ 4νζ 1ζ 2
A3 ¼ 2ζ 1 þ 2νζ 2 þ 2μνζ 2
A4 ¼ 1

(14)

Imin ¼

A0B
2
3ðA0A3 � A1A2Þ

þA0A1A4

�
2B1B3 � B2

2

�
�A0A3A4

�
B2
1 � 2B0B2

�
þA4B

2
0ðA1A4 � A2A3Þ

8>>><
>>>:

9>>>=
>>>;

2A0A4

�
A0A2

3 þ A4A2
1 � A1A2A3

� (15)

Figure 2 shows the contour of performance index Imin for
different frequency ratio (ν) and TMD damping ratio (ζ 2).
From Figure 2, it can be observed that when a TMD is
subjected to GWN having mass ratio (μ = 0.1) and primary
system damping ratio (ζ 1 = 0.01), the optimum frequency
ratio (νopt) was found to be 0.93 and the optimum TMD
damping ratio (ζ 2opt) was found to be 0.15. Equation (15) is
also validated with Asami et al. (2002) for different values
of mass ratio μ and primary system damping ratio ζ 1 as
shown in Figure 3.

2.5. Optimization for the Kaimal spectrum

For the TMD system subjected to the Kaimal Spectrum,
a closed-form equation of the objective function given in
equation (8) cannot be directly obtained due to presence
of fractional power of λ in the integrand. Thus, solving it
numerically, a contour plot has been made for different
frequency ratio (ν) and TMD damping ratio (ζ 1) as shown
in Figure 4. From Figure 4, it can be observed that when
a TMD is subjected to the Kaimal spectrum having mass
ratio (μ = 0.1), primary system damping ratio (ζ 1 = 0.01)
and a non-dimensional parameter (χ = 100), the optimum
frequency ratio (νopt) was found to be 0.91 and the op-
timum TMD damping ratio (ζ 2opt) was found to be 0.15.
The non-dimensional parameter (χ = 100) mainly depends
on mean wind velocity U, integral length scale Lk and
natural frequency of the primary system (ω1), and it has
been observed that higher value of χ does not have a much
effect in the change of optimum parameters, but for lesser
of χ, the value of optimum frequency ratio (νopt) tends
toward optimum frequency ratio (νopt) of Gaussian white
noise.

2.6. Near Identity Spectrum

Now, to estimate the objective function for TMD system
subjected to the Kaimal spectrum analytically, a near
identity spectrum (NIS) has been established such that the
power spectral density function can be written as

SFF ,kðλÞ ¼ α

ðχλþ 1Þ53

≈SFF,nðλÞ ¼
αδ
�
1þ ε2λ2

��
1þ χ2λ2

��
1þ f2λ2

� (16)

where δ, ε, and f are constants which depends on χ. Now,
using the non-linear regression technique and curve fitting
method, a relationship can be developed between δ, ε, and f
as a function of χ. The relationships can be expressed as

δ ¼ p1χ
3 þ p2χ

2 þ p3χ þ p4 (17)

ε ¼ q1lnðχÞ þ q2
χ2

þ q3
χ
þ q4χ þ q5 (18)

Figure 3. Validation with Asami et al. (2002) for different values

of mass ratio μ and primary system damping ratio ζ 1.

Figure 2. Contour of performance index Imin for different fre-

quency ratio (ν) and TMD damping ratio (ζ 2) subjected to

Gaussian white noise.
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and

f ¼ r1e
ð�r2χÞ þ r3χ

2 þ r4χ þ r5 (19)

where p1 = 4.685 × 10�8, p2 =�4.897 × 10�5, p3 = 0.02069,
p4 = 0.9586, q1 = �0.1308, q2 = 1.307, q3 = �2.748, q4 =
0.0003, q5 = 1.74, r1 = �0.6364, r2 = 0.2823, r3 = 1.82 ×
10�7, r4 = �0.0001584 and r5 = 0.6684. Now, comparing
equation (16) for the Kaimal spectrum and near identity
spectrum in Figure 5, we can observe that the near identity
spectrum almost coincides with the Kaimal spectrum and
can be used as a substitute of Kaimal spectrum for further
calculations. Now, to conduct H2 optimization, substituting
equation (16) in equation (8) and modifying equation (8),
we get as follows

σ2x ¼ αω1δ
Z ∞

�∞
jTðλÞj2dλ ¼ παω1M6

a0Δ6
(20)

where the values of TðλÞ, M6 and Δ6 including the entire
derivation of the integral in equation (20) is given in the
Annexure section. Figure 6 shows a contour of variance
ðσ2xÞ for different frequency ratio (ν) and TMD damping
ratio (ζ 1). From Figure 6, it can be observed that when
a TMD is subjected to NIS having mass ratio (μ = 0.1),
primary system damping ratio (ζ 1 = 0.01) and non-
dimensional parameter (χ = 100), the optimum frequency
ratio (νopt) was found to be 0.91 and the optimum TMD
damping ratio (ζ 2opt) was found to be 0.15, which exactly
matches with the optimum parameters of Figure 4 which
provides us essential confidence to use the NIS as a sub-
stitution spectrum of the Kaimal spectrum.

3. Results and discussions

3.1. Time domain response

Using the concept of inverse fast Fourier transform, time
domain wind force can be represented as sum ofN sinusoids
of amplitude Ai at an angular frequency ωi having phase
angle φi

Fwind ¼
XN
i¼1

Ai sinðωit þ φiÞ (21)

The amplitude can be determined from the power spectral
density of turbulent thrust force as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SFFðf Þ

p
(22)

Figure 4. Contour of variance σ2xx for different frequency ratio

(ν) and TMD damping ratio (ζ 2) subjected to the Kaimal spectrum.

Here, the integral of equation (10) has been solved numerically to

obtain the contour plot.

Figure 5. Comparison between the Kaimal spectrum and the

near identity spectrum (NIS).

Figure 6. Contour of variance σ2xx for different frequency ratio

(ν) and TMD damping ratio (ζ 2) for the near identity spectrum

(NIS). Here, the integral of equation (20) has been solved ana-

lytically to obtain the contour plot.
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Now, using the MATLAB tool called ode solver and as-
suming the initial conditions for displacement and velocity
as zero, the time domain response can be evaluated.
Considering an example model of Siemens SWT-107-3.6
offshore wind turbine (Arany et al., 2015) and using the
method given by Adhikari and Bhattacharya, (2011) where
the entire wind turbine system can be converted into
a SDOF system, the time displacement response curve has
been calculated for the SDOF system, TMD optimized for
GWN and TMD optimized for NIS subjected to GWN as
shown inFigure 7(a to d). Similarly, all the three cases were
subjected to wind load and the response was shown in
Figure 8(a to d). In both Figure 7 and Figure 8 (a), the
sample size of 10,000 was considered, and mean and

standard deviation were plotted both for individual cases
shown in Figure 7 (a to c) and Figure 8 (a to c) as well as
a comparison has also been done considering all the cases as
shown in Figure 7 (d) and Figure 8 (d). The wind turbine
properties and the wind load properties are given in Table 1.
A damping ratio (ζ 1) of 0.01 is also been considered for the
wind turbine model.

3.2. Histogram plots

Although a clear understanding is formed, that is, the TMD
system shows a significant reduction in displacement than
the conventional SDOF system irrespective of loading
condition, a clear comparison between the TMD GWN and

Figure 7. (a), (b) and (c) Time displacement curve including mean and standard deviation for SDOF, TMD optimized for GWN and TMD

optimized for NIS subjected to GWN and (d) mean and standard deviation comparison between all the three cases subjected to GWN.
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Figure 8. (a), (b) and (c) Time displacement curve including mean and standard deviation for SDOF, TMD optimized for GWN and TMD

optimized for NIS subjected to KS and (d) mean and standard deviation comparison between all the three cases subjected to KS.

Table 1. Geometric, material and wind load properties for

Siemens SWT-107-3.6 offshore wind turbine (Arany et al., 2015).

Property Symbols Values

Diameter of the rotor (m) D 107

Density of air (kg/m3) ρa 1.225

Mean wind speed (m/s) U 9

Turbulence intensity I 0.1

Integral length scale Lk 340.2

Drag coefficient CD 0.5

Young’s modulus of the

tower material (GPa) E 210

Tower height (m) L 5.0

(continued)

Table 1. Continued

Property Symbols Values

Bottom Diameter (m) Db 5.0

Top Diameter (m) Dt 3.0

Tower wall thickness (mm) t 50

Tower mass (kg) Mt 260000

Rotor nacelle assembly

(RNA) mass (kg) MRNA 234500

Lateral foundation

stiffness (GNm�1) KL 3.65

Rotational foundation

stiffness (GNmrad�1) KR 254.3

Patro et al. 3181



TMD NIS is difficult to obtain from Figure 7 (d) and
Figure 8 (d). Thus, to omit the confusion, histogram plots
has been made for the response reduction between TMD
optimized through GWN and TMD optimized through NIS
subjected to GWN and the Kaimal spectrum considering the
same sample size of 10,000 as shown in Figure 9 (a and b).
Here, the response reduction can be defined as

RRð%Þ ¼ ynormKS � ynormGWN

ynormKS
× 100 (23)

where ynormGWN = L2 norm or root mean square of the
displacement responses of the TMD system is optimized by
Gaussian white noise, and ynormKS = L2 norm or root mean
square of the displacement responses of the TMD system is
optimized by the Kaimal spectrum. When the TMD is
subjected to Gaussian white noise, then the histogram of
response reduction is more inclined towards positive side; in
other words, positive area is more than negative area as
shown in Figure 9 (a), whereas when the TMD system is
subjected to the Kaimal spectrum, then the response re-
duction is more inclined towards the negative side or more
negative area as shown in Figure 9(b). This clearly indicates
that if the system is subjected to Gaussian white noise, then
displacement response will be minimum when optimized
according to GWN. Similarly, if the system is subjected to
the Kaimal spectrum, then displacement response will be
minimum when optimized according to the Kaimal
spectrum.

4. Conclusion

A classical mechanics-based methodology towards the
estimation of optimum parameters of a tuned mass damper

(TMD) system subjected to the Kaimal Spectrum using
the H2 optimization technique has been communicated in
this paper. The optimal parameters of a TMD is obtained
by minimizing the standard deviation of the displacement
response which is known as the H2 optimization tech-
nique. A validation study has been conducted with the
existing literature for the TMD system subjected to
Gaussian white noise (GWN). Obtaining an analytical
closed-form expression of the objective function for
a TMD system considering a real spectrum, having
fractional order of the frequency, is very challenging.
Therefore, usually objective functions are obtained nu-
merically which does not directly yield the optimum point
and increase the computational cost significantly. To deal
with the aforementioned challenges associated with the
fractional power of excitation frequency in the power
spectral density, a concept of near identity spectrum (NIS)
has been proposed. The NIS contains excitation frequency
as a product of complex conjugate which enables us to
form a closed-form expression of the objective function.
The proposed NIS precisely matches with the Kaimal
spectrum; hence, it omits the fractional power in the
variance equation. The closed-form analytical expression
of the objective function can be directly plotted to obtain
the optimal parameters of the TMD system. A sample of
10,000 time histories obtained from GWN and the Kaimal
spectrum are applied to the system as in input force to
realize the performance of the optimized TMD. From the
histogram plot, it can be concluded that minimum dis-
placement response occurs while the system can be op-
timized according to the input forcing spectrum rather
than any other noise/spectrum. Thus, the novelty lies in
proposing a NIS that can be used as a generalized

Figure 9. (a) and (b) Histogram plot for performance reduction when the system subjected to GWN and KS.
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spectrum to estimate the optimum parameters of the TMD
system implementing the H2 optimization technique. Due
to severe change in climatic condition in recent years, the
demand of stable, clean and green energy production
becomes the primary mission of several countries. To-
wards this mission, the developed NIS contributed for
easy simulation of wind load and provides a generalized
method for optimal design which can be used in design
firms for next generation wind turbine design and control.
Further, this concept of NIS could be extended in the
future study to generalize other dynamic loads, such as
wave loads and earthquake loads.

6. Annexure

The values of TðλÞ, M6, Δ6 and derivation of the integral in
equation (20) are listed below

TðλÞ ¼ B0ðiλÞ3 þB1ðiλÞ2 þ B2ðiλÞ þ B3

A0ðiλÞ6 þ A1ðiλÞ5 þ A2ðiλÞ4
þA3ðiλÞ3 þ A4ðiλÞ2 þ A5ðiλÞ

þA6

0
@

1
A
, (24)

in which

B0 ¼ ε, (25)

B1 ¼ 2νεζ 2 þ 1, (26)

B2 ¼ εν2 þ 2ζ 2ν, (27)

B3 ¼ ν2, (28)

A0 ¼ χf, (29)

A1 ¼ χ þ fþ 2χfζ 1 þ 2χνfζ 2 þ 2χμνfζ 2, (30)

A2 ¼
χfþ 2χζ 1 þ 2fζ 1 þ χν2fþ 2χνζ 2

þ2νfζ 2 þ 2χμνζ 2 þ 2μνfζ 2 þ χμν2v
þ4χνfζ 1ζ 2 þ 1

0
@

1
A, (31)

A3 ¼
χ þ fþ 2ζ 1 þ 2νζ 2 þ χν2þ
ν2fþ μν2fþ 2μνζ 2 þ χμν2þ

2χνfζ 2 þ 4χνζ 1ζ 2 þ 4νfζ 1ζ 2 þ 2χν2fζ 1

0
@

1
A,

(32)

A4 ¼
 
μν2 þ ν2 þ χν2fþ 2χν2ζ 1 þ 2ν2fζ 1
þ2χνζ 2 þ 2νfζ 2 þ 4νζ 1ζ 2 þ 1

!
, (33)

A5 ¼ 2νζ 2 þ χν2 þ ν2fþ 2ν2ζ 1 (34)

and

A6 ¼ ν2 (35)

To evaluate equation (20), James et al. (1947) suggested
a method in which the integrand must be in the form of

In ¼ 1

2πj

Z ∞

�∞

gnðxÞ
hnðxÞhnð�xÞdx (36)

where

gnðxÞ ¼ b0x
2n�2 þb1x

2n�4 þ/þ bn�1 (37)

and

hnðxÞ ¼ a0x
n þ a1x

n�1 þ/þ an (38)

Now by assuming q = iλ and writing integrand of equation
(20) in form of integrand of equation (36), we get as follows

g6ðxÞ
h6ðxÞh6ð�xÞ ¼

C0x
6 þ C1x

4þ
C2x

2 þ C3

	 

0
BB@

A0x
6 þ A1x

5 þ A2x
4

þA3x
3 þ A4x

2 þ A5x
þA6

1
CCA

0
BB@

A0x
6 � A1x

5 þ A2x
4

�A3x
3 þ A4x

2 � A5x
þA6

1
CCA

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

(39)

where

C0 ¼ �u2 (40)

C1 ¼ ð2νuζ 2 þ 1Þ2 �2u
�
uν2 þ 2ζ 2ν

�
(41)

C2 ¼ 2ð2νuζ 2 þ 1Þν2 � �uν2 þ 2ζ 2ν
�2

(42)

and

C3 ¼ ν4 (43)

Since the highest power of x in equation (39) is 6, thus, by
substituting n = 6 in equation (36), (37) and (38), we obtain
the integrand as
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g6ðxÞ
h6ðxÞh6ð�xÞ ¼

 
b0x

10 þ b1x
8 þ b2x

6 þ b3x
4

þb4x
2 þ b5

!
 

a0x
6 þ a1x

5 þ a2x
4þ

a3x
3 þ a4x

2 þ a5xþ a6

!
 

a0x
6 � a1x

5 þ a2x
4�

a3x
3 þ a4x

2 � a5xþ a6

!
8>>>><
>>>>:

9>>>>=
>>>>;

(44)

Now, comparing equations (39) and (44), we obtain the
coefficients as b0 = b1 = 0, b2 = C0, b3 = C1, b4 = C2, b5 = C3

and ai = Ai, where i = 1 to 6. Thus, equation (20) can be
evaluated as

σ2xx ¼ 2παω1 ×
1

2πj

Z ∞

�∞

g6ðxÞ
h6ðxÞh6ð�xÞdx ¼

παω1M6

a0Δ6
(45)

where

M6 ¼
b0d0 þ a0b1d1 þ a0b2d2þ

a0b3d3 þ a0b4d4 þ a0b5
a6

d5

0
@

1
A (46)

and

Δ6 ¼

a20a
3
5 þ 3a0a1a3a5a6 � 2a0a1a4a

2
5�

a0a2a3a
2
5 � a0a

3
3a6 þ a0a

2
3a4a5 þ a31a

2
6�

2a21a2a5a6 � a21a3a4a6 þ a21a
2
4a5 þ a1a

2
2a

2
5þ

a1a2a
2
3a6 � a1a2a3a4a5

0
BBB@

1
CCCA
(47)

where

d0 ¼
�a0a3a5a6 þ a0a4a

2
5 � a21a

2
6 þ 2a1a2a5a6

þa1a3a4a6 � a1a
2
4a5 � a22a

2
5 � a2a

2
3a6

þa2a3a4a5

0
B@

1
CA, (48)

d1 ¼ �a1a5a6 þ a2a
2
5 þ a23a6 � a3a4a5, (49)

d2 ¼ �a0a
2
5 � a1a3a6 þ a1a4a5, (50)

d3 ¼ a0a3a5 þ a21a6 � a1a2a5, (51)

d4 ¼ a0a1a5 � a0a
2
3 � a21a4 þ a1a2a3 (52)

and

d5 ¼
a20a

2
5 þ a0a1a3a6 � 2a0a1a4a5

�a0a2a3a5 þ a0a
2
3a4 � a21a2a6 þ a21a

2
4

þa1a
2
2a5 � a1a2a3a4

0
B@

1
CA (53)
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