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ABSTRACT

Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from

diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concern-

ing harvesting more power from low-frequency input excitations and broadband random excitations. To address this,

here we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration

energy harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude

under certain conditions. Harmonic, as well as broadband random excitations, are considered. Two types of har-

vesting circuits, namely, without and with an inductor, have been employed. We explicitly demonstrate how different

parameters describing the inertial amplifiers should be optimally tuned to maximise harvested power under different

types of excitations and circuit configurations. It is possible to harvest 5 times more power at a 50% lower frequency

when the ambient excitation is harmonic. Under random broadband ambient excitations, it is possible to harvest 10

times more power with optimally selected parameters.

1 Introduction

Vibration energy harvesting exploiting piezoelectric effect has been a growing research field over the past decade.

The predicted rise of Internet of Things (IoT) and wireless sensor network for the development of digital twins of

complex engineering systems will led to further interest in the vibration energy harvesting technology. A key chal-

lenge which hinders this growth is the inefficiency towards harvesting more power when the ambient vibration is low

frequency and imprecisely known (random and broadband). This paper proposes a solution to address these two issues

by employing a mechanical approach involving inertial amplifiers. This enhances the inertia without increasing the

static mass of the harvester. Inertial amplifiers have been theoretically investigated to manipulate bandgaps in me-

chanical metamaterials. We bought this concept to vibration energy harvesting for the first time. Our results explicitly

demonstrate increasing harvested power at significantly lower frequencies which is not possible without employing

inertial amplifiers. The work is based on rigorous mathematical modelling from physics-based principles and analyti-

cal solutions of resulting differential equations. We also report an in-depth optimisation approach to derive the system

parameters which maximise harvested power in different physically realistic situations. The pathways to impact will

arise from the physical insights originating from closed-form results quantifying harvested power, general nondimen-

sional nature of the analytical results, and formulae governing practical design of inertial amplifier enhanced energy

harvesters. The proposed inertial amplifier will play a pivotal role in low-frequency lightweight energy harvesting.

We illustrate the background, expand mathematical methods and provide new data in support of the results and

concepts presented in the main paper. This document contains additional results and new discussions which have not

been presented in the main paper. The Supplementary material is organised as below.
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2 Electromechanical model for cantilever piezoelectric energy harvesters

2.1 Equation of motion for piezoelectric cantilevers

Illustrative diagram of a cantilever vibration energy harvester with a bimorph piezoelectric patch is shown in Fig-

ure 1. Due to the small thickness to length ratio, Euler-Bernoulli beam theory is generally used to model bending

vibration of such cantilevers [1]. The equation of motion of free-vibration of a damped cantilever modelled (see for

example [2]) using Euler-Bernoulli beam theory can be expressed as

EI
∂ 4U(x, t)

∂x4
+ρhA

∂ 2U(x, t)

∂ t2
+ ĉ1

∂ 5U(x, t)

∂x4∂ t
+ ĉ2

∂U(x, t)

∂ t
= 0 (1)

In the above equation x is the coordinate along the length of the beam, t is the time, E is the Young’s modulus, I is

the second-moment of the cross-section, A is the cross-section area, ρh is the density of the material and U(x, t) is

the transverse displacement. The length of the beam is assumed to be L. Additionally ĉ1 is the strain-rate-dependent

damping coefficient, ĉ2 is the velocity-dependent viscous damping coefficient. The strain-rate-dependent damping can

be used to model inherent damping property of the material of the cantilever beam. The velocity-dependent viscous

damping can be used to model damping due to external factors.

The undamped natural frequencies (Hz) of the cantilever beam in (1) can be expressed as

f j =
λ 2

j

2π

√
EI

ρhAL4
, j = 1,2,3, · · · (2)

where λ j needs to be obtained by [3] solving the following transcendental equation

cos λ cosh λ +1 = 0 (3)
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Figure 1. Cantilever piezoelectric energy harvesters in a bimorph configuration. The length of the cantilever is L

and the length of the piezoelectric patch is Lp. The thickness of the beam is h and the thickness of the piezoelectric

patch is hp. The width of both the beam and the piezoelectric patch is bp. The coordinate x is along the length of the

beam originating at the fixed end. M is the tip mass fixed at the free end of the beam. The (continuous) displacement

of the beam is given by U(x, t) and the displacement of the tip mass is given by y(t).

Solving this equation, the values of λ j can be obtained as 1.8751, 4.69409, 7.8539 and 10.99557. For larger values of

j, in general we have λ j = (2 j−1)π/2. The vibration mode shape corresponding to the j-th natural frequency can be

expressed as

ψ j(ξ ) = (coshλ jξ − cosλ jξ )−
(

sinhλ j − sinλ j

coshλ j + cosλ j

)
(sinh λ jξ − sinλ jξ ) (4)

where

ξ =
x

L
(5)

is the normalised coordinate along the length of the cantilever. For sensing applications we are primarily interested in

the first few modes of vibration only.

Consider the mass M at the end of the cantilevered resonator in Figure 1. The boundary conditions with an addi-

tional mass of M at x = L can be expressed as

U(0, t) = 0, Z′(0, t) = 0, Z′′(L, t) = 0, and EIZ′′′(L, t)−MZ̈(L, t) = 0 (6)

Here (•)′ denotes derivative with respective to x and ˙(•) denotes derivative with respective to t. It can be shown that

(see for example [4]) the resonant frequencies are still obtained from equation (2) but λ j should be obtained by solving

(cosλ sinh λ − sinλ cosh λ )∆M λ +(cosλ cosh λ +1) = 0 (7)

Here

∆M =
M

ρhAL
(8)

is the ratio of the tip mass and the mass of the cantilever. If the tip mass is zero, then one can see that equation (8)

reduces to equation (3).
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2.2 Equivalent single-degree-of-freedom model

The equation of motion of the beam in (1) is a partial differential equation. This equation represents infinite number

of degrees of freedom. The mathematical theory of linear partial differential equations is very well developed and the

nature of solutions of the bending vibration is well understood. Considering a steady-state harmonic motion with

frequency ω we have

U(x, t) = u(x)exp [iωt] (9)

where i =
√
−1. Substituting this in the beam equation (1) we have

EI
d4u(x)

dx4
+ iω ĉ1

d4u(x)

dx4
−ρhAω2u(x)+ iω ĉ2u(x) = 0 (10)

Following the damping convention in dynamic analysis as in [5], we consider stiffness and mass proportional damping.

Therefore, we express the damping constants as

ĉ1 = αc(EI) and ĉ2 = βc(ρA) (11)

where αc and βc are stiffness and mass proportional damping factors.

Substituting these, from equation (10) we have

EI
d4u(x)

dx4
+ iω

(
αcEI

d4u(x)

dx4
+βcρhAu(x)

)
−ρhAω2u(x) = 0 (12)

The first part of the damping expression is proportional to the stiffness term while the second part of the damping

expression is proportional to the mass term. The general solution of equation (12) can be expressed as a linear

superposition of all the vibration mode shapes (see for example [5]). Vibration energy harvesters are often designed

to operate within a frequency range which is close to first few natural frequencies only. Therefore, without any loss of

accuracy, simplified lumped parameter models can be used to corresponding correct resonant behaviour. This can be

achieved using energy methods or more generally using Galerkin approach.

Assuming a unimodal solution, the dynamic response of the beam can be expressed as

U(x, t) = z j(t)ψ j(x), j = 1,2,3, · · · (13)

Substituting this assumed motion into the equation of motion (1), multiplying by ψ j(x) and integrating by parts over

the length one has

EIz j(t)

∫ L

0
ψ

′′2
j (x)dx+αcEIż j(t)

∫ L

0
ψ

′′2
j (x)dx+βcρhAż j(t)

∫ L

0
ψ2

j (x)dx+ρhAz̈ j(t)

∫ L

0
ψ2

j (x)dx = 0 (14)

Using the equivalent mass, damping and stiffness, this equation can be rewritten as

meq j
z̈ j(t)+ ceq j

ż j(t)+ keq j
z j(t) = 0 (15)

where the equivalent mass and stiffness terms are given by

meq j
= ρhA

∫ L

0
ψ2

j (x)dx = ρhAL

∫ 1

0
ψ2

j (ξ )dξ
︸ ︷︷ ︸

I1 j

(16)

keq j
= EI

∫ L

0
ψ

′′2
j (x)dx =

EI

L3

∫ 1

0
ψ

′′2
j (ξ )dξ

︸ ︷︷ ︸
I2 j

(17)
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The equivalent damping is given by ceq j
= αkeq j

+βmeq j
. For the first mode of vibration ( j = 1), substituting λ1 =

1.8751, it can be shown that I11
= 1 and I12

= 12.3624. If there is a point mass of M at the tip of the cantilever, then

the effective mass becomes

meq j
= ρhALI1 j

+M ψ2
j (1)︸ ︷︷ ︸
I3 j

= ρhAL
(
I1 j

+∆MI3 j

)
(18)

For the first mode of vibration it can be shown that I31
= 4. The equivalent single degree of freedom model given by

equation (15) is used in the rest of the document. However, the expression derived here are general and can be used if

higher modes of vibration were to be employed in energy harvesting.

2.3 Derivation of the electromechanical coupling

Piezoelectric layers added to a beam is in a bimorph configuration as shown in Figure 1. The moment about the

beam neutral axis produced by a voltage V (t) across the piezoelectric layers may be written as

Mp(x, t) = γpV (t) (19)

The constant γp depends on the geometry, configuration and piezoelectric device and V (t) is the time-dependent

voltage. For a bimorph with piezoelectric layers in the 31 configuration, with thickness hp, width bp and connected in

parallel

γp = Ed31bp (h+hp) (20)

Here h is the thickness of the beam and d31 is the piezoelectric constant. We assume a monolithic piezoceramic

actuator perfectly bonded to the beam.

The work done by the piezoelectric patches in moving or extracting the electrical charge is

Wp =
∫ Lp

0
Mp(x, t)κp(x)dx (21)

where Lp is the active length of the piezoelectric material, which is assumed to be attached at the clamped end of

the cantilever beam. The quantity κp(x) is the curvature of the beam and this is approximately expressed by the

second-derivative of the displacement. Using the approximation for κp we have

Wp(t) = θV (t) (22)

where the coupling coefficient

θ = γp

∫ Lp

0

∂ 2ψ(x)

∂x2
dx (23)

Considering the change to the non-dimensional variable in equation (5) and noting that we have the second-order

derivative within an integral, the above equation can be simplified as

θ =
γp

L
ψ ′(ξp) (24)

where ξp = Lp/L is the fraction of the length of the piezo patch. Using the first mode shape, differentiating equation

(4) we obtain

ψ ′(ξp) = ((sin(λ )− sinh(λ ))cosh (λ ξp)+ (cosh (λ )+ cos (λ )) sinh(λ ξp)+ (sinh (λ )− sin(λ ))cos (λ ξp)

+sin(λ ξp) (cosh (λ )+ cos(λ )))λ/(cosh (λ )+ cos(λ )) (25)

with λ = 1.8751. For the special case when the piezo patch covers the full length of the beam, this can be simplified

as

ψ ′(1) =
2λ (cos (λ )sinh (λ )+ cosh(λ ) sin(λ ))

cosh(λ )+ cos(λ )
(26)
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2.4 Incorporation of the inertial amplifier

When only the fist mode of vibration is used, the dynamics of the cantilever energy harvester can be expressed (see

for example [6]) by a single degree of freedom model. In Figure 2 we show a graphical illustration of the simplified

model. The inertial amplifier is obtained by attaching two small masses (ma) with rigid (assumed to be mass-less)

y( )t

ma

ma

ka

m

k

u(t) u(t)

c

(a) Equivalent SDOF model

(k+ka)yF F

F

F

(b) Free-body diagram

Figure 2. The equivalent single-degree-of-freedom model and the free-body diagram for energy harvesters with

inertial amplifiers. The primary mass, stiffness and damping of the harvester are given by m,c and k respectively. The

two small masses ma contribute towards the inertial amplification. The amplifier angle is φ and the amplifier stiffness

is ka. The displacement of the primary mass and the amplifier mass are denoted by y(t) and u(t) respectively. The

force F is the internal force within the rigid links.

rods which are pivoted on the main mass and to the ground so that they are free to rotate in a frictionless manner.

The rods are placed at angle φ with respect to the vertical line. Additionally a spring (ka) is attached from the main

mass to the ground. In Figure 2(a), the equivalent mass, damping and stiffness are given by m,c and k and y(t) is

the displacement. The displacement of the amplifier mass is given by u(t), which is perpendicular to the motion of

the main mass. The amplifier mass would also have a vertical motion. This will be small as the mechanism will be

narrow in practice due to small values of the angle φ . In the current analysis, the vertical motion of the amplifier

mass is ignored. The free-body diagram showing the forces on the system (excluding external forces) are shown in

Figure 2(b). Considering the equilibrium of the main mass we have

mÿ(t)+ cẏ(t)+ (k+ ka)y(t)+2F(t)cos φ = 0 (27)

Here F(t) is the internal force within the rigid link bars. Balancing the force arising from the motion of the amplifier

mass we have

2F(t)sin φ −maü(t) = 0 (28)

Considering the bars in Figure 2 are rigid, using the kinematic relationship of the rigid bars one deduces

y(t)cos φ = u(t)sin φ or u(t) = y(t)cot φ (29)
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Substituting this in equation (28) we have

2F(t)sin φ = ma cotφ ÿ(t) = 0 or 2F(t) = ma

cotφ

sinφ
ÿ(t) (30)

Substituting this in equation (27) we obtain the equation of motion as

(
m+ma cot2 φ

)
︸ ︷︷ ︸

mT

ÿ(t)+ cẏ(t)+ (k+ ka)y(t) = 0 (31)

Here mT is the total effective mass. For certain selection of ma and φ it can be observed that the total effective mass can

be significantly more than the original mass m. This amplification in the inertia has the potential of harvesting more

vibration energy at a lower excitation frequency. To understand the inertial amplification, we express the effective

mass in (31) as
mT

m
= 1+ γm cot2 φ (32)

where the mass ratio γm is given by

γm =
ma

m
(33)

In Figure 3 the inertial amplification as given by equation (32) is shown in log scale. Huge amplification can be

(a) Inertial amplification in the log scale (b) Contours of the log of inertial amplification

Figure 3. Inertial amplification (in log scale) of the equivalent single-degree-of-freedom model as a function of the

amplifier angle φ and mass-ratio γm.

observed for smaller values of the amplifier angle φ . Even when the mass ratio γm is less than 0.5, several orders of

inertial amplification is possible with smaller amplifier angle. Therefore, the combination of the amplifier angle and

mass ratio can be selected to achieve any desired inertial amplification for energy harvesting.

From Figure 3(a) we observe that the inertial amplification increases exponentially when the amplifier angle φ is

close to zero. The two key assumptions made in the above analysis are (1) the hinge movements between the four

link-bars, the three masses, the ground and the spring are frictionless, and (2) the masses of the four link-bars are

negligible. When the amplifier angle φ becomes close to zero, the mechanism becomes very narrow and even very
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small friction in the hinges will prevent it from operating properly. Keeping this in mind, in our discussions we choose

φ > 10◦. This will ensure that the assumption (1) is applicable to our model. In the other extreme case, when the

amplifier angle φ is large, say φ → 90◦, the mechanism becomes very wide. In this case, significantly stronger and

heavier link-bars are needed to support the weight of the amplifier masses. This will invalidate the assumption (2). For

this reason, in the following discussions, the upper limit of the amplifier angle is set to φ < 60◦. In Figure 3(a) value

of the mass ratio γm up to 4 is used, while in Figure 3(b), the maximum value of γm used is 1. If γm > 1, the each of

the inertial amplifier mass is more than the tip mass of the energy harvester. In this case heavier link-bars are needed

to support the static weight of the amplifier masses even when the amplifier angle φ is small. This may not satisfy

the assumption (2) above. Therefore, we only consider the case when the inertial amplifier mass is less than the tip

mass of the harvester. Summarising, to obtain optimal parameters of the inertial amplifier, we impose the restriction

of 10◦ < φ < 60◦ and γm < 1 in this paper to make our predictions consistent with the assumptions made.

So far our discussion only involved the inertial properties of the harvester. The spring ka in Figure 3 also plays a

crucial role in delivering the harvested power. We define the stiffness factor Γk, which quantifies the overall equivalent

stiffness of the dynamic system, as

Γk = 1+ γk where γk =
ka

k
(34)

Here γk is the stiffness ratio describing the stiffness of the spring ka relative to the stiffness of the cantilever beam in

the first mode of vibration. The spring ka should be strong enough to support the static weight of the three masses

so that the beam is not subjected to too much static strain. However, too much spring stiffness will result in small

dynamic deformation and will diminish harvested power. The view taken in this paper is that the stiffness ratio is a

variable parameter and should be optimally designed based on other parameters the model. In the next sections the

impact of the stiffness ratio is assessed and methods to obtain it subjected to various optimality conditions have been

proposed.

3 Energy harvesting from harmonic base excitations

In the previous section the simplified equation of motion of a piezoelectric cantilever with inertial amplifier has

been developed. Here we consider energy harvesting due to harmonic base motion applied to the system as ambient

excitations. Two cases of circuit configurations are considered.

3.1 Circuit without an inductor

A schematic diagram of a cantilever piezoelectric energy harvester with an inertial amplifier having a circuit without

an inductor is shown in Figure 4. Next we derive mathematical expressions for the harvested power and combinations

of parameters which can maximise it.

3.1.1 Quantification of the harvested power

The coupled electromechanical behaviour of the energy harvester [1] with base excitation can be expressed (see,

for example [7, 8]) by linear ordinary differential equations as

mT ÿ(t)+ cẏ(t)+ (k+ ka)y(t)−θv(t) =−mT ÿb(t) (35)

Cpv̇(t)+
1

Rl

v(t)+θ ẏ(t) = 0 (36)

Here mT is the total effective mass, y(t) is the relative motion of the system with respect to the base excitation yb(t),

v(t) is the voltage, Rl is the load resistance, Cp is the capacitance of the piezoelectric layer, t is the time and θ is the

electromechanical coupling.
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yb( )t
PZT!Layers

v t( )Rl

y( )tTip!Mass

ma ma
ka

m

Figure 4. A cantilever piezoelectric energy harvester with an inertial amplifier having a circuit without an inductor.

Rl is the load resistance of the harvesting circuit. The source of the ambient energy is through the base-excitation

yb(t). The displacement of the primary mass and the voltage generated due to the strain in the piezoelectric layers are

denoted by y(t) and v(t) respectively.

We consider a deterministic harmonic base excitation so that

yb(t) = Ybeiωt (37)

Here ω is the driving frequency and i is the unit imaginary number i =
√
−1. Transforming equations (35) and (36)

into the frequency domain and dividing the first equation by m and the second equation by Cp we obtain

(
−ω2

(
1+ γm cot2 φ

)
+2iωζωn +ω2

n (1+ γk)
)

Y (iω)− θ

m
V (iω) = ω2

(
1+ γm cot2 φ

)
Yb (38)

iω
θ

Cp

Y (iω)+

(
iω +

1

CpRl

)
V (iω) = 0 (39)

Here Y (iω) and V (iω) are respectively the Fourier transforms of y(t) and v(t) and γm is the mass ratio defined in

equation (33). The natural frequency of the harvester (ωn) and the damping factor (ζ ) are defined as

ωn =

√
k

m
and ζ =

c

2mωn

(40)

Dividing the equation (38) by ω2
n and equation (39) by ωn and writing in a matrix form one has

[(
Γk −Ω2Γm

)
+2iΩζ −θ

k

iΩ αθ
Cp

(iΩα +1)

]{
Y (iΩ)

V (iΩ)

}
=

{
Ω2ΓmYb

0

}
(41)

Here the dimensionless frequency and the time constant are defined as

Ω =
ω

ωn

and α = ωnCpRl (42)

Note that α is the time constant of the first order electrical system, non-dimensionalized using the natural frequency

of the mechanical system. We also define the non-dimensional mass factor of the inertial amplifier as

Γm = 1+ γm cot2 φ (43)
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Inverting the coefficient matrix, the displacement and voltage in the frequency domain can be obtained as

{
Y (iΩ)

V (iΩ)

}
=

1

∆1(iΩ)

[
(iΩα +1) θ

k

−iΩ αθ
Cp

(
Γk −Ω2Γm

)
+2iΩζ

]{
Ω2ΓmYb

0

}
(44)

In the above equation, the determinant of the coefficient matrix is given by

∆1(iΩ) = Γm(iΩ)3α +(2ζ α +Γm)(iΩ)2 +
(
(κ2 +(1+ γk))α +2ζ

)
(iΩ)+ (1+ γk) (45)

and the non-dimensional electromechanical coupling coefficient is defined as

κ2 =
θ2

kCp

(46)

From equation (44) we obtain the dynamic response and the voltage output of the system due to the harmonic base

excitation as

Y (iΩ) =
(iΩα +1)Ω2ΓmYb

∆1(iΩ)
(47)

and V (iΩ) =−iΩ
αθ

Cp

Ω2ΓmYb

∆1(iΩ)
(48)

It is convenient to view the response quantities in a non-dimensional form. The harvested power is given by

P(Ω) =
V 2(Ω)

Rl

(49)

As Rl is a constant, to obtain an expression of the power in a non-dimensional form, it is necessary to non-dimentionalise

the voltage only. This can be achieved in various ways. For analytical convenience, the voltage at Ω = 1 when the

damping is zero and without the inertial amplifier is considered to be used for the normalisation

V0 =V (iΩ)|{Ω=1,ζ=0,γm=0,γk=0} =
−iαθ

Cp
Yb

iακ2
=− θYb

Cpκ2
(50)

Using this, we obtain the non-dimensional voltage response as

V̂ (iΩ) =
V (iΩ)

V0

= ακ2 iΩ3Γm

∆1(iΩ)
(51)

The non-dimensional power is therefore given by

P̂(Ω) =
P(Ω)

P0

=

∣∣∣∣
V (iΩ)

V0

∣∣∣∣
2

=
∣∣∣V̂ (iΩ)

∣∣∣
2

(52)

For the case of harmonic base excitation, a key interest is the variation of the harvested power as function of driving

frequency of the base excitation. To gain physical insights, the results obtained so far is applied numerically to an

example problem. Table 1 gives the parameters of the system for the simulations (taken from reference [9]). For these

values of the parameters, we obtain V0 = 897.15 V for Yb = 1 mm. Depending on the system parameters, the value of

V0 will change significantly. Throughout this study, the results are shown in a non-dimensional manner for generality.

The actual values can be obtained simply by multiplying the corresponding normalisation factors.

The non-dimensional harvested power given by equation (52) is plotted as a function of the non-dimensional fre-

quency in Figure 5. Two sets of parameters are considered for the inertial amplifier, namely γm = 0.2, γk = 1, φ = 10◦
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Table 1. Parameter values used in the simulation

Parameter Value Unit

m 9.12×10−3 kg

k 4.1×103 N/m

c 0.135 Ns/m

Rl 3×104 Ohm

Cp 4.3×10−8 F

θ −4.57×10−3 N/V

ωn 670.49 rad/s

ζ 0.011 –

α 0.8649 –

κ2 0.1185 –

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Non-dimensional frequency:  = /

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
on

-d
im

en
si

on
al

 p
ow

er
: |

V
(i

 
)|

2
/V

02

With inertial amplifier
Without inertial amplifier

(a) Inertial amplifier with γm = 0.2, γk = 1, φ = 10◦
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(b) Inertial amplifier with γm = 1, γk = 1.5, φ = 15◦

Figure 5. The non-dimensional power of a harvester without an inductor (ζ = 0.011, α = 0.8649, κ2 = 0.1185) as

a function of non-dimensional frequency. Powers obtained from the classical harvester without an inertial amplifier

and the proposed harvester with two different inertial amplifier configurations are shown for comparison. Powers

obtained from the proposed harvesters are 3 and 4.5 times more than the classical harvester at 50% and 60% lower

frequencies.

and γm = 1, γk = 0.6, φ = 15◦. Both demonstrate higher harvested power at a lower frequency compared to the

classical case without any inertial amplifier. The system in Figure 5(b) shows relatively higher harvested power at a

relatively lower frequency compared to the system Figure 5(a). As the harvested power is significantly depended on

the parameters of the inertial amplifier, next we aim to obtain optimal parameters to maximise the power output of the

energy harvester.
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3.1.2 Optimisation of the harvested power

The first step to maximise the harvested power is to determine at which frequency value the maxima of the power

occurs. For lightly damped systems without the inertial amplifier, the harvested power peaks about Ω ≈ 1. To obtain

the frequency at which the harvested power peaks we set derivative of the normalised power given in equation (52)

with respect to the normalised frequency-square to zero

∂ P̂(Ω2)

∂Ω2
= 0 (53)

Simplifying this we obtain the necessary condition as

−2Γ2
mα2

︸ ︷︷ ︸
a1

(Ω2)3 +
(
2Γmα2κ2 +2ΓmΓkα2 −4α2ζ 2 −Γ2

m

)
︸ ︷︷ ︸

a2

(Ω2)2 + Γ2
k︸︷︷︸

a4

= 0 (54)

This is a cubic equation in Ω2. In general there is one real solution and one complex conjugate pair of solutions. The

positive real solution can be given exactly as

Ω2
max =− 1

3a1

(
a2 +C+

∆0

C

)
(55)

Here a j, j = 1, · · · ,4 are the coefficients of the polynomial in the order of decreasing power (note that a3 = 0) with

∆0 = a2
2 −3a1a3,∆1 = 2a3

2 −9a1a2a3 +27a2
1a4 and C =

3

√√√√∆1 ±
√

∆2
1 −4∆3

0

2
(56)

The expression in equation (55) us exact but requires several calculations and not physically intuitive. From the

equation of motion (38) we conjecture that the maximum power occurs around Ω2 ≈ Γk

Γm
. Using this and assuming

that damping is small such that ζ 2 → 0, we can obtain a first-order approximation of the optimal frequency point as

Ω2
max ≈

Γk

Γm

[
1+

α2κ2

Γm +α2 (Γk −2κ2)

]
(57)

The non-dimensional frequency for the maximum harvested power is therefore a function of the inertial amplifier

parameters, time constant and electromechanical coupling coefficient.

In Figure 6 the non-dimensional power is shown for two different inertial amplifiers. Five values of the damping

factors of the energy harvesters have been considered. They range from undamped to a damping factor of 20%. As

expected, less damping in the harvester leads to more harvested power from the harmonic base excitation. The value

of Ωmax obtained from equation (57) is shown in Figure 6 by a ‘*’. It closely matches with the frequency for which

the harvested power is maximum for all the five damping values. The non-dimensional frequency for the maximum

power obtained from (57) are respectively 0.5213 and 0.4103. Comparing with the exact results, it was verified that

for all the damping values, the frequency for the maximum power does not change significantly. Note that for both the

cases this is significantly lower than the classical harvester without an inertial amplifier, for which Ωmax is close to 1.

This clearly demonstrates that the maximum power is harvested at a lower frequency compared the classical harvester.

To gain further understanding on how the parameters of the inertial amplifier impact the frequency for the maximum

power, in Figure 7 we show the contour lines of Ωmax as functions of the stiffness ratio γk and inertial amplifier angle

φ . Four values of the mass ratio γm and a damping factor of ζ = 0.011 have been used. We also show the contour

line of the frequency for the maximum power for the classical energy harvester without the inertial amplifier in the

same plots. This is close to 1 and therefore any contour lines below this value show the parameter combinations for
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(b) Inertial amplifier with γm = 1, γk = 1.5, φ = 15◦

Figure 6. The non-dimensional power of a harvester without an inductor (α = 0.8649, κ2 = 0.1185) as a function

of the non-dimensional frequency for five selected values of damping factors. The value of the frequency of

maximum power (Ωmax) obtained from equation (57) is shown in Figure 6 by a ‘*’. Five values of the damping

factors of the energy harvesters have been considered for illustration.

which maximum power occurs below the classical case. A key observation is that for larger inertial amplifier mass

(i.e., larger γm), a wider angle φ can be used to achieve a lower maximum frequency vale. For lower values of φ , Ωmax

is not very sensitive with γk.

The non-dimensional maximum harvested power is shown in Figure 8 as a function of the stiffness ratio γk and

inertial amplifier angle φ for four different values of the mass ratio. The maximum power is obtained by computing

the power at frequency values shown in Figure 6. We also show the contour line of the maximum power for the

classical energy harvester without the inertial amplifier in the same plots. For most parameter combinations, the

harvested power for the proposed system with inertial amplifier is more than the classical harvester. Increasing the

stiffness in general leads to a higher harvested power. We also observe that the harvested power does not change with

φ significantly beyond the inertial amplifier angle of 45◦.

Form Figure 8 observe that a higher stiffness ratio γk leads to a higher harvested power. However, Figure 7 shows

that higher stiffness ratio γk also leads to higher values of the frequency for the maximum power, which is not ideal

for low-frequency energy harvesting. Therefore, the parameters should be selected for an optimal balance between

maximum power and minimum frequency. Equation (57) along with Figures 7 and 8 can give a practical approach

towards selecting optimal parameters. We select η < 1 as the desired normalised frequency value for the maximum

harvested power. One can equate this quantity to the exact expression of the maximum frequency in (55). However, to

simplify the analytical expression, the approximate expression in equation (57) has been used. Therefore substituting

η = ωmax (58)

as the target frequency for the maximum power, from equation (57) we have

Γmη2 −Γk

[
1+

α2κ2

Γm +α2 (Γk −2κ2)

]
= 0 (59)

13/36



(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 7. Contours of non-dimensional frequency for maximum power of a harvester without an inductor

(ζ = 0.011, α = 0.8649, κ2 = 0.1185) as a function of the stiffness ratio γk and inertial amplifier angle φ . The

non-dimensional frequency for maximum power for the equivalent classical harvester without an inertial amplifier is

a constant (function of the electrical parameters only) and shown by a line as indicated. Contour lines below the

classical line indicate that the maximum power of a harvester with an inertial amplifier takes place at a lower

frequency. Higher values of the mass ratio γm and smaller amplifier angles (φ / 15◦) ensure this fact for any stiffness

ratio.

Simplifying this equation we obtain

Γk
2α2 +

((
−η2Γm −κ2

)
α2 +Γm

)
Γk +2Γmα2η2κ2 −Γm

2η2 = 0 (60)

This is a quadratic equation in Γk and taking the positive solution, the optimal value of the stiffness ratio (note that
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 8. Contours of non-dimensional maximum power of a harvester without an inductor (ζ = 0.011,

α = 0.8649, κ2 = 0.1185) as a function of the stiffness ratio γk and inertial amplifier angle φ . The non-dimensional

maximum power for the equivalent classical harvester without an inertial amplifier is a constant (slightly more than

1) and shown by the indicated line. Contour lines above the classical line indicate that the maximum power of a

harvester with an inertial amplifier is higher for the respective parameter combinations. Higher stiffness ratio γk leads

to higher harvested power. However, the harvested power does not change significantly for larger amplifier angles,

φ ' 30◦. Except for very small values of the stiffness ratio γk, maximum power obtained from the proposed harvester

is always more than the classical harvester.

γk = Γk −1) can be obtained as

γk =

√
(η2 α2 +1)2

Γm
2 +(−6α4η2 −2α2)κ2Γm +α4κ4 +

(
Γmη2 +κ2 −2

)
α2 −Γm

2α2
(61)

Therefore, from the preceding equation, given a target frequency for maximum power η < 1, one can explicitly

choose the stiffness ratio given the parameters of the harvesting circuit and inertial amplifier parameters such as γk
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and φ . In Figure 9 we show the contours of the optimal non-dimensional stiffness stiffness ratio γk from equation

(60) for different values of the inertial amplifier angle φ and target frequency for maximum power η . Results for
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(d) Mass ratio γm = 1.0

Figure 9. Contours of the optimal non-dimensional stiffness ratio γk for of a harvester without an inductor

(ζ = 0.011, α = 0.8649, κ2 = 0.1185) as a function of the target frequency for the maximum power η and inertial

amplifier angle φ . The empty region marked above show the parameter combination when t is not possible to obtain

a real and positive value of the stiffness ratio.

four different values of the mass ratio are shown in Figure 9. When the mass ratio γm is small, say γm = 0.01 (that is

only 1% of the tip mass), then it is not possible to obtain a real and positive value of the spring stiffness for a large

number of parameter combinations as shown by the empty region in Figure 9(a). For larger inertial amplifier mass,

more parameter combinations give physically realistic value of the spring stiffness for a target frequency for maximum

power harvesting as seen in Figure 9(d). From these plots we also observe that if the inertial amplifier stiffness value

to be kept low and a lower frequency for maximum power harvesting is needed, the mass of the inertial amplifier
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should be higher.

If the stiffness of the inertial amplifier is known or has been selected, then equation (59) can also be used to obtain

γm and φ for maximum power at a prescribed target frequency value η . Solving the resulting quadratic equation we

obtain

γm cot2 φ =

√
η4 (−2κ2 +Γk)

2 α4 +2Γk
2α2η2 +Γk

2 +
(
−2+

(
2κ2 −Γk

)
α2

)
η2 +Γk

2η2
(62)

This allows one to choose the optimal combination of γm and φ for maximum power at frequency η . Next, we consider

the case when the electrical circuit has an inductor.

3.2 Circuit with an inductor

A schematic diagram of a cantilever piezoelectric energy harvester with an inertial amplifier having a circuit with an

inductor is shown in Figure 10. Next we derive mathematical expressions for the harvested power and combinations

yb( )t
PZT!Layers

L v t( )Rl

y( )tTip!Mass

ma maka

m

Figure 10. A cantilever piezoelectric energy harvester with an inertial amplifier having a circuit with an inductor.

Rl is the load resistance and L is the inductor of the harvesting circuit. The source of the ambient energy is through

the base-excitation yb(t). The displacement of the primary mass and the voltage generated due to the strain in the

piezoelectric layers are denoted by y(t) and v(t) respectively.

of parameters which can maximise it.

3.2.1 Quantification of the harvested power

Piezoelectric vibration energy harvester comprising a circuit with an inductor is shown in Figure 10. For this case

the electrical equation (see for example, [10]) becomes

Cpv̈(t)+
1

Rl

v̇(t)+
1

Li

v(t)+θ ÿ(t) = 0 (63)

where Li is the inductance of the circuit. The mechanical equation is the same as given in equation (35).

Transforming equation (63) into the frequency domain and dividing by Cpω2
n one has

−Ω2 θ

Cp

Y (iω)+

(
−Ω2 + iΩ

1

α
+

1

β

)
V (iω) = 0 (64)

where the normalised inductor parameter is defined as

β = ω2
n LiCp (65)
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and is the ratio of the mechanical to electrical natural frequencies. Similar to equation (41), this equation can be

written in matrix form with the equation of motion of the mechanical system (38) as

[(
Γk −Ω2Γm

)
+2iΩζ −θ

k

−Ω2 αβθ
Cp

α
(
1−βΩ2

)
+ iΩβ

]{
Y (iω)

V (iω)

}
=

{
Ω2ΓmYb

0

}
(66)

Inverting the coefficient matrix, the displacement and voltage in the frequency domain can be obtained as

{
Y (iω)

V (iω)

}
=

1

∆2

[
α
(
1−βΩ2

)
+ iΩβ θ

k

Ω2 αβθ
Cp

(
Γk −Ω2Γm

)
+2iΩζ

]{
Ω2ΓmYb

0

}
(67)

where the determinant of the coefficient matrix is

∆2(iΩ) = (iΩ)4β αΓm +β (2ζ α +Γm) (iΩ)3 +
(((

k2 +Γk

)
β +Γm

)
α +2β ζ

)
(iΩ)2 +(Γkβ +2α ζ )(iΩ)+Γkα

(68)

From equation (67) we obtain the dynamic response and the voltage output of the system due to the harmonic base

excitation as

Y (iΩ) =

(
α
(
1−βΩ2

)
+ iΩβ

)
Ω2ΓmYb

∆2(iω)
(69)

and V (iΩ) =
Ω2 αβθ

Cp
Ω2ΓmYb

∆2(iω)
(70)

As the previous case, the voltage at Ω = 1 when the damping is zero and without the inertial amplifier is considered

to be used for the normalisation

V0 =V (iΩ)|{Ω=1,ζ=0,γm=0,γk=0} =

αβθ
Cp

Yb

−αβκ2
=− θYb

Cpκ2
(71)

Using this, we obtain the non-dimensional voltage response as

V̂ (iΩ) =
V (iΩ)

V0

= αβκ2Ω2 (iΩ)2

∆2(iΩ)
(72)

Using this expression, the non-dimensional power can be obtained from (52). Next we investigate the impact of the

inertial amplifier on the harvested power.

The non-dimensional harvested power using the expression of the voltage in (72) is plotted as a function of the non-

dimensional frequency in Figure 11. Two sets of parameters are considered for the inertial amplifier, namely γm = 0.2,

γk = 1, φ = 10◦ and γm = 1, γk = 0.6, φ = 15◦. The value of the non-dimensional inductor constant is assumed to be

β = 1.0. Both demonstrate higher harvested power at a lower frequency compared to the classical case without any

inertial amplifier. The system in Figure 11(b) shows relatively higher harvested power at a relatively lower frequency

compared to the system Figure 11(a). As the harvested power significantly depended on the parameters of the inertial

amplifier, next we aim to obtain optimal parameters to maximise the power output of the energy harvester.

3.2.2 Optimisation of the harvested power

To obtain the frequency at which the harvested power peaks, we consider the normalised power given by equation

(52) with the voltage expression in (72) as

P̂(Ω) = (αβκ2)2 (Ω)8

∆2(iΩ)∆∗
2(iΩ)

(73)
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(a) Inertial amplifier with γm = 0.2, γk = 1, φ = 10◦
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(b) Inertial amplifier with γm = 1, γk = 0.6, φ = 15◦

Figure 11. The non-dimensional power of a harvester with an inductor (ζ = 0.011, α = 0.8649, κ2 = 0.1185,

β = 1.0) as a function of non-dimensional frequency. Powers obtained from the classical harvester without an

inertial amplifier and the proposed harvester with two different inertial amplifier configurations are shown for

comparison. Powers obtained from the proposed harvesters are approximately 4 and 7 times more than the classical

harvester at 50% and 60% lower frequencies.

Here (•)∗ denotes complex conjugation. We set derivative of the normalised power given by equation (73) with respect

to the normalised frequency-square to zero

∂ P̂(Ω2)

∂Ω2
= 0 (74)

Simplifying this we obtain the necessary condition as a fourth-order polynomial in Ω2

a1(Ω
2)4 +a2(Ω

2)3 +a3(Ω
2)2 +a4(Ω

2)+a5 = 0 (75)

where

a1 =−3Γm
2α2β 2,a2 = 4Γmα2β 2κ2 +4ΓmΓkα2β 2 +4Γm

2α2β −2Γm
2β 2

a3 =−α2β 2κ4 −2Γkα2β 2κ2 −2Γmα2,a4 = 0,a5 = Γk
2α2

(76)

The four solutions of equation (75) can be given in closed-from as

Ω2
1,2,3,4 =− a2

4a1

∓S± 1

2

√
−4S2 −2p+

q

S
(77)

Here

p =
8a1a3 −3a2

2

8a2
1

,q =
a3

2 −4a1a2a3 +8a2
1a4

8a3
1

, (78)

S =
1

2

√
−2

3
p+

1

3a1

(
Q+

∆0

Q

)
,Q =

3

√√√√∆1 +
√

∆2
1 −4∆3

0

2
(79)

∆0 = a2
3 −3a2a4 +12a1a5,∆1 = 2a3

3 −9a2a3a4 +27a2
2a5 +27a1a2

4 −72a1a3a5 (80)
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The discriminant ∆ can be obtained from ∆2
1 − 4∆3

0 = −27∆. The equation (75) has two distinct real roots and two

complex conjugate non-real roots when ∆ < 0. The square root of the positive real root gives the optimal frequency

where the harvested power is maximum.

The expression in equation (77) is exact but requires several calculations and not physically intuitive. From the

equation of motion (66) we conjecture that the maximum power occurs around Ω2 ≈ Γk

Γm
. Using this, together with the

small damping assumption, we can obtain a first-order approximation of the optimal frequency point as

Ω2
max ≈

Γk

Γm

[
1− α2κ2

((
1/2κ2 −Γk

)
β +Γm

)
β((

κ4 −4Γkκ2 +Γk
2
)

α2 +ΓmΓk

)
β 2 −2Γmα2 (−κ2 +Γk)β +Γm

2α2

]
(81)

The non-dimensional frequency for the maximum harvested power is therefore a function of the inertial amplifier

parameters, time constant, normalised inductor parameter and the electromechanical coupling coefficient.

In Figure 12 the non-dimensional power is shown for two different inertial amplifiers. Five values of the damping
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(a) Inertial amplifier with γm = 0.2, γk = 1, φ = 10◦
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(b) Inertial amplifier with γm = 1, γk = 0.6, φ = 15◦

Figure 12. The non-dimensional power of a harvester with an inductor (α = 0.8649, κ2 = 0.1185, β = 1.0) as a

function of the non-dimensional frequency for five selected values of damping factors. The value of the frequency of

maximum power (Ωmax) obtained from equation (81) is shown in Figure 6 by a ‘*’. Five values of the damping

factors of the energy harvesters have been considered for illustration.

factors of energy harvesters have been considered. They range from undamped to a damping factor of 20%. As

expected, less damping in the harvester leads to more harvested power from the harmonic base excitation. The value

of Ωmax obtained from equation (81) is shown in Figure 12 by a ‘*’. It can be observed that it closely matches with

the flow velocity for which the harvested power is maximum for all the five damping values. The non-dimensional

frequency for the maximum power obtained from (81) are respectively 0.5154 and 0.4078. Note that for both the

cases, this is significantly lower than the classical harvester without an inertial amplifier, for which Ωmax is close to 1.

To gain further understanding on how the parameters of the inertial amplifier impact the frequency for the maximum

power, in Figure 13 we show the contour lines of Ωmax as functions of the stiffness ratio γk and inertial amplifier angle

φ . Four values of the mass ratio γm and a damping factor of ζ = 0.011 have been used. We also show the contour

line of the frequency for the maximum power for the classical energy harvester without the inertial amplifier in the

same plots. This is close to 1 and therefore any contour lines below this value show the parameter combinations for
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 13. Contours of non-dimensional frequency for maximum power of a harvester with an inductor (ζ = 0.011,

α = 0.8649, κ2 = 0.1185, β = 1.0) as a function of the stiffness ratio γk and inertial amplifier angle φ . The

non-dimensional frequency for maximum power for the equivalent classical harvester without an inertial amplifier is

a constant (function of the electrical parameters only) and shown by a line as indicated. Contour lines below the

classical line indicate that the maximum power of a harvester with an inertial amplifier takes place at a lower

frequency. Higher values of the mass ratio γm and smaller amplifier angles (φ / 15◦) ensure this fact for any stiffness

ratio.

which maximum power occurs below the classical case. A key observation is that for larger inertial amplifier mass

(i.e., larger γm), a wider angle φ can be used to achieve a lower maximum frequency vale. For lower values of φ , Ωmax

is not very sensitive with γk.

The non-dimensional maximum harvested power is shown in Figure 14 as a function of the stiffness ratio γk and

inertial amplifier angle φ for four different values of the mass ratio. The maximum power is obtained by computing the

power at frequency values shown in Figure 12. We also show the contour line of the maximum power for the classical
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 14. Contours of non-dimensional maximum power of a harvester with an inductor (ζ = 0.011, α = 0.8649,

κ2 = 0.1185, β = 1.0) as a function of the stiffness ratio γk and inertial amplifier angle φ . he non-dimensional

maximum power for the equivalent classical harvester without an inertial amplifier is a constant (slightly more than

1) and shown by the indicated line. Contour lines above the classical line indicate that the maximum power of a

harvester with an inertial amplifier is higher for the respective parameter combinations. Higher stiffness ratio γk leads

to higher harvested power. However, the harvested power does not change significantly for larger amplifier angles,

φ ' 30◦. Except for very small values of the stiffness ratio γk, maximum power obtained from the proposed harvester

is always more than the classical harvester.

energy harvester without the inertial amplifier in the same plots. For most parameter combinations, the harvested

power for the proposed system with inertial amplifier is more than the classical harvester. Increasing the stiffness

in general leads to higher harvested power. We also observe that the harvested power does no change significantly

beyond the inertial amplifier angle of 30◦.

Form Figure 14 observe that a higher stiffness ratio generally γk leads to a higher harvested power for all values of
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γm. However, Figure 14 shows that higher stiffness ratio γk leads to higher values of the frequency for the maximum

power for the corresponding values of γm. This is not ideal for low-frequency energy harvesting. Therefore, the

parameters should be selected for an optimal balance between maximum power and minimum frequency. Equation

(81) along with figures 13 and 14 can give a practical approach towards selecting optimal parameters. As in the

previous case, we select η < 1 as the desired normalised frequency value for the maximum harvested power. One can

equate this quantity to the exact expression of the maximum frequency in (77). However, to simplify the analytical

expression, the approximate expression in equation (81) has been used to obtain

Γmη2 −Γk

[
1− α2κ2

((
1/2κ2 −Γk

)
β +Γm

)
β((

κ4 −4Γkκ2 +Γk
2
)

α2 +ΓmΓk

)
β 2 −2Γmα2 (−κ2 +Γk)β +Γm

2α2

]
= 0 (82)

Simplifying this equation we obtain

a1Γ3
k +a2Γ2

k +a3Γk +a4 = 0 (83)

where

a1 = 2α2β 2,a2 =
((
−2β 2η2 −4β

)
α2 +2β 2

)
Γm −6α2β 2κ2

a3 =
((

4β η2 +2
)

α2 −2β 2η2
)

Γm
2 +

(
8β 2η2 κ2 +2β κ2

)
α2Γm +α2β 2κ4

and a4 =−2Γmα2β 2η2 κ4 −4Γm
2α2β η2 κ2 −2Γm

3α2η2

(84)

Equation (83) is a cubic equation in Γk and taking the real positive solution, the optimal value of the stiffness ratio

can be obtained by using the expression of the cubic root given in (55). Using this, given a target frequency for the

maximum power η < 1, one can explicitly choose the stiffness ratio given the parameters of the harvesting circuit and

inertial amplifier parameters such as γk and φ . In Figure 15 we show the contours of the optimal non-dimensional

stiffness ratio γk from equation (83) for different values of the inertial amplifier angle φ and target frequency for

maximum power η . Results for four different values of the mass ratio are shown in Figure 15. When the mass ratio

γm is small, say γm = 0.01 (that is only 1% of the tip mass), then it is not possible to obtain a real and positive value of

the spring stiffness for a large number of parameter combinations as shown by the empty region in Figure 15(a). For

larger inertial amplifier mass, more parameter combinations give physically realistic value of the spring stiffness for a

target frequency for maximum power harvesting as seen in Figure 15(d). From these plots we also observe that if the

inertial amplifier stiffness value to be kept low and a lower frequency for maximum power harvesting is needed, the

mass of the inertial amplifier should be higher.

If the stiffness of the inertial amplifier is known or has been selected, then equation (59) can also be used to obtain

γm and φ for maximum power at a prescribed target frequency value η . Equation (59) can be expressed in terms of a

cubic polynomial in Γm as

a1Γ3
m +a2Γ2

m +a3Γm +a4 = 0 (85)

with coefficients

a1 =−2η2 α2,a2 =
((

4β η2 +2
)

α2 −2β 2η2
)

Γk −4β η2 κ2α2

a3 =
((
−2β 2η2 −4β

)
α2 +2β 2

)
Γk

2 +
(
8β 2η2 κ2 +2β κ2

)
α2Γk −2β 2η2 κ4α2

and a4 = Γkα2β 2κ4 −6Γk
2α2β 2κ2 +2Γk

3α2β 2

(86)

The consideration of the real and positive root of the cubic equation (85) allows one to choose the optimal combination

of γm and φ for the maximum power at frequency η . Next, we consider the case when the base excitation is a broadband

random excitation.
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(d) Mass ratio γm = 1.0

Figure 15. Contours of the optimal non-dimensional stiffness stiffness ratio γk for of a harvester with an inductor

(ζ = 0.011, α = 0.8649, κ2 = 0.1185, β = 1.0) as a function of the target frequency for the maximum power η and

inertial amplifier angle φ . The empty region marked above show the parameter combination when t is not possible to

obtain a real and positive value of the stiffness ratio.

4 Energy harvesting from broadband random base excitation

It is considered that the base excitation yb(t) is a broadband, Gaussian and weakly stationary random process.

Dynamical systems subjected to this type of excitation have been discussed by Lin [11], Nigam [12], Bolotin [13],

Roberts and Spanos [14] and Newland [15] using the theory of random vibration . In Figure 16 illustrations of a white

noise base excitation and a harmonic base excitation are shown.

We are interested in the average harvested power given by

E [P(t)] = E

[
v2(t)

Rl

]
=

E
[
v2(t)

]

Rl

(87)
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Figure 16. Illustrations of a white noise base excitation and a harmonic base excitation. We consider that the base

excitation yb(t) is a weakly stationary, Gaussian, broadband random process. The strength of the white noise shown

here is considered to be 1 as an example. The harvested power is quantified due to both types of input excitations.

For a damped linear system of the form V (ω) = H(ω)Yb(ω), it can be shown that [11, 12] the spectral density of the

voltage V is related to the spectral density of the base excitation Yb (denoted by Φybyb
(ω)) through

ΦVV (ω) = |H(ω)|2Φybyb
(ω) (88)

Thus, for large t, we obtain

E
[
v2(t)

]
= Rvv(0) =

∫ ∞

−∞
|H(ω)|2Φybyb

(ω)dω (89)

This expression will be used to obtain the average power for the two cases considered. We assume that the base

acceleration ÿb(t) is a Gaussian white noise so that its spectral density is constant with respect to frequency.

4.1 Circuit without an inductor

The schematic diagram of a cantilever piezoelectric energy harvester for this case shown in Figure 4. We derive

mathematical expressions for the mean harvested power and obtain the parameter combinations which maximise it.

4.1.1 Quantification of the mean harvested power

From equation (48) we obtain the voltage in the frequency domain as

V =
−iΩ3 αθ

Cp
Γm

∆1(iΩ)
Yb (90)
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Following duToit and Wardle [7] and Adhkari et. al [8] we are interested in the mean of the normalised harvested

power when the base acceleration is Gaussian white noise, that is |V |2/(Rlω
4Φybyb

). Note that Φybyb
) is the spectral

density of the acceleration and is assumed to be constant. After some algebra, from equation (90), the normalized

power is

P̃ =
|V |2

(Rlω4Φybyb
)
=

kακ2Γ2
m

ω3
n

Ω2

∆1(iΩ)∆∗
1(iΩ)

. (91)

Using equation (89), the average normalized power can be obtained as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φybyb

)

]
=

kακ2Γ2
m

ω3
n

∫ ∞

−∞

Ω2

∆1(iΩ)∆∗
1(iΩ)

dω (92)

From equation (45) observe that ∆1(iΩ) is a third-order polynomial in (iΩ). Noting that dω =ωndΩ and from equation

(45), the average harvested power can be obtained from equation (92) as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φybyb

)

]
= mακ2Γ2

m

∫ ∞

−∞

Ω2

∆1(iΩ)∆∗
1(iΩ)

dΩ

︸ ︷︷ ︸
I(1)

(93)

The calculation of the integral of the form I(1) on the right-hand side of equation (93) in general requires the

calculation of integrals of the following type

In =

∫ ∞

−∞

Ξn(ω)dω

Λn(ω)Λ∗
n(ω)

(94)

where the polynomials have the form

Ξn(ω) = bn−1ω2n−2 +bn−2ω2n−4 + · · ·+b0 (95)

Λn(ω) = an(iω)n +an−1(iω)n−1 + · · ·+a0 (96)

Following Roberts and Spanos [14] this integral can be evaluated as

In =
π

an

det [Dn]

det [Nn]
(97)

Here the n×n matrices are defined as

Dn =




bn−1 bn−2 · · · b0

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0




(98)

and

Nn =




an−1 −an−3 an−5 −an−7

−an an−2 −an−4 an−6 · · · 0 · · ·
0 −an−1 an−3 −an−5 · · · 0 · · ·
0 an −an−2 an−4 · · · 0 · · ·
0 · · · · · · 0 · · ·
0 0 · · · −a2 a0




. (99)
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Comparing I(1) with the general integral in equation (94) we have

n = 3,b2 = 0,b1 = 1,b0 = 0

and a3 = αΓm,a2 = (2ζ α +Γm) ,a1 =
(
κ2 +Γk

)
α +2ζ ,a0 = Γk

(100)

Now using equation (97), the integral can be evaluated as

I(1) =
π

αΓm

det




0 1 0

−Γmα
(
κ2 +Γk

)
α +2ζ 0

0 −2α ζ −Γm Γk




det




0 1 0

−Γmα
(
κ2 +Γk

)
α +2ζ 0

0 −2α ζ −Γm Γk




=
π

2ζ (κ2 +Γk)α2 +(Γmκ2 +4ζ 2)α +2Γmζ
(101)

Combining this with equation (92) we finally obtain the average harvested power due to the white-noise base acceler-

ation as

E
[
P̃
]
=

(
mακ2Γ2

m

)
I(1) =

πmακ2Γ2
m

2ζ (κ2 +Γk)α2 +(Γmκ2 +4ζ 2)α +2Γmζ
(102)

To gain further understanding on how the parameters of the inertial amplifier impact the mean harvested power due

to a random broadband base excitation, in Figure 17 we show the contour lines of the normalised mean power ratio

as functions of the stiffness ratio γk and inertial amplifier angle φ . The normalised mean power ratio is calculated by

dividing the power obtained from equation (102) with the equivalent power from a classical harvester. This can be

obtained by substituting Γk = Γm = 1 is equation (102) as

E
[
P̃
]

classical
=

πmακ2

2ζ (κ2 +1)α2 +(κ2 +4ζ 2)α +2ζ
(103)

Four values of the mass ratio, namely γm = 0.01,0.1.0.2,0.5. and a damping factor of ζ = 0.011 have been used. All

other parameters are as given in Table 1. As this plot is the ratio of the power with respect to the classical energy

harvester, all contour lines above 1 demonstrate the enhanced harvested power with the inertial amplifier. In general

more power is harvested with smaller inertial amplifier angle φ . A key observation is that the normalised mean power

ratio is not very sensitive with the stiffness ratio γk.

4.1.2 Optimisation of the mean harvested power

We aim to derive physically realistic parameter combination which will maximise the mean harvested power as

given by equation (102). Maximizing the average power with respect to α gives the condition

α2
(
Γk +κ2

)
= Γm (104)

In terms of the physical quantities, the optimal condition can be expressed as

R2
l Cp

(
(k+ ka)Cp +θ2

)
= m+ma cot2 φ (105)

If the circuit parameters are fixed, from equation (104) one can determine the design spring ratio as

γk =
1+ γm cot2 φ

α2
− (1+κ2) (106)
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 17. Normalised mean power ratio (E
[
P̃
]
/E

[
P̃
]

classical
) of a harvester without an inductor (ζ = 0.011,

α = 0.8649, κ2 = 0.1185) as a function of the stiffness ratio γk and inertial amplifier angle φ . For φ / 20◦, the mean

harvested power ratio does not change significantly with γk. As this plot is the ratio of the power with respect to the

classical energy harvester, all contour lines above 1 demonstrate the enhanced harvested power with the inertial

amplifier. Lower values of the inertial amplifier angle φ leads to significantly higher power even for smaller values of

the stiffness ratio γk.For higher value of the mass ratio γm, more power is harvested irrespective of other parameter

values.

Using the relationship in (104) in the expression of the mean harvested power in (102), we obtain the maximum power

as

E
[
P̃
]

max
=

πmα κ2Γ2
m

(α κ2 +4ζ )Γm +4α ζ 2
(107)

The normalised mean power ratio as a function of α is shown in Figure 18 considering ζ = 0.1 and κ = 0.6. The

normalised mean power ratio is obtained by diving the mean power of the harvester with the inertial amplifier with

the mean power of the classical harvester with the optimal α given by (104). Four values of γm and φ are used in the
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 18. The normalised mean power ratio of a harvester without an inductor as a function of α for ζ = 0.1,

γk = 0.5 and κ = 0.6. Four values of γm and φ are used in the plots. The * corresponds to the optimal values of α for

the maximum mean harvested power obtained from equation (104).

plots along with ζ = 0.1, γk = 0.5, and κ = 0.6. The optimal values of α obtained from equation (104) are marked in

the figures. Figure 18 clearly confirms the accuracy of the maximum power obtained with the theoretically predicted

optimal values. The amplification reduce for smaller values of the mass ratio and larger values of the inertial amplifier

angle. When the mass ratio γm = 1 and the inertial amplifier angle φ = 10◦, the mean power harvested form the

proposed inertial amplifier based energy harvester can be 45 times more than the power harvested form the classical

energy harvester as can be observed in Figure 18(d).
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4.2 Circuit with an inductor

The schematic diagram of a cantilever piezoelectric energy harvester for this case shown in Figure 10. We derive

mathematical expressions for the mean harvested power and obtain the parameter combinations which maximise it.

4.2.1 Quantification of the mean harvested power

For this case, from equation (70) we obtain the voltage in the frequency domain as

V =

Ω4 αβθΓm

Cp

∆2(iΩ)
Yb (108)

Following references [8, 10] the average normalized harvested power can be expressed as

E
[
P̃
]
= E

[ |V |2
(Rlω4Φybyb

)

]
= mαβ 2κ2Γ2

m

∫ ∞

−∞

Ω4

∆2(iΩ)∆∗
2(iΩ)

dΩ

︸ ︷︷ ︸
I(2)

(109)

Using the expression of ∆2(iΩ) in equation (68) and comparing I(2) with the general integral in equation (94) we

have

n = 4,b3 = 0,b2 = 1,b1 = 0,b0 = 0,a4 = Γmβα ,a3 = β (2ζ α +Γm)

and a2 =
((

κ2 +Γk

)
β +Γm

)
α +2β ζ ,a1 = (βΓk +2ζ α) ,a0 = αΓk

(110)

Now using equation (97), the integral can be evaluated as

I(2) =
π

Γmβα

det




0 1 0 0

−Γmα β
((

κ2 +Γk

)
β +Γm

)
α +2β ζ −Γkα 0

0 −β (2α ζ +Γm) Γkβ +2α ζ 0

0 −Γmα β
((

κ2 +Γk

)
β +Γm

)
α +2β ζ Γkα




det




β (2α ζ +Γm) −Γkβ −2α ζ 0 0

−Γmα β
((

κ2 +Γk

)
β +Γm

)
α +2β ζ −Γkα 0

0 −β (2α ζ +Γm) Γkβ +2α ζ 0

0 −Γmα β
((

κ2 +Γk

)
β +Γm

)
α +2β ζ Γkα




(111)

Combining this with equation (109) we finally obtain the average normalized harvested power as

E
[
P̃
]
=

mα β κ2Γm
2π (Γkβ +2α ζ )((

2Γkα2ζ +ΓmΓkα
)

κ2 +4Γkζ 2α +
(
2Γk

2α2 +2ΓmΓk

)
ζ
)

β 2

+
((

4α3ζ 2 +2Γmα2ζ
)

κ2 −4ΓmΓkα2ζ +8α2ζ 3 +4Γmα ζ 2
)

β +2Γm
2α2ζ

(112)

This is the complete closed-form expression of the normalized harvested power under a Gaussian white noise base

acceleration.

To gain further understanding on how the parameters of the inertial amplifier impact the mean harvested power due

to random broadband base excitation, in Figure 19 we show the contour lines of the normalised mean power ratio as

functions of the stiffness ratio γk and inertial amplifier angle φ . The normalised mean power ratio is calculated by
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 19. Normalised mean power ratio (E
[
P̃
]
/E

[
P̃
]

classical
) of a harvester with an inductor (ζ = 0.011,

α = 0.8649, κ2 = 0.1185, β = 1.0) as a function of the stiffness ratio γk and inertial amplifier angle φ . For φ / 20◦,

the mean harvested power ratio does not change significantly with γk. As this plot is the ratio of the power with

respect to the classical energy harvester, all contour lines above 1 demonstrate the enhanced harvested power with the

inertial amplifier. Lower values of the inertial amplifier angle φ leads to significantly higher power even for smaller

values of the stiffness ratio γk.For higher value of the mass ratio γm, more power is harvested irrespective of other

parameter values.

dividing the power obtained from equation (112) with the equivalent power from a classical harvester. This can be

obtained by substituting Γk = Γm = 1 is equation (112) as

E
[
P̃
]

classical
=

mαβκ2π (β +2αζ )

β (β +2αζ )(1+2αζ )(ακ2 +2ζ )+2α2ζ (β −1)2
(113)

Four values of the mass ratio, namely γm = 0.01,0.1.0.5,1.0. and a damping factor of ζ = 0.011 have been used. All

other parameters are as given in Table 1. As this plot is the ratio of the power with respect to the classical energy
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harvester, all contour lines above 1 demonstrate the enhanced harvested power with the inertial amplifier. In general

more power is harvested with smaller inertial amplifier angle φ and higher mass ratio γm. A key observation is that

the normalised mean power ratio is not very sensitive with the stiffness ratio γk.

4.2.2 Optimisation of the mean harvested power

We aim to derive physically realistic parameter combination which will maximise the mean harvested power as

given by equation (112). We can also determine optimum values for Γm and Γk. Setting the derivative of the mean

power in (112) with respect to Γk to zero we have

d
(

E
[
P̃
])

dΓk

= 0 (114)

Considering the positive solution of the resulting equation, the optimal condition can be expressed as

βΓk = Γm (115)

In terms of physical quantities the optimal condition can be expressed as

LiCp (k+ ka) = m+ma cot2 φ (116)

If the circuit parameters are fixed, from equation (115) one can determine the design spring ratio as

γk =
1+ γm cot2 φ

β 2
−1 (117)

Substituting optimal relationship from (115) in the expression of the mean harvested power in (112), we obtain the

maximum power as

E
[
P̃
]

opt
=

mπ Γm
2α κ2

(κ2α +2ζ ) (2α ζ +Γm)
(118)

It can be observed that this maximum value is independent of the stiffness ratio γk and the inductor parameter β . The

normalised mean power ratio as a function of β is shown in Figure 20 considering α = 0.8649, ζ = 0.1 and κ = 0.6.

The normalised mean power ratio is obtained by diving the mean power of the harvester with the inertial amplifier

with the mean power of the classical harvester with the optimal β given by (115). Four values of γm and φ are used in

the plots along with ζ = 0.1, γk = 0.5, and κ = 0.6. The optimal values of β obtained from equation (115) are shown

by a * in the figure. Figure 20 clearly demonstrates that the maximum power is obtained with the optimal value of β

obtained from equation (115). The amplification in the harvested power reduce for smaller values of the mass ratio

and larger values of the inertial amplifier angle. When the mass ratio γm = 1 and the inertial amplifier angle φ = 10◦,

the mean power harvested form the proposed inertial amplifier based energy harvester can be 45 times more than the

power harvested form the classical energy harvester as can be observed in Figure 18(d).

If κ and ζ are fixed, then by further differentiating equation (118) with respect to α we obtain the optimal value as

α =

√
Γm

κ
(119)

In terms of the physical quantities, the optimal condition can be expressed as

R2
l Cpθ2 = m+ma cot2 φ (120)
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 20. The normalised mean power ratio of a harvester with an inductor as a function of β for α = 0.8649,

ζ = 0.1, γk = 0.5 and κ = 0.6. The * corresponds to the optimal value of β for the maximum mean harvested power

obtained from equation (115).

With this choice, the absolute maxima of the mean harvested power is obtained as

E
[
P̃
]

max
=

mπΓm
2κ2

(√
Γmκ +2ζ

)2
(121)

The normalised mean power ratio as a function of α is shown in Figure 21 considering ζ = 0.1 and κ = 0.6. The

normalised mean power ratio is obtained by diving the mean power of the harvester with the inertial amplifier with the

mean power of the classical harvester with the optimal β and α given by equations (115) and (119). The parameters

for the energy harvester are considered as ζ = 0.1, γk = 0.5 and κ = 0.6 as before. The optimal values of α obtained

from equation (119) are marked by *. Figure 21 clearly demonstrates the maximum power obtained with the optimal
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(a) Mass ratio γm = 0.01 (b) Mass ratio γm = 0.1

(c) Mass ratio γm = 0.5 (d) Mass ratio γm = 1.0

Figure 21. The normalised mean power ratio of a harvester without an inductor as a function of α for ζ = 0.1,

γk = 0.5 and κ = 0.6. The optimal values of β are obtained from (115). The * corresponds to the optimal value of

α = 2.31 for the maximum mean harvested power.

values of α given by equation (119). The amplification in the harvested power reduce for smaller values of the mass

ratio and larger values of the inertial amplifier angle. When the mass ratio γm = 1 and the inertial amplifier angle

φ = 10◦, the mean power harvested form the proposed inertial amplifier based energy harvester can be over 200 times

more than the power harvested form the classical energy harvester as can be observed in Figure 18(d).

5 Summary

This document developed the mathematical framework for the analysis of vibration energy harvesters incorporating

inertial amplifiers. A cantilever beam with piezoelectric layers and tip mass subjected to base excitation is employed.

The base excitation is considered to be both harmonic excitation and broadband random excitation. A reduced single-
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degree-of-freedom electromechanical model with inertial amplifiers is employed in the analytical formulations.

The electromechanical coupling in the model is considered to be arising from a bimorph piezoelectric configuration.

Two cases of energy harvesting circuits, namely, one with an inductor and another without an inductor, have been used.

For both the cases, the governing equations are in general represented by coupled second-order ordinary differential

equations and they are expressed in terms of non-dimensional coefficients. Additionally, the displacement and voltage

response is also transformed into non-dimensional forms for clarity and simplicity. The voltage response of the system

has been studied under deterministic harmonic excitation and optimal frequency for the maximum power generation

has been obtained analytically. The randomness in the base excitation is modelled using a broadband Gaussian random

process. Closed-form formulae for the average normalised harvested power for the energy harvesters without and with

an inductor have been derived.

The main aspects discussed here include:

1. Frequency for the maximum power: For the case of deterministic harmonic base excitation, the non-dimensional

frequency for maximum harvested power has been derived for both types of circuits. The exact solution involves

the solution of a cubic equation for the circuit without the inductor and a quartic equation for the circuit with

the inductor. Closed-form approximate expressions for the frequency of maximum harvested power have been

derived for both cases. The expressions explicitly capture the parameters which contribute towards the frequency

of maximum harvested power. They give physical insights and clearly demonstrate that power can be harvested

at a lower frequency compared to the classical harvester.

2. Optimal parameters for harmonic excitations: The closed-form expressions for the non-dimensional frequency

of maximum harvested power has been used to obtain the optimal parameter values of the inertial amplifier to

maximise the power. Optimal values for stiffness, mass or the inertial amplifier angle can be obtained using the

expressions provided. The optimal values involve the solution of a quadratic equation for the circuit without the

inductor and a cubic equation for the circuit with the inductor.

3. New closed-form power expressions: Exact closed-form expressions for average normalised harvested power for

energy harvesters without and with an inductor have been derived using contour integration techniques. These

formulae provide physical insights and enable the derivation of optimal parameter sets to maximise harvested

power even when the ambient bases excitation is not a harmonic excitation.

4. Optimal parameters for random excitations: Optimal parameters which maximise the harvested power belong

to two groups, namely the parameters related to the electrical circuits and the parameters related to the inertial

amplifier. They are interrelated. Explicit closed-form formulae have been derived which define their relationship

to achieve maximum harvested power due to random excitations.

Results obtained from the derived average power equations have been illustrated numerically for selected parameter

values. The limited analysis shown here highlights the fact that the average harvested power can be maximised

for optimal parameters of the inertial amplifier. An optimally designed piezoelectric energy harvester with inertial

amplifiers can deliver higher harvested power at a lower frequency.
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