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To present necessary insights concerning the anisotropy tailoring in geometrically isotropic multi-

material lattices, efficient computational models for Young’s moduli of such lattice are required. On the

basis of a unit cell (consisting of three beam-like members connected at a single point) based approach,

closed-form analytical expressions for the effective Young’s moduli in two orthogonal directions are derived

here as a function of the intrinsic material properties and structural geometry. Using the closed-form for-

mulae of in-plane elastic moduli, three different cases are formulated, leading to the contours of: I. isotropy

(i.e. minimum anisotropy), II. maximum anisotropy and III. a fixed value of anisotropy. Only the bending

deformation is considered in the analytical derivation, which is most predominant for thin-walled lattices

with axially rigid members. As a consequence, only the intrinsic material properties of the slant members

contribute under such assumption and that of the vertical members does not have any effect on the global

elastic behaviour of the multi-material lattice.
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1.2 Closed-form expression of effective Young’s modulus Ē2 . . . . . . . . . . . . . . . . . . . . 3
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1. Effective elastic properties of multi-material lattices

A unit cell based approach is adopted for deriving the effective mechanical properties of the lattice

structures at macro-scale (refer to figure 1 of the main paper). The unit cells of mono- and multi-material

lattices along with auxetic and non-auxetic configurations are shown in figure 1.

1.1. Closed-form expression of effective Young’s modulus Ē1

The closed-form expression of effective Young’s modulus Ē1 is obtained when the stress is applied

in direction 1 (note the directions indicated in figure 2). From figure 2A, it can be noted that C = 0

and M =
Pl sin θ

2
. The bending deflections of the two slant members perpendicular to their respective

longitudinal directions, as shown in figure 2A, can be obtained as

δ1 =
Pl3 sin θ

12E1I
(1)

δ2 =
Pl3 sin θ

12E2I
(2)

where E1 and E2 represent the intrinsic Young’s modulus of the two slant members. I is the second moment

of area of the beam cross section i.e. I =
bt3

12
. Here b and t are the out-of-plane thickness of the honeycomb

sheet and cell-wall thickness, respectively. The subscripts 1 and 2 with δ are indicated to represent the two

slant members of figure 2. The lumped forces acting at the joints can be expressed as P = σ̄1(h+ lsin θ)b.

Strain along the direction 1 can be obtained as

ε̄1 =
(δ1 + δ2) sin θ

2l cos θ

=
Pl3 sin2 θ

12

(
bt3

12

)
2l cos θ

(
1

E1

+
1

E2

)
(3)

Substituting the expression of P in the above equation,

ε̄1 =
σ̄1b(h+ l sin θ)l2 sin2 θ

bt32 cos θ

(
1

E1

+
1

E2

)
= σ̄1

(h+ l sin θ)l2 sin2 θ

2t3 cos θ

(
1

E1

+
1

E2

) (4)

Noting that the effective Young’s modulus in direction 1 can be expressed as Ē1 =
σ1
ε1

, we get

Ē1 = 2

(
t

l

)3
cos θ(

h

l
+ sin θ

)
sin2 θ

(
1

E1

+
1

E2

) (5)
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Figure 1: (A) Unit cell of a general multi-material hexagonal lattice with dimensions (refer to figure 1 of the main paper).
Here the three constituting beam elements have different material properties, as indicated by different colours. (B) Unit cell
of a typical mono-material hexagonal lattice where material properties are same for all the three constituting materials (C -
D) Unit cells for re-entrant multi-material and mono-material lattices where the cell angle θ is negative (refer to figure 1 of
the main paper).

As a special case, when E1 = E2 = Es, the above expression can be reduced to the traditional equations

for mono-material lattice [1]

Ē1 = Es

(
t

l

)3
cos θ(

h

l
+ sin θ

)
sin2 θ

(6)

1.2. Closed-form expression of effective Young’s modulus Ē2

The closed-form expression of effective Young’s modulus Ē2 is obtained when the stress is applied in

direction 2. From figure 2B, it can be noted that W1 + W2 = W and W = 2σ̄2lb cos θ. The bending

deflections of the two slant members perpendicular to their respective longitudinal directions, as shown in

figure 2B, can be obtained as

δ1 =
W1l

3 cos θ

12E1I
(7)

δ2 =
W2l

3 cos θ

12E2I
(8)

From deformation compatibility condition we get

δ1 cos θ = δ2 cos θ (9)

Substituting the expression of δ1 and δ2 in the above expression and noting that W1 +W2 = W , we obtain

W1 =
E1

E1 + E2

W (10)

W2 =
E2

E1 + E2

W (11)
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Figure 2: (A) Unit cell of a multi-material hexagonal lattice subjected to compressive stress in direction 1 (Here three
different members are made of three different materials and indicated using different colours and line styles.) (B) Unit cell
of a multi-material hexagonal lattice subjected to compressive stress in direction 2.

Considering a linear strain field, strain along the direction 2 can be written using Equations 7, 8, 10 and

11 as

ε̄2 =

(
(δ1 + δ2)

2
cos θ

)
(h+ l sin θ)

=
l3 cos2 θ

12I(2(h+ l sin θ))

(
W1

E1

+
W2

E2

)
=

l3 cos2 θ

12

(
bt3

12

)
2(h+ l sin θ)

(
W

E1 + E2

+
W

E1 + E2

) (12)

Replacing W = 2σ̄2lb cos θ and noting that the effective Young’s modulus in direction 2 can be expressed

as Ē2 =
σ2
ε2

, we can obtain

Ē2 =

(
t

l

)3

(
h

l
+ sin θ

)
(E1 + E2)

2 cos3 θ
(13)
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As a special case, when E1 = E2 = Es, the above expression can be reduced to the traditional equation

for mono-material lattice [1]

Ē2 = Es

(
t

l

)3

(
h

l
+ sin θ

)
cos3 θ

(14)

1.3. Closed-form expression of effective Poisson’s ratio ν̄12

The closed-form expression of effective Poisson’s ratio ν̄12 is obtained when the stress is applied in

direction 1. From Equation 3 we can write the strain component in direction 1 due to applied stress in

direction 1 as

ε̄1 =
(δ1 + δ2) sin θ

2l cos θ
(15)

Considering a linear strain field, total strain in direction 2 due to applied stress in direction 1 is

ε̄2 = −(δ1 + δ2) cos θ

2(h+ l sin θ)
(16)

The closed-form expression of effective Poisson’s ratio ν̄12 is given by

ν̄12 = − ε̄2
ε̄1

=
cos2 θ

(h/l + sin θ) sin θ
(17)

From the above expression, we note that the Poisson’s ratio ν̄12 does not depend on the intrinsic material

properties of the beam members. It only depends on the structural geometry of the lattice. The expression

of ν̄12 exactly matches with the standard formulae given in literature [1]. Thus there is no effect of multiple

materials in the lattice on Poisson’s ratio.

1.4. Closed-form expression of effective Poisson’s ratio ν̄21

The closed-form expression of effective Poisson’s ratio ν̄21 is obtained when the stress is applied in

direction 2. From Equation 12 we can write the strain component in direction 2 due to applied stress in

direction 2 as

ε̄2 =
(δ1 + δ2) cos θ

2(h+ l sin θ)
(18)

Considering a linear strain field, total strain in direction 1 due to applied stress in direction 2 is

ε̄1 = −(δ1 + δ2) sin θ

2l cos θ
(19)

The closed-form expression of effective Poisson’s ratio ν̄21 is given by

ν̄21 = − ε̄1
ε̄2

=
(h/l + sin θ) sin θ

cos2θ
(20)

From the above expression, we note that the Poisson’s ratio ν̄21 does not depend on the intrinsic material

properties of the beam members. It only depends on the structural geometry of the lattice. The expression
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of ν̄21 exactly matches with the standard formulae given in literature [1]. Thus there is no effect of multiple

materials in the lattice on Poisson’s ratio.

2. Critical remarks

2.1. Remark 1: Special cases

Case 1: For a structurally regular (/geometrically isotropic) lattice (θ = 30o;h = l) when E1 = E2 = Es

Ē1 = Ē2 = 2.3Es

(
t

l

)3

(21)

ν̄12 = ν̄21 = 1 (22)

The above expressions exactly match with the literature [1, 2].

Case 2: For a structurally regular (/geometrically isotropic) lattice (θ = 30o;h = l) when E1 6= E2 (i.e.

structurally regular multi-material lattice)

Ē1 =
8√
3

E1E2

E1 + E2

(
t

l

)3

(23)

Ē2 =
2√
3

(E1 + E2)

(
t

l

)3

(24)

ν̄12 = ν̄21 = 1 (25)

The expressions show that Ē1 6= Ē2 in structurally regular multi-materiel lattices (θ = 30o and h = l).

2.2. Remark 2: Non-dimensionalization

Since effective mechanical properties of lattice metamaterials made of same intrinsic material(s) vary

with the microstructural geometry, such effective properties are often presented as non-dimensional ratios

of
Ē1

Es

and
Ē2

Es

. Based on Equation 5 and 13, the effective Young’s moduli in non-dimensional form can be

written as
Ē1

Es

= 2 (t/l)3
cos θ

(h/l + sin θ) sin2 θ(1 + α)
(26)

Ē2

Es

= (t/l)3
(h/l + sin θ)(1 + α)

2α cos3 θ
(27)

where,
E1

E2

= α and E1 = αE2 = Es. Here we define degree of anisotropy as q =
Ē1

Ē2

. Each material and

geometric terms in the above equations are presented in non-dimensional form. It is interesting to notice
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that the in-plane elastic moduli (Young’s moduli and Poisson’s ratios) for a hexagonal multi-material lattice

do not depend up on the intrinsic material property of the vertical member when bending deformation

is predominant. In fact, the Poisson’s ratios are found to be only dependent upon the microstructural

geometric properties. However, if we have to consider the effect of axial deformation (such as the case of

structural members where axial rigidity is not very high), the intrinsic material properties of the vertical

members are expected to contribute significantly.

2.3. Remark 3: Exact analytical validation and numerical validation

For α = 1, the expressions of elastic moduli for multi-material lattice (refer to equations 26 and 27)

reduce to the traditional expressions of mono-material lattice [1] as a special case. This observation provides

an exact analytical validation of the derived formulae. To validate the proposed expressions of Ē1 and Ē2

for different other values of α, we adopt a finite element based approach as discussed in the following

paragraph.

The lattice structure is modelled in the ANSYS environment (commercial finite element code) consid-

ering different values of α. Each of the members are modelled as beam elements. The boundary conditions

are given on the joints of the lattice and depends on the Young’s modulus that is calculated. For ex-

plaining the boundary conditions, we represent two mutually perpendicular in-plane directions as i and j,

where i, j = 1, 2 and i 6= j. For calculating the Young’s modulus in direction i, concentrated forces are

applied on the joints of one of the edges that is perpendicular to the direction i. Note that the stress in

direction i can be calculated from the applied concentrated loads on the joints by assuming an uniform

stress distribution along the edge. In the opposite edge of the applied loads, the translational deflections

of the joints in the loading direction (i.e direction i) are restrained while the translational deflections in

direction j and rotations of the joints are allowed. In the joints of one of the edges parallel to the loading

direction i, the translational deformations in direction j are restrained while the deflections in direction

i and rotational deformations are allowed. In the remaining edge, all deformations are allowed at all the

joints. The effective Young’s moduli are calculated based on global strain and applied stress in longitu-

dinal and transverse directions. The finite element analysis results are presented in figure 3 along with

the corresponding analytical results (obtained based on equations 26 and 27) for different values of α.

A good agreement between the results of two forms of analysis can be noticed. It is also interesting to

note the increasing level of deviation between Ē1 and Ē2 for higher values of α, essentially corroborating
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Figure 3: Numerical validation of the proposed analytical formulae of Ē1 and Ē2 (effective longitudinal and transverse
Young’s moduli of multi-material lattices) with finite element model. The normalized Young’s moduli obtained using the

proposed analytical model and finite element model are presented for different values of α (=
E1

E2
). The normalization of the

Young’s moduli is carried out with respect to the corresponding Young’s moduli of conventional monomaterial lattices (i.e.
α = 1). The microstructural details of the lattice considered for obtaining the results are shown in inset of the figure.

the preliminary evidence of the possibility of anisotropy tailoring based on multi-material parameters. In

general, the exact analytical validation for α = 1 and finite element based numerical validation for different

values of α generate necessary confidence to utilize the proposed analytical formulae of Ē1 and Ē2 further

for demonstrating the aspect of anisotropy tailoring.
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