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Dual-mass electromagnetic energy
harvesting from galloping oscillations
and base excitation
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Abstract

This paper investigates electromagnetic energy harvesting based on vibration energy extraction from the vibration of a

bluff body elastically connected with an additional nonlinear oscillator and subjected to fluid flow and base excitation.

The mechanical part is modeled as a system of two coupled oscillators where a combination of harmonic base excitation

and fluid forces leads to a steady-state regime. The electromagnetic generator as part of the harvesting device is

represented by the equivalent electrical circuit with power dissipated at an electrical load resistance. The mathematical

model is based on a set of two coupled nonlinear ordinary differential equations considering the transverse displacement

of a bluff body, additional nonlinear oscillator, and currents induced in the electromagnetic generator. By introducing the

incremental harmonic balance and continuation methods nonlinear periodic responses are investigated and complex

dynamic behavior presented through corresponding response diagrams. The results indicate that for some values of

system parameters multiple periodic solutions appear in the form of loops and hysteresis. Finally, the average power of

proposed energy harvester is given in time history diagrams for different values of nonlinear stiffness parameter and

velocity of fluid flow.
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Introduction

The problem of flow-induced vibration in structural
dynamics has received significant attention from the
scientific community in the last few decades due to
wide engineering applications in many fields such as
civil engineering, aerospace engineering, and power
technology.1 From the viewpoint of energy harvesting
application, fluid-induced vibration phenomena can
be used for supplying small sensors and microelec-
tronic devices placed in modern bridges, tall build-
ings, and aerospace structures.2 On the other hand,
fluid-induced vibration can cause many problems in
engineering structures due to nonlinear phenomena
such as vortex-induced vibration, galloping, and flut-
ter. These flow-induced instabilities can excite struc-
tures in such a way that the amplitude vibration of
structures grows over time leading to failure. The
main question that arises from these facts is whether
it is possible to control vibration amplitudes and to
harvest a part of the mechanical energy of the oscil-
lating bluff body by using some of the well-known
methodologies based on the electromagnetic,

piezoelectric and electrostatic principles3 and intro-
ducing additional oscillators. In scientific literature,

the most practiced methodology for converting
mechanical energy induced by flow instability phe-

nomena into electric power is based on the piezoelec-
tric effect. The collection of papers proposed by

Abdelkefi et al.,4–6 illustrates unique solutions of
using piezoelectric energy harvesting principles in
energy scavenging from a bluff body in cross-flow.

Moreover, Dai et al.7 presented the energy harvesting
principle based on piezoelectric patches mounted on a

beam inside a bluff body. They derived an analytical
model in the form of a set of ordinary differential

equations by using the Euler–Lagrange principle
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and Galerkin method. Furthermore, in Dai et al.8 the
authors have shown another application of piezoelec-
tric effect in energy harvesting using a base motion
for excitation of a multi-layered piezoelectric cantile-
ver beam with a circular cylinder tip mass attached to
its free end and subjected to uniform airflow.

Electromagnetic energy harvesters based on fluid-
induced vibration of structures are analyzed in a
small number of studies. In Dai et al.,9 the authors
have analyzed converting mechanical energy of a
bluff-body, caused by galloping oscillations, into elec-
trical energy by using an electromagnetic transducer.
Vicente-Ludlam et al.10 presented an analytical study
for the electro-fluid-elastic model of electromagnetic
energy harvesting from transverse galloping. The
authors derived closed-form expressions for optimal
electric load, which leads to maximal harvested
power for assumed steady-state motion. Moreover,
the nonlinear model of galloping energy harvester
based on electromagnetic generator attached to a
beam with a tip body is studied in Dai et al.11

By introducing the reduced-order model, the authors
determined the optimal configuration of energy har-
vesting according to the system parameters. In
Pennisi et al.,12 the authors proposed a practical appli-
cation of electromagnetic energy harvester based on
the double-mass system connected by two strings and
excited by base motion. The authors have experimen-
tally demonstrated the targeted energy transfer from a
primary structure to nonlinear energy sink (NES) as
well as a strongly modulated response.

The special class of energy harvesting devices that
are introduced in aerospace applications for energy
scavenging from oscillating airfoils are presented
in Liu and Gao13 and De Marqui and Erturk.14

In Dias et al.15 the authors introduced combined pie-
zoelectric and electromagnetic induction energy har-
vesters based on three degrees of freedom models of
airfoil subjected to vortex-induced vibration. By using
numerical methods, the authors have analyzed the
effects of aeroelastic parameters and load resistance
on total power generation. Bibo and Daqaq16 pro-
posed the nonlinear piezo-aeroelastic energy harvester
subjected to combined base excitation and an aerody-
namic load of a rigid airfoil. The authors applied the
center manifold reduction to reduce the model into
one nonlinear differential equation and then intro-
duced normal form theory to study a slow modula-
tion of response amplitude and phase near flutter
instability. More on this subject of energy harvesters
based on flow-induced vibration one can find in
Daqaq et al.17

In order to control vibration amplitude of a pri-
mary structure the nonlinear attachment known as
NES is introduced, where energy is transferred from
a primary structure to NES and dissipated through
weak damping as shown in Vakakis et al.18,19 A gen-
eral model of the NES system is composed of a light
additional mass connect to a primary structure

through a nonlinear spring and weak damper.20 The
application of NES in vibration suppression is ana-
lyzed in many papers. In the literature, special atten-
tion is devoted to the suppression of flow-induced
vibration of structures.21,22

Dai et al.23,24 introduced the passive nonlinear
energy sink placed into the bluff body in order to
control galloping and vortex-induced vibration. The
authors determined the coupled frequency and gal-
loping speed based on linear analysis and then applied
the nonlinear normal form theory to find instability
types and responses of the system near the bifurca-
tion. Moreover, in Dai et al.24 the authors used the
linear and nonlinear analysis and direct numerical
simulation method to show the influence of NES in
reducing the vibration amplitude of a primary struc-
ture subjected to vortex-induced vibration. However,
models based on the combination of energy harvest-
ing and nonlinear energy sink are analyzed mostly for
base excitation problems.25,26 From the practical
point of view, this model is important in cases
where NES is introduced to control vibration ampli-
tudes and at the same time to convert mechanical
energy to electrical power for the supply of sensors
or other microelectronic devices. On the other hand,
the dual-mass system can be applied to amplify
extracted power, which leads to more efficient
energy harvesting. Tang and Zuo27 proposed such
kind of dual-mass system for energy harvesting pur-
poses and investigated the effects of additional masses
on piezoelectric energy harvesting device. They have
demonstrated increased efficiency of dual mass con-
cept on the harvested power. Moreover, Nishi28 intro-
duced this dual-mass concept for energy harvesting
from vortex-induced vibration. The authors deter-
mined approximate analytical solutions for the pre-
sented system to show the benefits of a dual-mass
system with respect to the single-mass one.
Furthermore, Vicente-Ludlam et al.29 studied gallop-
ing oscillations and the influence of fluid flow on the
dual-mass system. The authors introduced a harmon-
ic balance method to investigate the dynamic
response of different mass-spring-damper configura-
tions and the effects of fluid flow on the energy har-
vesting efficiency. To summarize, it can be asserted
that energy harvesting devices based on dual-mass
models with nonlinear connections in-between and
subjected to base excitation and galloping oscillations
are not yet investigated and presented in the scientific
literature. It should be noted that in the present study,
a simplified two-degree of freedom system based on
the lumped-parameter model is proposed with the
electromagnetic generator represented by an equiva-
lent electric circuit. However, large-scale models ana-
lyzed by FEM and experimental techniques one can
find in Refs.42–44

The aim of this communication is to report a dual-
mass model of energy harvester with potential vibra-
tion control capabilities, which is based on a bluff
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body subjected to simultaneous transverse cross-flow

and base excitation. However, in this study, the pri-

mary focus will be on investigation of the influence of

introduced nonlinearity on energy harvesting (EH)

performance for the presented dual-mass system

developed in Vicente-Ludlam et al.29 The reason for

introducing the additional nonlinear oscillator is an

amplification of the vibration response in such a way

that the EH device can extract larger portions of

mechanical energy and convert it into electric power

for a wide range of excitation frequencies. At the

same time, the additional nonlinear oscillator can

reduce the response resonant amplitude of the prima-

ry system i.e. to be used as NES.23,24 The electromag-

netic generator is attached to the primary structure of

the system, where the relative motion between the

oscillating magnet and fixed coil leads to electric cur-

rent induction. The mechanical part of the proposed

system is based on the base excited dual-mass system,

where internal mass is connected to the primary struc-

ture through a nonlinear spring and damper. The set

of three nonlinear differential equations correspond-

ing to the proposed electromechanical model, with

two of them describing mechanical displacements of

a bluff body and nonlinear oscillator, while the third

one corresponds to an equivalent electric circuit of the

electromagnetic generator. The fluid force is intro-

duced through galloping oscillation phenomena with

a corresponding mathematical model adopted in the

form of cubic polynomial approximation.5,10,23 In

order to determine frequency and force responses of

the proposed system excited by a combination of base

excitation and cross-flow, the incremental harmonic

balance (IHB) and continuation methods are applied.

The presented methodology can detect different non-

linear phenomena such as jumps and loops that are

generated by the introduced additional nonlinear

oscillator. Moreover, by considering time history dia-

grams the average power of the proposed system is

estimated for different values of the nonlinear stiff-

ness parameter and flow speed. The obtained results

revealed that the presented dual-mass system can

significantly improve the efficiency of the energy har-

vesting device.

Mathematical model of the dual-mass

energy harvester

The aeroelastic energy harvester (EH) excited by base

motion and with the attached nonlinear oscillator is

considered. The electromagnetic EH model is repre-

sented by the dual-mass system coupled with nonlin-

ear spring and linear damper, where the primary mass

m�
1 is excited by external harmonic base excitation

through the linear spring of stiffness k1 and damper

with the viscous coefficient c1; as shown in Figure 1.

The electromagnetic generator is represented by the

oscillating magnet linked to a primary structure that

oscillates relative to the coil and producing electricity

which is dissipated by the electric resistive load RL.

The primary structure oscillates in x direction, trans-

verse to the incident flow, which causes the galloping

oscillations. Moreover, the general model of an addi-

tional oscillator is modeled as a nonlinear attachment

composed of attached mass m2, nonlinear spring k2
and linear damping c2. The additional nonlinear

oscillator oscillates in x direction, inside of the prima-

ry structure.
According to Refs.,23,30 the galloping phenomena

appear in the system when the total electromechanical

damping changes the sign from positive to negative

value because of the aerodynamic force. Moreover,

when the total value of the system’s electromechanical

damping is equal to zero, the flow speed correspond-

ing to one type of instability phenomena leads to crit-

ical or galloping speed. Furthermore, the instability

rises from galloping phenomena is Hopf bifurcations,

while the values of flow speed larger than the critical

galloping speed lead to supercritical Hopf bifurca-

tions and limit cycle oscillations. As stated in Javed

et al.,30 by performing the linear analysis one can find

eigenvalues of a system, where for particular values of

the electrical load resistance there are corresponding

values of the galloping speed. The focus of this study

is to examine a nonlinear periodic response of the

electromagnetic energy harvester with attached non-

linear oscillator subjected to base excitation and fluid

flow, where the influence of flow speed is larger than

the critical galloping speed.

Figure 1. Simplified model of a base excited aeroelastic energy harvester with an additional nonlinear oscillator.
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The governing equations of motion of the electro-

magnetic energy harvester having an additional nonlin-

ear oscillator and subjected to external base excitation

and fluid flow are given in the following form

m1 �m2ð Þ d
2x1
dt2

þ k1 x1 � x0ð Þ þ c1
dx1
dt

� dx0
dt

� �

þ k2 x1 � x2ð Þ3 þ c2
dx1
dt

� dx2
dt

� �
¼ FU þ Femf

(1a)

m2
d2x2
dt2

þ k2 x2 � x1ð Þ3 þ c2
dx2
dt

� dx1
dt

� �
¼ 0

(1b)

RL þ RCð Þiþ LC
di

dt
¼ Vemf (1c)

where FU represents the galloping force, Femf is intro-

duced electromagnetic force and Vemf is the relation-

ship between the amplitude of the velocity and

electromotive force, defined as

FU ¼ 1

2
qU2D

a1
U

dx1
dt

þ a3
U3

dx1
dt

� �3
" #

(2a)

Femf ¼ �kEi (2b)

Vemf ¼ kE
dx1
dt

(2c)

in which q is the fluid density, D is the effective diam-

eter of the bluff body and U is the speed of fluid

flow.10,29 The coefficients a1 and a3 are determined

based on the experiments.10,31

In this study, we assume that the base is

harmonically excited as x0ðtÞ ¼ F0cosXt, where F0 is

the amplitude and X is the excitation frequency.

Moreover, the reduced mass of the bluff body is

taken as m1 �m2, were ensuring no mass addition

due to additional nonlinear oscillator. The third

equation in the system of equation (1) represents the

mathematical model of the equivalent electric circuit

of the electromagnetic generator as defined in

Refs.10,32 where RL is the resistance of the load con-

nected to the generator, RC is the internal resistance

of the coil, LC is its inductance, kE is the electrome-

chanical coupling constant and i is the induced

current in the coil.
The equations of motion are obtained by scaling

the length and using the diameter of the bluff

body to define the dimensionless mechanical

degree-of-freedom x1 ¼ D�x1 and x2 ¼ D�x2,

and introducing a new time scale s ¼ Xt, where

the system of equation (1) now takes a new

dimensionless form as

1� Cð Þ X
xN

� �2
d2�x1

ds2
þ �x1 þ 2f

X
xN

� �
d�x1

ds

þ a �x1 � �x2ð Þ3 þ b
X
xN

� �
d�x1

ds
� d�x2

ds

� �

¼
�U

2m�
X
xN

� �
a1

d�x1

ds
þ a3

�U
2

X
xN

� �2
d�x1

ds

� �3
" #

� I

þ fcos sð Þ � 2ff
X
xN

� �
sin sð Þ

(2d)

X
xN

� �2
d2�x2

ds2
þ na �x2 � �x1ð Þ3 þ nb

X
xN

� �
d�x2

ds
� d�x1

ds

� �
¼ 0

(2e)

Iþ c
X
xN

� �
dI

ds
¼ 2fE

X
xN

� �
d�x1

ds
(2f)

where new parameters are defined as

xN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
; C ¼ m2

m1
¼ 1

n
; f ¼ c1

2
ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p ;

f ¼ F0

D
; m� ¼ m1

qD2
; �U ¼ U

DxN
;

a ¼ D2k2

m1x2
N

; b ¼ c2ffiffiffiffiffiffiffiffiffiffiffi
k1m1

p ; IC ¼ m1x2
ND

kE
;

I ¼ i

IC
; c ¼ LCxN

ðRL þ RCÞ ; fE ¼ kEDxN

2ðRL þ RCÞIC :

The incremental harmonic balance

method

To determine the periodic responses of the electromag-

netic EH system from Figure 1, the IHB method

is introduced. The semi-analytical solution of the

system of nonlinear ordinary differential equations is

obtained in the form of the Fourier series. Moreover,

the frequency and force responses are traced by imple-

menting the IHB and continuation methods. Due to its

generality, IHB method was applied in many other

engineering problems from structural dynamics,33

analysis of MEMS,34 vibration suppression using the

nonlinear energy sink35 and vehicle dynamics.36 In this

study, the main interest is on tracing the frequency-

amplitude and force-amplitude curves of the electro-

magnetic EH subjected to base excitation and fluid

flow and estimating the EH power for different

values of the amplitude of external base excitation

and speed of fluid flow. In the following, we will pro-

vide more details on how to trace frequency response

curves by using the same methodology, which will

4 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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enable us to trace the response of any other parameter
of the system.

We introduce the incremental relations for �x1; �x2,
I and X in the following forms

�x1 sð Þ ¼ �x10 sð Þ þ D�x1 sð Þ;
�x2 sð Þ ¼ �x20 sð Þ þ D�x2 sð Þ; I sð Þ ¼ I0 sð Þ þ DI sð Þ;
X ¼ X0 þ DX

(3)

where �x10; �x20, I0 and X0 denotes a known vibration
state, and D�x1, D�x2 , DI and DX are the corresponding
increments of the displacements x1 and �x2, electrical
current I and excitation frequency X. The periodic
solutions of �x1; �x2 and I is assumed in the form of
Fourier series with only odd terms, where the func-
tions �x10;D�x1ð Þ; �x20;D�x2ð Þ and I0;DIð Þ can be taken
in the following form

�x10 sð Þ ¼
XNh

k¼1

a1kcos ksð Þ þ b1ksin ksð Þ� �
¼ C � A1 (4a)

D�x1ðsÞ ¼
XNh

k¼1

Da1kcos ksð Þ þ Db1ksin ksð Þ� �
¼ C � DA1

(4b)

�x20 sð Þ ¼
XNh

k¼1

a2kcos ksð Þ þ b2ksin ksð Þ� �
¼ C � A2

(4c)

D�x2ðsÞ ¼
XNh

k¼1

Da2kcos ksð Þ þ Db2ksin ksð Þ� �

¼ C � DA2 (4d)

I0 sð Þ ¼
XNh

k¼1

a3kcos ksð Þ þ b3ksin ksð Þ� �
¼ C � A3

(4e)

DIðsÞ ¼
XNh

k¼1

Da3kcos ksð Þ þ Db3ksin ksð Þ� �
¼ C � DA3

(4f)

where

C ¼ ½coss cos3s cos5s . . .
cosNhs sins sin3s sin5s . . . sinNhs� (5)

Aip ¼ ai1 ai3 ai5 . . . aiNh
bi1 bi3 bi5 . . . biNh½ �T

DAip ¼ ½Dai1 Dai3 Dai5 . . . DaiNh

Dbi1 Dbi3 Dbi5 . . . DbiNh
�T; i ¼ 1;2; 3

Introducing the equations (3) and (4) into equation
(2), and applying the Galerkin procedure in order to
eliminate parameter s with neglected higher-order
terms, we can get the following system of algebraic
equations

K11 K12 K13

K21 K22 0
K31 0 K33

2
4

3
5

DA1

DA2

DA3

8<
:

9=
;

¼
~F1

0
0

8<
:

9=
;þ

R11 R12 R13

R21 R22 0
R31 0 R33

2
4

3
5

A1

A2

A3

8<
:

9=
;

þ
~V1
~V2
~V3

8<
:

9=
;DX (6a)

or in the simplified form as

KDA ¼ Rþ ~VDX (6b)

where elements of matrix K and vector R are given as

K11 ¼
Z 2p

0

1� Cð Þ X0

xN

� �2

CT d
2C

ds2
þ CTCþ 2f

X0

xN

� �
CT dC

ds

þ 3a �x2
10 � 2�x10�x20 þ �x2

20

� �
CTC

2
664

þb
X0

xN

� �
CT dC

ds
�

�Ua1
2m�

X0

xN

� �
CT dC

ds

� 3a3

2m� �U
X0

xN

� �3
d�x1

ds

� �2

CT dC

ds

#
ds

K12 ¼
Z 2p

0

�3a �x2
10 � 2�x10�x20 þ �x2

20

� �
CTC� b

X0

xN

� �
CT dC

ds

� �
ds

K13 ¼
Z 2p

0

CTC½ �ds

K21 ¼
Z 2p

0

�3na �x2
20 � 2�x10�x20 þ �x2

10

� �
CTC� nb

X0

xN

� �
CT dC

ds

� �
ds

K22 ¼
Z 2p

0

�
X0

xN

� �2

CT d
2C

ds2
þ 3na �x2

20 � 2�x10�x20 þ �x2
10

� �
CTC

þ nb
X0

xN

� �
CT dC

ds

�
ds

K31 ¼
Z 2p

0

�2fE
X0

xN

� �
CT dC

ds

� �
ds

K33 ¼
Z 2p

0

CTC þ c
X0

xN

� �
CT dC

ds

� �
ds (7a)

~F1 ¼
Z 2p

0

fCTcos sð Þ � 2f
X0

xN

� �
fCTsin sð Þ

� �
ds (7b)

Karli�ci�c et al. 5
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R11 ¼ �
Z 2p

0

1� Cð Þ X0

xN

� �2

CT d
2C

ds2
þ CTCþ 2f

X0

xN

� �
CT dC

ds

þ a �x2
10 � 3�x10�x20

� �
CTC

2
664

þb
X0

xN

� �
CT dC

ds
�

�Ua1
2m�

X0

xN

� �
CT dC

ds

� a3

2m� �U
X0

xN

� �3
d�x1

ds

� �2

CT dC

ds
�ds

R12 ¼ �
Z 2p

0

a 3�x10�x20 � �x2
20

� �
CTC� b

X0

xN

� �
CT dC

ds

� �
ds

R13 ¼ �
Z 2p

0

CTC½ �ds

R21 ¼ �
Z 2p

0

na 3�x10�x20 � �x2
10

� �
CTC� nb

X0

xN

� �
CT dC

ds

� �
ds

R22 ¼ �
Z 2p

0

�
X0

xN

� �2

CT d
2C

ds2
þ na �x2

20 � 3�x10�x20

� �
CTC

þ nb
X0

xN

� �
CT dC

ds

�
ds

R31 ¼ �
Z 2p

0

�2fE
X0

xN

� �
CT dC

ds

� �
ds

R33 ¼ �
Z 2p

0

CTCþ c
X0

xN

� �
CT dC

ds

� �
ds (7c)

The vector ~V is defined as

~V1 ¼ V11A1 þ V12A2 þ ~f 1;

~V2 ¼ V21A1 þ V22A2;

~V3 ¼ V31A1 þ V33A3 (7d)

where matrices are determined as

V11 ¼
Z 2p

0

�
� 1� Cð Þ 2X0

x2
N

� �
CT d

2C

ds2

� 2
f
xN

� �
CT dC

ds
� b

xN

� �
CT dC

ds

þ
�Ua1

2xNm� C
T dC

ds
þ 3a3X

2
0

2m� �Ux3
N

d�x1

ds

� �2

CT dC

ds
�ds;

V12 ¼
Z 2p

0

b
xN

� �
CT dC

ds

� �
ds;

~f 1 ¼
Z 2p

0

� 2ff
xN

� �
CTsin sð Þ

� �
ds

V21 ¼
Z 2p

0

nb
xN

� �
CT dC

ds

� �
ds;

V22 ¼
Z 2p

0

� 2X0

x2
N

� �
CT d

2C

ds2
� nb

xN

� �
CT dC

ds

" #

V31 ¼
Z 2p

0

2fE
xN

� �
CT dC

ds

� �
ds;

V33 ¼
Z 2p

0

� c
xN

� �
CT dC

ds

" #
ds

(7e)

By using the same methodology, it is possible to

analyze the periodic response of the system by incre-

menting any other system parameters and formulat-

ing the system of incremental equations as given for

the frequency response (equation (6)). In the case

when the force amplitude f is incremented parameter

f ¼ f0 þ Df, the force amplitude response curves can

be traced. Inserting incremental equations of the

amplitude of external force and corresponding dis-

placements from equations (3) and (4) into equation

(2), the algebraic equations takes a new form

K11 K12 K13

K21 K22 0
K31 0 K33

2
4

3
5

DA1

DA2

DA3

8<
:

9=
;

¼
~F1

0
0

8<
:

9=
;þ

R11 R12 R13

R21 R22 0
R31 0 R33

2
4

3
5

A1

A2

A3

8<
:

9=
;

þ
~V1

0
0

8<
:

9=
;Df (8a)

or again in the simplified form as

KDA ¼ ~f þ ~V D f (8b)

where the only difference with respect to equation (6b)

is in the vector that multiplies Df which is given as

~V1 ¼
Z 2p

0

CTcos sð Þ � 2f
X0

xN

� �
CTsin sð Þ

� �
ds (9)

where the excitation frequency is taken as a constant

value, X0 ! X: By using commercial software such as

Wolfram Mathematica, the symbolic expression can

be integrated into all matrices from equations (7) and

(9) in an analytical form and later used for numerical

calculations in the IHB and continuation code.
The IHB methodology is the solution procedure

based on the following steps. First, we initialize the

values of Ai; X0 or f0 in equation (6b) or (8b) in such a

manner that the tangent stiffness matrix K is not a

singular matrix. Then by introducing the Newton-

Raphson method to solve the obtained system of

algebraic equations the equations (6b) and (8b)

6 Proc IMechE Part C: J Mechanical Engineering Science 0(0)
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iteratively. The results for increments given in vector

DAi are obtained by solving the DA ¼ K�1R in every

iteration until the residue Euclidian norm kRk is

smaller than a pre-set tolerance. The norm value of

the residuum vector is adopted to be kRk � �, where

tolerance is adopted as � ¼ 10�9. Furthermore, the

incremental vector DA will be added to the vector of

Fourier coefficients during the iterative process

Aif gpþ1 ¼ Aif gp þ DAif gpþ1
: The vector A tends to

some finite value in every iteration for the fixed

value of other parameters. This leads to a process

where given displacements x10ðsÞ; x20ðsÞ and I0ðsÞ
tends to exact solutions when the corrective vector

term R tends to zero.

The continuation method

The numerical continuation is a useful method in

detecting the complex dynamic behaviors of many

systems by showing the results in the form of response

diagrams.41 To trace frequency-amplitude and

force-amplitude response curves, the combination of

the continuation and IHB method proposed in

Refs.37–40 is employed. The numerical continuation

used in this paper relies on the predictor-corrector

methods available in the literature, with the solution

procedure starting from an arbitrary initial vibration

state. It is shown that the optimal starting point is a

linear solution that is far away from the resonance

state. However, for tracing the force-amplitude

response curves, a small value of excitation force

amplitude is a good starting position. This means

that after initialization procedure, the tracing process

will continue point – to – point calculation by using

the DX or Df incremental processes to obtain the cor-

responding response curves, as given in Refs.37–39

The main drawback of this process is that the incre-

mentation procedure can fail if limit points (such as

turning points) are encountered or the solution curve

forms a loop (when the curve cuts itself). In that

situations, the standard incrementation procedures

obtained directly from the IHB methodology

cannot form complete response curves. On the

other hand, to trace frequency and force response
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Figure 2. Frequency–amplitude response diagrams for different values of dimensionless stiffness parameter a.
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curves in the entire frequency or force amplitude
range, and to eliminate failures due to critical
points, one may use the arc-length continuation
methodology based on the predictor-corrector
method. In the following, we adopt this continuation
procedure in the manner as proposed in Refs.37,38

The arc-length continuation method used for trac-
ing the periodic response curves as a function of the
excitation frequency, force or any other parameter is
based on the following steps.37,38 As a starting point
for tracing the response curves by using the continu-
ation method we need to determine initial solutions
(Xi�2; Xi�1) by the IHB method. Then, arc-length
parameter g is introduced for finding a slope as

X0 ¼ Xi�1 � Xi�2

Xi�1 � Xi�2
(10)

where X is the vector X ¼ ½A; X�T or X ¼ ½A; f�T that
depends on the corresponding response curve. Then,
the first prediction solution of the next point Xi of the
traced curve is formulated

Xp ¼ Xi�1 � DgX0 (11)

Next step is to determine a corrected solution by
implementing the Newton-Raphson procedure, where
the starting point is the first predicted solution of Xi

on tracing response curve (i.e. Xp). Therefore, extend-
ing the system given in equations (6a) or (8a) by an
augmented equation

gðXÞ � g ¼ 0 (12)

where such a system will be more appropriate to use
in tracing the response curves.

Following the procedures are given in Refs.,37,38,41

and adopting the quadratic form of the pseudo-arc-
length method and function gðXÞ, where gðXÞ ¼ XTX,
the incremental relation from equation (12) is given as

@g

@AT
DAþ @g

@X
DXþ g� g� Dg ¼ 0 (13)
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Figure 3. Frequency–amplitude response diagrams for different values of dimensionless flow speed ~U .
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Using the extended system as a combination of
equations (7a) and (7b), we get the following system
of incremental equations for tracing the frequency-
response curve

K11 K12 K13 �~V1

K21 K22 0 �~V2

K31 0 K33 �~V3

@g
@A1

n oT
@g
@A2

n oT
@g
@A3

n oT @g

@X

2
66664

3
77775

DA1

DA2

DA3

DX

8>><
>>:

9>>=
>>;

¼
R1
R2

R3

Dg� g

8>><
>>:

9>>=
>>;

(14)

where

R1 ¼ ~F1 þ R11A1 þ R12A2 þ R13A3

R2 ¼ R21A1 þ R23A3

R3 ¼ R31A1 þ R33A3:

Now, using equation (14) in the Newton-Raphson
iterative procedure, the predicted solution can be deter-
mined in the whole range of response function.
Moreover, the response includes critical or turning
points and loops. For tracing the force-amplitude
response curve, the same procedures can be employed
by combining the equatiom (8a) and continuation tech-
nique with considering X ¼ ½A; f�T. As stated in
Refs.,37,38 in order to determine the next point on the
response curve, the slope X0 should be updated and g set
to zero. The value of the Dg parameter known as the
arc-length increment represents an arbitrary step length
and should be adopted in such a manner that the con-
tinuation process can trace the whole response curve
without difficulties. By using the continuation approach
for both, frequency-amplitude and force-amplitude
curves, the stable and unstable branches of periodic sol-
utions can be determined. However, the stability of a
specific periodic solution is not investigated in this study.

Numerical results

The numerical study is performed to investigate
effects of different material parameters on nonlinear
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Figure 4. Frequency–amplitude response diagrams for different values of electrical load resistance RLðXÞ.
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periodic responses of the electromagnetic EH with

additional nonlinear oscillator subjected to base exci-

tation and galloping oscillations by using the IHB

and continuation methods. The IHB is very conve-

nient to detect periodic orbits in a semi-analytical

form, especially for the systems where nonlinearity

is given in the polynomial form. Graphical represen-

tation of the nonlinear periodic responses of the pro-

posed system is given in the form of response curves

for different parameters such as excitation frequency

and force amplitude. The effects of different values of

nonlinear stiffness parameters, flow speed, and elec-

trical load resistance are presented in the following

response diagrams. It is shown that the dual-mass

system is more efficient for energy harvesting pur-

poses compared to the single mass system as stated

in Vicente-Ludlam et al.29 To estimate the average

power of the proposed EH device, the time history

diagrams are plotted for different values of nonlinear

stiffness parameter and flow speed.
The physical characteristics of the primary struc-

ture i.e. a bluff-body and the electromagnetic EH

model are adopted from Vicente-Ludlam et al.10

For the internal nonlinear attachment, we adopted a
dimensionless damping parameter b ¼ 0:005 and the
nonlinear stiffness as a ¼ 50; 100; 200. The mass ratio
is adopted to be C ¼ 0:1. For the solution process, we
assume Nh ¼ 5 odd terms in the Fourier series. It
should be noted that all calculations and program
codes are developed in the MATLAB environment.

Frequency and force responses of the proposed
energy harvesting device

The effects of changing nonlinear stiffness parameter
a of the additional nonlinear oscillator, flow speed ~U
and electrical load resistance RL on frequency
response diagrams are shown in Figures (2) to (4).
One can observe that response amplitudes are
increased for the freqency ratio X=xN in the range
0.1–4 with amplitudes of the primary structures A11,
nonlinear oscillator A21 and induced current A31

given on the ordinate axis. It should be noted that
response amplitudes are defined as Aij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aij þ bij

p
,

where the coefficients aij and bij are given in equation
(5). The frequency response curves shown in Figure 2
are displaying nonlinear behaviour, where the first
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Figure 5. Force–amplitude response diagrams for different values of dimensionless stiffness parameter a.
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one shows a loop type (Figure 2(a)) while the second
one shows the hardening spring-type nonlinear
behavior, which implies the jump phenomena
(Figure 2(b)). The third curve forms a loop
(Figure 2(c)) in a similar way as in the case of the
first amplitude. All these nonlinear phenomena
appears after reaching the linear resonance state,
given as a peak amplitude on the response diagram.
From the physical point of view, the reason for the
appearance of these nonlinear effects is the introduc-
tion of the additional nonlinear oscillator in the
system.

Starting from X=xN ¼ 0:1, the response amplitude
given in Figure 2(a) changes almost linearly when
passing through the resonant state until the frequency
ratio riches the value close to 1.7. At that point, the
loop appears leading to the the appearance of region
with multiple periodic solutions. Note that for a con-
tinuous increase of the frequency ratio far from the
linear resonant state, the response amplitudes
decreases until some finite values. Similar behavior
can be observed in Figure 2(c). On the other hand,
from Figure 2(b), it can be observed that for an

increase of the frequency ratio to some higher
values, the frequency response function passes
through the resonant state and then the nonlinear
hardening behavior appears with bending of the
amplitude curve to the right-hand side. An increase
of the frequency ratio value increases the frequency
response curve that reaches its maximum and then
jumps to some lower values. Further increase of the
frequency ratio causes a decrease of amplitudes to
some finite small values. The influence of an increase
of the nonlinear stiffness parameter a causes a
decrease of response amplitudes Aij in the whole fre-
quency range. However, this influence leads to the
widening of the area with multiple periodic solutions
as given in Figure 2. According to Malatkar and
Nayfeh,45 the formation of loops is caused by the
coupling of two oscillators with nonlinear springs.
Since amplitudes in the loop are larger than those
outside the loop, such system can exibits better EH
performance within the frequency range of the loop.

Figure 3 shows the frequency-response amplitude
diagrams for Aij and different values of the flow speed
~U ¼ 30; 40; 50. The linear resonant state is
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Figure 6. Force–amplitude response diagrams for different values of dimensionless flow speed ~U.
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represented by the amplitude peak at the frequency
ratio value around 0:9. Further increase of the fre-
quency ratio causes appearance of the nonlinear phe-
nomena such as loops (Figure 3(a) and (c)) and jumps
(Figure 3(b)). One can notice that an increase of the
flow speed leads to reduced response amplitudes near
the first resonant regime. Furthermore, the effect on
the nonlinear response become more prominent when
the area with loops and hardening spring behavior is
extended. Generally, the response amplitudes become
higher for larger frequency ratios but after reaching
some turning point they rapidly decrease to some
lower values.

On the other hand, electrical resistance load RL has
a much larger effect on the response amplitudes, espe-
cially in the linear resonance state around the value of
frequency ratio X=xN ¼ 0:9. However, the effect of
electrical resistance load is weakening and it is very
small around the point where multiple periodic solu-
tions appear, Figure 4(a). From Figure 4(b), it can be
observed that an increase of the resistance load RL

leads to a decrease of the frequency-response

amplitudes in the linear resonant regime but almost
vanishes after the frequency ratio value 1:2, i.e. when
the hardening effect appears. One can notice that the
influence of electric resistance load leads to reduced
response amplitudes A31, especially in the area where
loops appear, Figure 4(c).

It can be observed that the response amplitude A31

of the induced electrical current IðsÞ has significantly
higher amplitude in the case of an electromagnetic
energy harvester device based on the dual-mass
system. For the single-mass system, the response
amplitude is formed only by one response amplitude
peak in the narrow frequency range, as shown in
Daqaq et al.46 The extended dual-mass system
shows hardening behaviour as a result of the strong
positive cubic nonlinearity of additional nonlinear
oscillator. This advantage of the dual mass system
can be utilized in design procedures of more efficient
EH devices subjected to fluid flow and base
excitation.10

Figures 5 to 7 display the force-amplitude dia-
grams for different values of the nonlinear stiffness
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Figure 7. Force–amplitude response diagrams for different values of electrical load resistance RLðXÞ.
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parameter a, speed flow ~U and electrical load resis-
tance RL for the adopted value of the frequency ratio
parameter X=xN ¼ 2. By increasing the amplitude of
base excitation f from some small value 10�3 to some
finite value 10�1, it can be noticed that response
curves have totally different behavior comparing to
the curves obtained for frequency responses. We can
observe in Figure 5(a) that the response amplitude
A11 forms a loop for all values of the nonlinear stiff-
ness parameter in such a way that an increase of the
parameter a leads to a decrease of response ampli-
tudes. On the other hand, further increase of the
amplitude of base excitation f causes an increase of
A11 linearly but with lower amplitude than in the area
where loops appear. Similar behavior of the response
amplitude is recognized for A31 in Figure 5(c).
However, response amplitude A21 representing the
vibration amplitude of the additional nonlinear
oscillator forms “circles” caused by jump effects.
This nonlinear phenomenon significantly increases
response amplitude for small range of amplitudes of
base excitation f. It can be observed that the nonlin-
ear stiffness parameter a reduces the response

amplitude in the whole range of excitation ampli-
tudes f as expected. Next figure shows the influence
of flow speed ~U on the force – amplitude response
curves A11, A21, and A31. It is clear that an increase
of the flow speed ~U is followed by a very small,
almost invisible, cahnge of the force-response dia-
grams. These regions of multiple periodic solutions,
caused by attaching the additional nonlinear oscilla-
tor inside the primary structure leads to higher
vibration amplitudes as well as higher values of
induced current. Figure 7 shows the influence of
electrical resistance load RL on the force-amplitude
response curves. Starting from very low values of
excitation amplitude f, further increase leads to the
formation of loops (Figure 7(a) and (c)) and the
appearance of jump phenomena (Figure 7(b)).
These areas with multiple periodic orbits leads to
higher vibration amplitudes of the dual-mass
system. Moreover, the electrical load resistance RL

has the largest influence on the amplitude A31, i.e.
the amplitude of the induced current in the coil. As
expected,9 an increase of the values of electrical load
resistance decreases the amplitude A31.

Figure 8. Time responses of dual-mass energy harvester for different values of the nonlinear spring stiffness a and fixed values of
parameters: RL ¼ 500ðX), �U ¼ 20; n ¼ 10, f ¼ 0:001.
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Time response of the proposed nonlinear
dual-mass energy harvesting device

In order to analyse the performance of the proposed
nonlinear dual-mass EH device and harvested power,
the time responses for displacements �x1ðsÞ; �x2ðsÞ, and
output current IðsÞ are plotted and investigated in this
section. Moreover, in Dai et al.23 formulation of the
average harvested power is derived as Pavg ¼ 1

2RLi
2

and presented in the form of time response diagrams.
By using the direct numerical integration (ode45 in
Matlab), system from equation (2) is solved for dif-
ferent values of the nonlinear stiffness parameter a
and flow speed �U. From the physical viewpoint,
these two parameters are directly related to the over-
all stiffness and damping of the presented system.
For their optimal values, it is possible to set the
system to work in such a way to achive best perfor-
mance of the considered dual-mass based EH system.
For better understanding of the energy harvesting
performance and plotted time responses, the next ini-
tial conditions are adopted �x1ð0Þ ¼ 0:01; �x2ð0Þ ¼ 0 ¼
_�x1ð0Þ ¼ _�x2ð0Þ ¼ 0 in each of the following numerical
examples. Further, it should be noted that all the

simulations are performed for the excitation frequen-

cy X
xN

¼ 0:5 . Figure 8 shows time responses of the first

�x1ðsÞ and the second �x2ðsÞ displacement as well as the

current IðsÞ and average power Pavg of the EH device.

The dimensionless time period is adopted as T ¼ 1000

in all simulations.
To understand the effects of varying nonlinear

stiffness parameter a and flow speed �U, time

responses of the primary structure �x1ðsÞ and the addi-

tional nonlinear oscillator �x2ðsÞ are presented in

Figures 8 and 9. One can observe that additional non-

linear spring on the primary structure increases the

response amplitudes with respect to the linear case

and thus having better performance as energy har-

vester. From the relation given in equation (2) it is

obvious that an increase of the nonlinear stiffness

parameter a decreases the values of response ampli-

tudes and therefore decreases the average power

of the system. This behaviour can be noticed in

Figure 8(a) to (c), where the amplitudes of the prima-

ry structure �x1ðsÞ, nonlinear oscillator �x2ðsÞ and

output current IðsÞ are reduced for an increase of

the nonlinear stiffness a. At the same time, in

0 100 200 300 400 500 600 700 800 900 1000
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 100 200 300 400 500 600 700 800 900 1000
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5
10-3

0 100 200 300 400 500 600 700 800 900 1000
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(a) (b)

(c) (d)

Figure 9. Time responses of dual-mass energy harvester for different values of the flow velocity �U and fixed values of parameters:
RL ¼ 500ðX), a ¼ 300; n ¼ 10, f ¼ 0:001.
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Figure 8(d) one can also observe a decrease of the
average harvested power Pavg for an increase of the
nonlinear stiffness a.

Further, significantly lower response amplitudes
are obtained for low values of the flow speed. From
Figure 9(a) and (b) one can observe that lower values
of the flow speed yields smaller time response ampli-
tudes of the primary structure �x1ðsÞ and the addition-
al nonlinear oscillator �x2ðs), where system enters into
the steady-state regime after some time with the
amplitude of harmonic base excitation becoming
dominant. Similar situation occurs for time response
amplitudes of the output current IðsÞ and the average
harvested power Pavg, Figure 9(c) and (d). However,
for the highest presented value of the flow speed �U ¼
18 system responses becomes bounded and chaotic.
This behaviour might be attributed to the combined
effect of the nonlinearities such as the cubic spring
nonlinearity with nonlinear galloping force FU and
harmonic base excitation. Because of this unpredict-
able behaviour, one should be careful in design pro-
cedures of EH devices with combined nonlinearities in
order to avoid unstable performance of the device. On
the other side, higher values of the flow speed can lead
to higher values of the average harvested power Pavg

of dual-mass EH system, as shown in Figure 9(d).

Conclusions

The nonlinear periodic response of an electromagnetic
vibration energy harvester with an additional nonlinear
oscillator subjected to the external base excitation and
fluid flow is studied. For tracing the branches of periodic
responses, a combination of the incremental harmonic
balance and continuation methods is applied to the
system of nonlinear differential equations of motion.
The influence of different model parameters such as
the nonlinear stiffness, speed of fluid flow, and electrical
load resistance on the frequency and force response dia-
grams is studied in detail. Increased efficiency of the
dual-mass energy harvester compared to an eqivalent
single-mass energy harvester system is demonstrated.
As the main result of this paper, it is shown that the
introduction of the nonlinear attachment into the prima-
ry structure causes the appearance of multiple periodic
solutions, which leads to wider frequency range with
higher response amplitudes and therefore to higher har-
vested power of the device. However, time response dia-
grams demonstrated a significant effect of the nonlinear
stiffness and flow speed on average harvested power.
Based on aforementioned, this study can be used in
future design procedures of more efficient energy har-
vester devices based on electromagnetic principle and
subjected to combined excitations.
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