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Abstract

This paper addresses computational aspects in dynamic sub-structuring of built-up structures with uncertainty. Component
mode synthesis (CMS), which is a model reduction technique, has been integrated within the framework of domain
decomposition (DD), so that reduced models of individual sub-systems can be solved with smaller computational cost compared
to solving the full (unreduced) system by DD. This is particularly relevant for structural dynamics applications where the overall
system physics can be captured by a relatively low number of modes. The theoretical framework of the proposed methodology
has been extended for application in stochastic dynamic systems. To limit the number of eigen-value analyses to be performed
corresponding to the random realizations of input parameters, a locally refined high dimensional model representation model
with stepwise least squares regression is presented. Effectively, a bi-level decomposition is proposed, one in the physical space
and the other in the stochastic space. The geometric decomposition in the physical space by the proposed model reduction-based
DD reduces the computational cost of a single analysis of the system and the functional decomposition in the stochastic space
by the proposed meta-model lowers the number of simulations to be performed on the actual system. The results achieved
by solving a finite-element model of an assembled beam structure and a 3D space frame illustrate good performance of the
proposed methodology, highlighting its potential for complex problems.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Complex industrial structures generally comprise several components and may be represented by an assembly
of relatively simple sub-systems. Analysing full models of such built-up structures can prove to be computationally
expensive, even with advanced computational resources. Component mode synthesis (CMS), which is a dynamic
sub-structuring and model reduction technique, has proven to be useful in dealing with these assembled systems
[1]. In general, they operate by modelling the sub-components individually and their reduced dynamic models are
assembled to form a global system. The literature related to CMS methods is well developed and they have been
utilized to solve structural dynamic problems over the past few decades. Extensive reviews of CMS methods can
be found in [2–4].
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On the other hand, fast numerical solution techniques involving spatial decomposition in the geometric space,
such as domain decomposition (DD) solvers, are relatively newer (as compared to CMS methods) and recently
have started to be utilized in industrial applications [5–7]. The spatial decomposition is attained through a Schur-
complement-based domain decomposition and partitioning. The DD solvers exhibit scalable parallel performance,
allowing a significant improvement of model resolution with reduction in computational effort. These methods
have mainly been used to solve problems of wave propagation [8], flow through porous media [9] and non-linear
oscillators [10].

The above approaches (model reduction and DD) adopt different strategies. However, both of them are employed
to serve a common purpose, which is to accelerate the solution process of finite element (FE) approximation of
partial differential equations (PDEs). In this regard, the relevant conceptual similarities and differences of these
classes of methods have been discussed by Rixen [11].

The dynamic response of a structural system is generally predicted by the FE method, in which a deterministic
model with a particular set of physical parameters is modelled. However, the underlying assumption is that the set
of input parameters to the FE solver is precisely known, and this is not necessarily valid [12]. The primary reason
is the presence of uncertainties in the parameters through the product’s entire design cycle and operating service
life. Moreover, manufacturing processes can easily lead to variability in the resulting product. Thus, in addition to
improve the accuracy of a deterministic model, quantification of the variation in the response due to uncertainty in
the input parameters is equally important, if not more so. Previous works on CMS and DD techniques accounting
for uncertainties are discussed in the subsequent sections.

However, uncertainty quantification of dynamical systems can be computationally expensive. For direct compu-
tation of the frequency response functions (FRF) by inverting the dynamic stiffness matrix as a function of mass,
stiffness and damping matrices is expensive as evaluations have to be performed for every value of forcing frequency
[13,14]. Even with multi-output meta-models, such model construction may entail enormous computational resource
and CPU/GPU time. Therefore, employing a meta-model which is as accurate as possible over the entire frequency
domain while minimizing the computational cost needs to be addressed. A general solution to this problem is
employing design of experiments to select a limited set of discrete frequency sample points on which the metamodel
is trained, and then utilized to interpolate the response at other frequencies [15]. However, the frequency response is
characterized by rapid changes at the location of natural frequencies. Such sharp changes make it difficult to select
appropriate infill points, which can easily lead to inaccurate representation of resonant peaks and valleys of the
FRF. Another simplified solution commonly used is to predict the representative quantities such as the maximum
peaks and resonance frequency positions [16,17]. However, potentially important information in the FRFs may not
be preserved with these simplified approaches.

Therefore, the major challenge associated in dealing with the FRFs as outputs of metamodels is still the high
dimensionality. To obtain a more compact description of the functional outputs, multiple feature extraction or
data compression techniques have been exploited. With the help of principal component analysis (PCA), the high
dimensionality issue was mitigated when the output was expressed as an image of radius over time and angle
in [18]. Wavelet decomposition was utilized for highly irregular functional time domain data in [19]. A Gibbs
sampling-based expectation maximization algorithm was developed to transform the irregularly spaced data into
a regular grid so that a Kriging model could be fitted to the functional data in [20]. The dimension of frequency
response data was reduced by using PCA and then the model was updated using a neural network [21]. In order to
accelerate the convergence of the first two statistical moments of the frequency response in the vicinity of resonance
peaks, Aitken’s method and its generalization were employed in conjunction with polynomial chaos expansion (PCE)
in [22]. A frequency transformation strategy with a PCA technique was proposed to overcome the limitations of
PCE for FRF simulation in [23]. Modal analysis was performed to investigate the stochastic dynamic properties
of FRFs in [24] [25]. PCE models were built for modal properties to predict the bounds for stochastic FRFs in
[26]. Aspects, such as dealing with relatively large parameter variations and coping up with the associated variation
in modal responses, were addressed using a refined high dimensional model representation [27] and multi-output
Gaussian process models [14]. For details, readers are referred to an extensive review of meta-models for stochastic
computations [28].

Following the above discussion on model-order reduction, domain decomposition and uncertainty quantification
in dynamical systems, the primary issues addressed in this work are:
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Fig. 1. Illustration of dynamic sub-structuring with the help of an L-section composed of two sub-components.

• The existing DD solvers perform computations on the full (unreduced) FE models. This may prove to be
computationally expensive for large-scale systems. An improved strategy has been presented in Section 3.

• The above issue may further escalate in presence of uncertainties, where repeated simulations need to be
performed. Therefore, a meta-modelling technique has been devised in modal space to propagate the input
uncertainty to the frequency response in an efficient manner. This is illustrated in Section 4.2.

The rest of the paper has been organized in the following sequence. Section 2 discusses the basic concepts of the
CMS method required for the subsequent contents of the paper. Section 3 presents the proposed deterministic model-
order reduced DD method. The stochastic version of the proposed deterministic method is illustrated in Section 4. A
numerical study has been carried out in Section 5. Section 6 deals with a large-scale practical structural application.
Finally, the key aspects and contribution of the present work have been summarized in Section 7.

2. Component mode synthesis

CMS was introduced as early as the 1960s by [29,30]. However, the Hurty/Craig–Bampton method is still one
of the popular CMS techniques in industry and academia. In CMS, the models of individual sub-structures are
transformed from physical space to component modal space with the help of pre-selected basis functions. The
possible choices of these basis functions include normal modes determined from solving a component eigen-value
problem and static constraints [31]. The models are then assembled and the global response of the whole system
is evaluated. Additionally, in applications involving line and surface coupling, the number of interface DOFs can
be reduced. A recent comprehensive review regarding the interface reduction can be found in [32]. Next, a brief
illustration of the fixed-interface Craig–Bampton method on a two-component structure, as illustrated in Fig. 1, is
presented.

The equation of motion of component α, without considering the effect of damping, is

mαüα + kαuα = fα (1)

where mα,kα, fα and uα are the mass and stiffness matrices of component α, the force vector and the physical
DOFs, respectively. In the following the α subscript is dropped for clarity. The physical DOFs, u, can be expressed
as a set of internal DOFs, uI , and a set of interface DOFs, uB , as,[

mI I mI B

mB I mB B

] [
üI

üB

]
+

[
kI I kI B

kB I kB B

] [
uI

uB

]
=

[
fI

fB

]
(2)

The fixed-interface normal modes of a component are the eigen-vectors of the component with the interface
DOFs fixed. The corresponding eigen-value problem is then(

kI I − λ j mI I
)
φ I, j = 0, j = 1, . . . , n I (3)

Note that the size of the eigen-value problem in Eq. (3) is same as the cardinality of the internal DOFs n I . The
eigenvectors φ I, j form the columns of the fixed-interface modal matrix. Here, only a subset of the first p modes
are retained, and thereby the dimension of the component model is reduced.



4 T. Chatterjee, S. Adhikari and M.I. Friswell / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113060

In the fixed-interface CMS method, the component modal space consists of the retained fixed-interface normal
modes and the static constraint modes, and they are combined to yield the component transformation matrix G as,

G =

[
φ I p −k−1

I I kI B

0 IB B

]
(4)

The static constraint modes ensure compatibility of displacements of the components at their interface, enhance
convergence and yield the exact static solution. The transformation from physical coordinates, u, to component
modal coordinates, q, is then,

u =

[
uI

uB

]
= Gq =

[
φ I p −k−1

I I kI B

0 IB B

] [
qp

qc

]
(5)

The internal physical coordinates uI are transformed into the fixed-interface modal coordinates qp. The physical
interface coordinates uB are retained, but are denoted as constraint coordinates qc. The component modal mass and
stiffness matrices η = GTmG, ν = GTkG take the form,

η =

[
Ipp mpc

mT
pc mcc

]
, ν =

[
Γ pp 0

0 kcc

]
(6)

where the matrices mcc and kcc are the constraint mass and stiffness matrices for component α, mpc represents a
coupled matrix term and Γ pp is a diagonal matrix of retained fixed-interface modal eigen-values.

Thus, the equation of motion for component α can be expressed by,

ηαq̈α + ναqα = fαq , fαq = GαT
fα (7)

Next, the assembly of two components (say, α and β) is considered. The continuity of displacements at their
interface implies uαB = uβB in the physical space, and is converted into component modal space, such that qαc = qβc .
In order to impose the coupling conditions, the following transformation may be applied,

q =

⎡⎢⎢⎣
qαp
qαc
qβp
qβc

⎤⎥⎥⎦ =

⎡⎢⎢⎣
I 0 0
0 0 I
0 I 0
0 0 I

⎤⎥⎥⎦
⎡⎣ qαp

qβp
qc

⎤⎦ (8)

After assembling the component modal matrices, the global mass and stiffness matrices take the form,

M =

⎡⎣ Iαpp 0 mα
pc

0 Iβpp mβ
pc

mα T
pc mβ T

pc Mcc

⎤⎦ K =

⎡⎣ Γ α
pp 0 0

0 Γ β
pp 0

0 0 Kcc

⎤⎦ (9)

Mcc = mα
cc + mβ

cc, Kcc = kαcc + kβcc

Note that the dimension of the global matrices are reduced depending on the number of fixed-interface modes
retained in the component modal matrices Gα and Gβ . In this study, we have employed the fixed-interface
Craig–Bampton method and therefore interface reduction is not discussed [32].
After a brief introduction of model-reduction, the proposed methodology in a deterministic sense is illustrated in
the next section.

3. Proposed deterministic methodology

3.1. Integrating model-reduction in the framework of domain decomposition

As the name itself suggests, domain decomposition solvers partition the original problem into various sub-
problems. In doing so, each of the sub-problems can be computed in parallel using different processors. Several
domain decomposition solvers are available depending on whether the sub-domains are overlapping or non-
overlapping [33]. Here, we employ the generalized framework of DD for non-overlapping sub-domains as proposed
by Sarkar et al. [8] to illustrate the improvements.
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Considering the whole domain Ω of the FE model of an arbitrary system in an n-dimensional subspace partitioned
into two non-overlapping sub-domains Ω1 and Ω2, as shown in Fig. 1, the dynamic equation of motion of the system
in the frequency domain is,⎡⎢⎢⎢⎣

[
Dα

I I

]
n1×n1

0
[
Dα

I B

]
n1×nB

0
[
Dβ

I I

]
n2×n2

[
Dβ

I B

]
n2×nB[

Dα
B I

]
nB×n1

[
Dβ

B I

]
nB×n2

[
Dα

B B + Dβ

B B

]
nB×nB

⎤⎥⎥⎥⎦
⎧⎨⎩

xαI
xβI
xB

⎫⎬⎭ =

⎧⎨⎩
fαI
fβI

fαB + fβB

⎫⎬⎭ (10)

where Ds
i j = (−ω2Ms

i j + iωCs
i j + Ks

i j ) denotes the dynamic stiffness matrix. The superscript s represents the
sub-system α or β and the subscripts i j = I I, B B and I B refer to the internal DOFs, interface DOFs and coupling
DOFs, respectively (following the same notation as Section 2).

It is often observed that for engineering dynamics applications, mesh refinement is required to capture complex
geometries, leading to a high number of modes. This results in a significant increase in the size of the resulting
system (represented by Eq. (10)) from the FE model. However, in most structural applications, it is found that the
dynamics can be captured by a relatively low number of linear modes [34]. Taking advantage of this useful feature,
we have integrated model-reduction (specifically CMS) into the framework of domain decomposition so as to avoid
solving the full system in Eq. (10) and efficiently evaluate the dynamic response. This will be quite straightforward
to follow as the Craig–Bampton method has already been discussed in the previous section.

Carrying out the operations in Eqs. (4)–(6) on individual sub-systems α and β, leads to a reduced assembled
system obtained as,⎡⎢⎢⎢⎢⎣

[
Dα′

I I

]
n′

1×n′
1

0
[
Dα′

I B

]
n′

1×nB

0
[
Dβ ′

I I

]
n′

2×n′
2

[
Dβ ′

I B

]
n′

2×nB[
Dα′

B I

]
nB×n′

1

[
Dβ ′

B I

]
nB×n′

2

[
Dα

B B + Dβ

B B

]
nB×nB

⎤⎥⎥⎥⎥⎦
⎧⎨⎩

xα′

I

xβ
′

I
xB

⎫⎬⎭ =

⎧⎪⎨⎪⎩
fα′

I

fβ
′

I
fαB + fβB

⎫⎪⎬⎪⎭ (11)

Remark 1. Note that the internal DOFs of individual sub-systems α and β are reduced from n1 and n2 in Eq. (10)
to n′

1 and n′

2, respectively, in Eq. (11), based on the number of fixed-interface modes retained in the component
modal matrices Gα and Gβ (Eq. (4)). n1 and n2 denote the number of unreduced internal DOFs of sub-systems α
and β, respectively. Whereas n′

1 and n′

2 represent the number of retained internal DOFs of sub-systems α and β,
respectively after model reduction.

3.2. Efficient solution scheme by Schur complement

The reduced system of equations represented by Eq. (11) can be partitioned and rearranged in the following
form, ⎛⎜⎜⎝[Dα

B B

]
−

[
Dα′

B I

] [
Dα′

I I

]−1 [
Dα′

I B

]
  

S1

+

[
Dβ

B B

]
−

[
Dβ ′

B I

] [
Dβ ′

I I

]−1 [
Dβ ′

I B

]
  

S2

⎞⎟⎟⎠ {xB}

=

⎡⎢⎢⎣{fαB}−

[
Dα′

B I

] [
Dα′

I I

]−1 {
fα

′

I

}
  

F1

⎤⎥⎥⎦+

⎡⎢⎢⎣{fβB
}

−

[
Dβ ′

B I

] [
Dβ ′

I I

]−1 {
fβ

′

I

}
  

F2

⎤⎥⎥⎦ (12)

[
Dα′

I I

] {
xα

′

I

}
= fα

′

I −

[
Dα′

I B

]
{xB} (13)[

Dβ ′

I I

] {
xβ

′

I

}
= fβ

′

I −

[
Dβ ′

I B

]
{xB} (14)

The interface DOFs can be solved using Eq. (12). The coefficient matrix S = S1 + S2 is referred to as the Schur
complement matrix. The size of S is smaller than the coefficient matrix in Eq. (11) and furthermore S1 and S2 can
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be constructed in parallel. Once the interface problem is solved, xB can be substituted into Eqs. (13) and (14) to
obtain the response at the internal DOFs xα′

I and xβ
′

I . It is also worth mentioning that the solutions for xα′

I and xβ
′

I
can be executed in parallel. To solve the interface problem when the order of xB is very high, iterative methods
such as the conjugate gradient method can be used for computational tractability [33].

Remark 2. (i) Since the proposed approach utilizes the reduced model that is solved by the DD method, the terms
to be inverted (i.e. dynamic stiffness matrices corresponding to the internal DOFs of sub-systems Dα′

I I and Dβ ′

I I to
solve Eqs. (12)–(14)) are much lower in dimension compared to the conventional DD performed on the full system.

For an explicit quantification of the improvement in the cost involved, the computational complexities of
[
Dα′

I I

]−1

and
[
Dβ ′

I I

]−1
are reduced to O

(
n′3

1

)
and O

(
n′3

2

)
from O

(
n3

1

)
and O

(
n3

2

)
, respectively. (ii) From an implementation

and coding perspective, once these inverse terms have been computed in Eq. (12), they can be stored and readily
utilized in Eqs. (13) and (14). (iii) Also, the coupling matrices

[
Dα′

B I

]
,
[
Dα′

I B

]
,
[
Dβ ′

B I

]
and

[
Dβ ′

I B

]
involved in the

multiplicative operations in Eq. (12) result in a lower cost due to the reduced components arising from the internal
DOF part. For implementation of the inverse operation, the backslash operator (x = A\b) in MATLAB® has been
utilized. This operator yields the solution using Gaussian elimination, without forming the inverse explicitly. For
further computational enhancement, parallelized preconditioned conjugate gradient solvers for stochastic partial
differential equations proposed in [35] can be employed. This iterative algorithm eliminates the need of explicit
construction of the Schur complement system. Such iterative sub-structuring techniques in conjunction with the
reduced Schur complement system employed here are expected to yield further computational leverage.

Remark 3. Although, this work does not actively deal with unreduced matrices, it is worth mentioning that if one
is dealing with unreduced systems, sparse direct or iterative solvers can lead to significant advantage both in terms
of storage and computational effort as compared to full/dense solvers. For efficient memory usage and minimum
floating point operations, the numerical implementation of such algorithms should exploit the multi-level sparsity
structure of the coefficient matrix of the stochastic system, namely (i) the sparsity (unstructured) structure due to
the finite element discretization and (ii) the block sparsity structure arising from the orthogonal representation and
projection of the stochastic processes. For details of efficient algorithmic implementation of sparse solvers, the
reader is referred to [35,36] and ‘Sparse Matrix Operations’ help documentation page of MATLAB® toolbox.

3.3. Reduced model-based domain decomposition for multiple sub-domains

In the previous sub-sections, the proposed CMS based DD was presented in case of two sub-domains to give
an explicit mathematical formulation. In this section, the formulation will be generalized for the case of multiple
sub-domains; although this extension is straightforward theoretical, giving explicit mathematical expressions that
cover all possible interfaces between pairs of sub-structures is more difficult.

The global interface response vector {xB} is defined as the concatenation of the responses at all of the individual
interfaces. In the presence of nsd sub-domains, there will be at most 1

2 nsd (nsd − 1) interfaces between pairs of
sub-domains, and indeed interface nodes can be part of more than two sub-domains. However, {xB} contains all
DOFs associated with any interface node. Extending Eq. (12), the interface response can be calculated from

nsd∑
k=1

([
Dk

B B

]
−

[
Dk′

B I

] [
Dk′

I I

]−1 [
Dk′

I B

])
{xB} =

nsd∑
k=1

({
fk

B

}
−

[
Dk′

B I

] [
Dk′

I I

]−1 {
fk′

I

})
(15)

where Dk
i j is the dynamic stiffness submatrix for the k th sub-domain, where i j = I I, I B, B I or B B as before.

The superscript k ′ denotes the reduced model of the k th sub-domain. The external forces
{
fk

B

}
and

{
fk′

I

}
for the kth

sub-domain are defined at the interface and reduced internal DOFs. However, any particular sub-domain will not
contain all of the interface DOFs. Hence, for example,

[
Dk

B B

]
will contain many zero rows and zero columns, and

the non-zeros terms will correspond to those interface DOFs that are present in the k th sub-domain. Subsequently,
the response at the reduced internal DOFs of the k th sub-domain is obtained as[

Dk′

I I

] {
xk′

I

}
= fk′

I −

[
Dk′

I B

]
{xB} , for k = 1, 2, . . . , nsd (16)
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As illustrated previously in the case of two sub-domains, the evaluation of the Schur complement matrix and
the resulting forcing vector term on the right side of Eqs. (15) and (16) is parallelizable for each sub-domain.
Alternatively, a more compact representation can be found in [8] where a restriction matrix consisting of zeros and
ones for each sub-domain (refer section 1.3.6 and Eq. (1.28) of [37]) is used to establish a link between the global
interface variable and local interface variables.

In the next section, the implementation of the proposed approach in stochastic systems is illustrated.

4. Proposed stochastic methodology

This section has been divided into two sub-sections. The first sub-section briefly reviews the recent and significant
works on CMS and DD specifically applied to stochastic systems. Although unconventional at this stage of the paper,
this is expected to benefit readers to track the state-of-the-art of the multi-disciplinary theme. The second sub-
section illustrates the functional decomposition in the stochastic space and efficient implementation of the proposed
methodology in presence of parametric uncertainties.

4.1. Recent works on CMS and DD only applied to stochastic systems

CMS combined with perturbation methods for quantifying the uncertainty in the structural dynamic response have
been studied by [34,38]. In the presence of a high level of input uncertainty (when the perturbation methods do not
generally work well), efficient stochastic reduced basis projection schemes [39] have been utilized with CMS for
the modelling and propagation of spatially distributed joint uncertainties [40]. Polynomial chaos expansion (PCE)
in conjunction with CMS has been used to compute the frequency response functions (FRFs) of stochastic systems
[41]. [42] performed non-parametric uncertainty modelling [43] in the Craig–Bampton approach using random
matrices and the entropy optimization principle. More recently, a variant of the CMS technique based on dominant
fixed-interface normal modes and the static contribution of higher order modes has been developed [44]. The utility
of the study lies in the fact that the residual normal modes are invariant with the modification of structural system
parameters and thus can be effectively utilized in re-analysis based problems within limited computational budget.
A reduced order modelling technique was proposed for uncertainty propagation in time-invariant problems [45].
The construction of the projection basis only consists of a single system analysis and a sensitivity analysis.

For the first time, Sarkar et al. [8] proposed a theoretical framework for the non-overlapping DD of stochastic
systems. This was extended to solve large-scale spectral stochastic FE simulations [9,46]. The intrusive PCE
based non-overlapping DD methods with preconditioned conjugate gradient (PCG) techniques have illustrated
excellent scalability for problems with high mesh resolution [9,35,46]. However, the solvers suffered from large
memory requirements and computational issues while handling uncertainty quantification of practical engineering
applications involving a fine level of discretization in both spatial and stochastic spaces. Recently, the above
critical issues have been alleviated to a considerable extent using scalable sparse iterative solvers with efficient
preconditioners to deal with problems involving large numbers of random variables and high mesh resolution at
the same time [47]. An efficient scheme of time integration for strongly non-linear stochastic systems has been
presented [10], which has the potential to solve stochastic PDEs in conjunction with spatial DD.

Next, the implementation of the proposed methodology is illustrated in presence of parametric uncertainties.

4.2. Functional decomposition in the stochastic space

Repeated simulations will be required in order to compute the system response corresponding to the random
realizations of the input parameters. Monte Carlo simulations (MCS) performed on the proposed model-reduction
based DD would require a smaller computational effort compared to DD of the unreduced system. However, we
would still like to reduce the computational cost further by limiting the number of actual function evaluations.

The basic idea is to approximate the eigen-vectors of the retained DOFs of the model-reduced sub-structures by
using a meta-model and then performing the DD and Schur complement operations based on meta-model predictions
of the reduced system. To be specific, the term φ I p of the component modal matrix in Eq. (5) is estimated via the
meta-model. This will lead to the following advantages: (i) First and foremost, only nsamp eigen-value analyses
have to be performed, where nsamp denote the number of training samples for the meta-model, compared to nMCS
eigen-value analyses, where nMCS is the number of MCS samples and nsamp ≪ nMCS. (ii) As the response quantity
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of interest is only the eigen-vectors, which is the outcome of a linear analysis, considerably simpler meta-models
can be expected to perform adequately in terms of approximation accuracy. (iii) To some extent, the accuracy aspect
of the meta-model may be compromised as a trade-off with computational cost in the case of large-scale systems,
as it is well known that the effect of eigen-vectors on the dynamic response is not particularly strong.

Therefore to limit the number of eigen-value analyses, functional decomposition in the stochastic space is
performed using locally refined high dimensional model representation (HDMR). In doing so, Kriging [48] has
been combined with HDMR [49] to capture the local variations in the functional space. This concept was first
utilized by [50] to enhance the local approximation capabilities of PCE and later on to improve HDMR [27,51].
To determine the unknown coefficients and ensure the orthogonality of the component functions, a stepwise least
squares (SLS) approach has been adopted here as proposed by Li et al. [49]. Next, the computational framework
of the proposed locally refined HDMR with SLS is presented in a concise manner.
Let, x = (x1, x2, . . . , xN ) be the vector of random input parameters defined by their joint probability density function
fX(x), where x ∈ D ⊂ RN . The meta-model response ĝ(x) (here in this case, eigen-vectors) can be expressed as

ĝ(x) = [g0 +

∑
i

∑
k

αi
kψk (xi )  

first-order

+

∑
1≤i< j≤N

(∑
k

α
(i j)i
k ψk (xi )+

∑
k

α
(i j) j
k ψk

(
x j
)
+

∑∑
α(i j)

mn ψm (xi ) ψn
(
x j
))

  
second-order

+ · · · up to M th order] + σ 2 Z(x)  
Kriging

(17)

Eq. (17) represents a Kriging model with the trend portion replaced by second order HDMR. ψ and α represent
the basis functions and unknown coefficients, respectively. g0 is a constant term representing the zeroth order
component function or the mean response obtained corresponding to the training samples. Z(x) and σ 2 are a zero
mean, unit variance Gaussian process and the process variance, respectively. The HDMR functional form in Eq. (17)
consists of independent (first-order) terms within the second order component functions. This is known as extended
basis formulation and details regarding it can be found in [49]. It is to be noted that the bases ψ satisfy the following
orthogonality relation,

E
[
ψiψj

]
= mδij, 0 ≤ |i| , |j| ≤ n, m ≥ 0 (18)

where,

δij =

n∏
k=1

δik jk = 1, if i = j

= 0, elsewhere

(19)

Where, the notation i = (i1, i2, . . . , iN ) denotes a multi-index with |i| = i1+i2+· · ·+iN . Based on the orthogonality
criteria as illustrated in Eq. (18), the appropriate polynomial bases are to be selected. In this context, generalized
polynomial chaos from the Askey scheme of hypergeometric orthogonal polynomials [52] has been utilized in
Eq. (17).

From the standard Kriging literature, the unknown coefficients can be determined by solving the following system
of equations,(

ψT R−1ψ
)
α∗

= ψT R−1d (20)

where Ri j = R
(
x(i), x( j); θ

)
represents the auto-correlation matrix of the points in the experimental design. θ

denotes the hyperparameters and α∗ is the vector of unknown coefficients. d = ĝ(x)− g0 is a vector given by the
difference between the observed system response at the training samples ĝ and the mean response g0. The unknown
coefficient vector can be determined by direct inversion of the coefficient matrix of Eq. (20). However, in order
to ensure the orthogonality of the component functions and the uniqueness of the solution, the vector of unknown
coefficients has been obtained by SLS regression approach proposed in [49].
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Fig. 2. Flowchart of the proposed methodology.

In doing so, the coefficients corresponding to the first order component functions are first determined followed by
the coefficients of the second order component functions by least square regression and hence the name ‘stepwise’
least squares. An important point to note is that this approach is also applicable for dependent random variables,
nevertheless in this work, it is illustrated for independent random variables as a special case of the general treatment.

The model form in Eq. (17) by combining Kriging and HDMR in conjunction with the SLS regression approach
to determine the unknown coefficients will be referred to as the proposed meta-model (PM) from now onwards.

To help understanding, a flowchart is shown in Fig. 2 to illustrate the proposed model reduction based DD in
stochastic systems (Sections 3 and 4). It can be observed from Fig. 2 that the proposed methodology consists of
two blocks indicated by the dotted rectangles. This is illustrated to separate the meta-model building part which
involves limited number of high-fidelity simulations (computationally expensive as they involve actual FE analysis)
and MCS which involves large number of low-fidelity simulations (cheap to compute as it is performed on the
meta-model). Once the training input samples are generated and the corresponding response (mode shape vectors
of individual sub-components) are evaluated, the meta-model form can be constructed by using Eq. (17). Evaluating
Eq. (17) at the training samples yield the systems of equations in Eq. (20), from which the unknown coefficient
vector is solved by SLS regression approach. Note that the meta-model is only trained to approximate the mode
shape vectors up to the retained modes of individual sub-systems as the reduced configuration is already selected
in a deterministic sense corresponding to the nominal values of input parameters.

Subsequently, MCS is performed on the meta-model to obtain the approximate eigen-vectors of the individual
sub-systems. Using these estimated eigen-vectors, the component transformation matrix in Eq. (4) is formed,
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resulting in reduced system matrices of individual sub-systems in Eq. (9). Now the reduced system matrices of
the sub-systems are repartitioned and assembled as shown in Eq. (11) and solved efficiently with the help of
Eqs. (12)–(14). The frequency response functions of the assembled system are computed for each MCS realization.
The uncertainty propagated in the assembled system response due to the random input parameters of the individual
sub-systems are quantified by the global FRF statistics.

At this stage, it is reasonable to illustrate the computational efficiency achieved by the proposed methodology.
The computational effort required to solve stochastic static/dynamic systems can be expressed as a function of the
cost of one analysis and the number of simulations to be performed corresponding to the random input realizations.

Computational effort = f (cost of a single analysis, number of actual simulations) (21)
= cost of a single analysis × number of actual simulations

By using the proposed methodology, the cost of a single analysis can be reduced due to the model reduction
performed within the DD framework as illustrated in Section 3, and the number of actual simulations can be
reduced by the meta-modelling technique presented in Section 4. Thus, a two-tier improvement of both aspects
of computational cost can be achieved by the bi-layered decomposition in the physical and functional space.

To the authors’ knowledge, this implementation of the stochastic version of model reduction based DD is first
of its kind. Therefore, the main objective has been to present the theoretical framework in a simplistic manner
in the context of dynamic sub-structuring. More importantly, the implementation of the proposed methodology is
generalized so that recent improvements of CMS and DD can be seamlessly incorporated within the framework. In
addition, any available meta-modelling tools can be used for the functional decomposition of the stochastic space.

5. Numerical case study

After illustrating the theoretical framework of the proposed methodology, it is now applied to solve a simple
assembled structural problem. The structure consists of FE models of two Euler–Bernoulli cantilever beams
connected at their free ends as shown in Fig. 3. Two case studies of the same example problem have been considered.
The first case study involves a symmetric configuration where the two sub-components are equal in length and
divided into equal numbers of elements (Fig. 3(a)), whereas the second case (Fig. 3(b)) considers an asymmetric
configuration where the sub-components are unequal in length and divided into an unequal number of elements. The
asymmetric case is primarily studied as it replicates a more common practical scenario where the sub-components
may be of different shape and size. Moreover, the number of modes to be retained for model reduction in the
sub-components should be different for the asymmetric case.

Nominal values of material density, namely ρ = 2700 kg/m3, elastic modulus E = 70 GPa and a square
cross-sectional dimension with width 0.5 m, are adopted for both cases. The damping of the system is assumed to
be of the form C = θK, where the parameter θ is assumed to be 10−6, and K is the stiffness matrix. The total length
of the assembled structure is 5 m. In case I, each component has ten elements with nine internal nodes and hence
eighteen internal DOFs (Fig. 3(a)). Whereas in the second case, component 1 has eight elements, seven internal
nodes and fourteen internal DOFs and component 2 has twelve elements, eleven internal nodes and twenty-two
internal DOFs (Fig. 3(b)).

Generally, in order to determine the minimal number of modes required, the convergence of the natural
frequencies or strain energy is studied and the modes lower than the cut-off frequency are retained and the higher
ones are ignored. However, the cut-off frequency entirely depends on the type of dynamic application. Thus, in
our case where the motive is to illustrate the framework of the proposed methodology and is not limited to a
particular application, we adopt a generalized approach for determining the number of modes to be retained for
model reduction of the sub-components via CMS.

The error obtained in the deterministic response by considering varying number of modes was computed. The
error was computed in three steps, first the Frobenius norm of the frequency response matrix is determined for
every forcing frequency, second, the relative L2 error of the Frobenius norm corresponding to the reduced model
with respect to the full model is computed and lastly, the root mean square (RMS) of the relative L2 error has been
obtained. Convergence plots of this error obtained with number of retained modes for cases I and II are presented
in Fig. 4.

Based on the convergence study presented in Fig. 4, the number of internal DOFs for sub-components 1 and
2 are taken as 6 and 6, respectively for case I and the number of internal DOFs for sub-components 1 and 2 are
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Fig. 3. Schematic diagram of the FE model of the assembled beam structure (a) Case I: Two components of equal length and (b) Case II:
Two components of unequal length. T-DOF and R-DOF denote translational and rotational degree of freedom.

Fig. 4. Convergence of RMS of relative L2 error of the Frobenius norm of the frequency response of the reduced model with respect to the
full model with varying number of retained modes (a) Case I (the number of retained internal modes are equal for both sub-components)
(b) Case II.
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Fig. 5. A schematic representation of different levels of uncertainty propagation in assembled structures.

taken as 5 and 8, respectively for case II without any significant loss of accuracy in capturing the full model based
assembled response. This means a 66.7% reduction in computations compared to the full model in each sub-system
for case I and 64.3% and 63.6% reduction in computations compared to the full model in sub-system 1 and 2,
respectively for case II, can be achieved due to the above configuration of the reduced model.

The forcing frequency range up to 5000 rad/s has been considered (which is almost 800 Hz). To simulate the
randomness in the system, the material and geometric properties of each discretized element of the individual
sub-systems are considered as stochastic. Specifically, the density, elastic modulus and cross-sectional dimension
of each element are considered to be lognormally distributed with 10% variation. The mean of these parameters is
the same as their nominal values reported above.

In this paper, a Gaussian correlation function has been utilized to build the Kriging part [53]. 35 training points
have been generated with a Latin-hypercube sampling scheme [54] to construct the proposed meta-model. The PM
is trained to approximate the eigen-vectors corresponding to the retained internal DOFs of individual sub-structures.

The first six modes retained out of the eighteen corresponding to each sub-system in case I lead to a mode
shape matrix of dimension (18 × 6) and the first five and eight modes retained out of fourteen and twenty-two,
respectively in sub-systems 1 and 2 in case II lead to mode shape matrices of dimension of (14 × 5) and (22 × 8).
Thus, considering each term of the mode shape matrix, the total number of quantities to be approximated are: Case
I: sub-system 1 − (18 × 6 = 108), sub-system 2 − (18 × 6 = 108) and Case II: sub-system 1 − (14 × 5 =

70), sub-system 2 − (22 × 8 = 176). Subsequently, the stochastic frequency responses of the assembled system
are obtained by solving the model reduced DD framework as illustrated in Eqs. (12)–(14) in conjunction with the
PM based prediction of the mode shapes. In doing so, the effect of component level uncertainty on the assembled
system level response is efficiently quantified.

Remark 4. The uncertainty propagation problem in the proposed CMS integrated DD framework is shown in Fig. 5.
Note that in the proposed methodology, only the part concerned with uncertainty propagation from the component
physical to the component modal level requires few actual simulations. Apart from this, the subsequent levels of
uncertainty propagation such as component modal to global modal and then to global physical level are cost effective
as the computations involved are primarily based on meta-model predictions.

Sample results have been presented below in Figs. 6 and 7 in terms of displacement FRF band plots for cases I
and II, respectively. Close proximity between the predicted (on the right side) and actual results (on the left side)
illustrate good approximation accuracy is obtained.

Convergence plots of three different error metrics obtained by estimating the eigen-vectors by using the PM and
several other meta-models with increasing numbers of sample points are compared in Fig. 8. The statistical error
metrics are given by

R2
= 1 −

∑
n

(
Y − Ŷ

)2

∑
n

(
Y − Y

)2 (22)
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Fig. 6. Displacement FRF band plots (dB) in case I: H(37, 37) (a) MCS (b) PM, H(38, 38) (c) MCS (d) PM. Note that 104 MCS samples
are performed. 35 training points have been employed to construct the PM.

Root mean square error (RMSE) =

√
1
n

∑
n

(
Y − Ŷ

)2
(23)

Error (E) =

√∑
n

(
Y − Ŷ

)2/∑
n

Y 2
× 100 (24)

where, Y , Ŷ andY denote the true, approximate and mean value of the response quantity, respectively. Note that the
error values reported represent the mean obtained by approximating each term of the mode shape matrix.

It can be observed from the error values in Fig. 8 that the proposed method (PM) has achieved excellent accuracy.
However, the other meta-models have also achieved good results and may easily overtake the PM when solving
other example problems. The point worth highlighting here is that capturing the variational trend of the example
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Fig. 7. Displacement FRF band plots (dB) in case I: H(17, 17) (a) MCS (b) PM, H(18, 18) (c) MCS (d) PM. Note that 104 MCS samples
are performed. 35 training points have been employed to construct the PM.

problem is straightforward, as expected. The meta-models whose implementation codes are easily available have
proven their ability to adequately approximate the eigen-vectors. Thus, the proposed methodology can be easily
integrated with already developed in-house stochastic codes by individual research groups.

The results in Fig. 8 correspond to the model approximation errors in the presence of 10% variation in the
input parameters. Further, convergence of the mean error metrics obtained using the PM with increasing level of
uncertainty are reported in Fig. 9. The results in Fig. 9 demonstrate good approximation accuracy has been achieved
by the PM in the presence of high level of input uncertainty which is not often the case with perturbation-based
techniques.

After illustrating the performance of the proposed methodology in a test example, a large-scale application
problem is undertaken in the next section.
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Fig. 8. Convergence of the statistical error metrics (a) R2 (b) RMSE (c) E (%) with the number of sample points. Note that the error
metrics have been evaluated in comparison to 104 samples of MCS. H-PCFE denotes hybrid polynomial correlated function expansion
[27], LR-HDMR-RVM denotes locally refined-high dimensional model representation-relevance vector machine [55] and RS-HDMR denotes
random sampling-high dimensional model representation [49].

6. Practical structural engineering application

A three-dimensional transmission tower model is considered in this section, as presented in Fig. 10. The structure
has been modelled as a space frame having six DOFs per node, and thus consists of 175 nodes and 246 elements.
The four supports (nodes at level z = 0) are assumed to be fixed in all DOFs. In total, there are 1026 DOFs in
the space frame model. The structure was meshed using Gmsh, an open-source meshing software [56]. The mesh
details were exported to MATLAB for the finite-element modelling. A snapshot of the mesh with the node locations
within the Gmsh environment is presented in Fig. 10.
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Fig. 9. Convergence of the statistical error metrics (a) R2 (b) RMSE (c) E (%) obtained by the PM with the number of sample points
for increasing levels of input uncertainty. Note that the error metrics have been evaluated in comparison to 104 samples of MCS. C.O.V.
denotes coefficient of variation.

Nominal values of material density, namely ρ = 2700 kg/m3, elastic modulus E = 200 GPa, modulus of rigidity
G = 77 GPa and a square cross-section with width 0.3 m, are adopted for performing the FE analysis. The damping
of the system is assumed to be proportional with the form C = θK, where the parameter θ is assumed to be 10−3,
and K is the stiffness matrix.

For implementing the proposed CMS integrated DD framework, the above space frame model has been divided
into three sub-components as shown in Fig. 11. The number of internal DOFs corresponding to sub-component 1,
2 and 3 are 114, 600 and 192, respectively. There are two interfaces; the first interface (between sub-component 1
and 2) comprises 72 DOFs and the second interface (between sub-component 2 and 3) comprises 48 DOFs. Note
that both interfaces are modelled to include the corner and the remaining nodes at that z-level (Interface 1 at z = 30
m and Interface 2 at z = 10 m). As we are only interested to reduce the internal DOFs of the sub-components,
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Fig. 10. Schematic diagram of the transmission tower model showing the node locations.

all of the interface DOFs are retained in the subsequent analysis. However, in the presence of a high number of
interface DOFs (common in plate structures), they can be easily reduced with the help of characteristic constraint
modes.

A similar approach has been adopted to determine the number of modes to be retained in each sub-component,
as performed in the previous example (Section 5). The relative L2 error of the Frobenius norm of the frequency
response of the deterministic assembled structure has been studied with varying number of modes in the individual
sub-components (w.r.t the unreduced model). A reduced model configuration is then selected which is capable of
capturing the full model based assembled system response without significant loss of accuracy. The convergence of
the error norm with varying number of modes in the sub-components is shown in Fig. 12. Each of the line plots in
Fig. 12 corresponds to the error convergence with varying number of modes in one sub-component, when the full
models of the other sub-components are considered. Considering the error tolerance value to be 0.04, the number
of modes retained from sub-components 1, 2 and 3 are 30, 175 and 78, respectively. This implies that the reduced
model utilizes 31% of the internal DOFs compared to the full model in a deterministic sense. Thus, 69% savings
in the size of the system matrices can be obtained due to the reduced model configuration w.r.t the full model
corresponding to every stochastic simulation. In general, relatively slow convergence has been observed in Fig. 12.
This is primarily due to the definition of the error norm. Since the error norm is based on the whole FRF matrix,
insignificant change can be observed in error with varying number of modes. This point is equally relevant for the
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Fig. 11. Schematic of the sub-components of the space frame model (a) Sub-component 1 (b) Sub-component 3 (c) Sub-component 2.

previous example (Section 5). Alternatively, higher efficiency in terms of model reduction could be achieved by
studying the convergence of natural frequencies with specific information of the cut-off frequency or the frequency
range of interest.

To simulate the randomness in the system, the material and geometric properties of each discretized element of
the individual sub-systems are considered as stochastic. Specifically, the density, elastic modulus, modulus of rigidity
and cross-sectional dimension of each element are considered to be lognormally distributed with 10% variation. The
mean of these parameters is the same as their nominal values reported above.

Gaussian correlation function has been utilized to build the Kriging part of the model. 60 training points have
been generated by Latin-hypercube sampling. The PM is trained to approximate the eigen-vectors corresponding to
the retained internal DOFs of individual sub-components. Precisely, the dimension of the approximated quantities
(mode shape matrix) are (114 × 30), (600 × 175) and (192 × 78) from sub-components 1, 2 and 3, respectively.
The stochastic frequency response of the assembled system is obtained by solving the proposed model reduced DD
framework as illustrated in Eqs. (15) and (16) in conjunction with the PM based prediction of the mode shapes.
Sample FRF band plots obtained using MCS (5000 samples) and PM (60 samples) are presented in Fig. 13. Close
proximity between the predicted (right side) and actual results (left side) demonstrate that a satisfactory level of
approximation accuracy is achieved.
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Fig. 12. Convergence of RMS of relative L2 error of the Frobenius norm of the frequency response of the reduced model with respect to
the full model with varying number of retained modes in individual sub-components. Note that when the modes of one sub-component are
varied, full models of the other sub-components are considered.

Table 1
Convergence of statistical error metrics with varying number of training samples.

No. of training points 40 50 60

R2 0.9517 0.9677 0.9776
RMSE 4.2967 × 10−4 1.21 × 10−4 3.6036 × 10−5

E(%) 7.6225 5.7560 4.8366

Table 2
Convergence of statistical error metrics with varying levels of input uncertainty.

C.O.V. (%) 5 10 20

R2 0.9840 0.9776 0.9340
RMSE 2.3542 × 10−5 3.6036 × 10−5 8.4614 × 10−4

E(%) 4.2204 4.8366 9.5730

The convergence of the error metrics defined in Eqs. (22)–(24) obtained by approximating the frequency response
by the PM with varying numbers of sample points have been presented in Table 1. In doing so, the error metrics
are computed with the help of the Frobenius norm of the frequency response obtained by PM and MCS (5000
samples). The errors reported are averaged over the forcing frequency range. The error values obtained in Table 1
illustrate that good approximation accuracy is obtained by the PM. The error values in Table 1 correspond to a 10%
variation in the input parameters. Further, the performance of the PM has been assessed for varying levels of input
uncertainty in Table 2. In obtaining the results in Table 2, 60 samples were used to train the PM. The error metrics
in Table 2 are evaluated in the same way as those of Table 1. The results in Table 2 illustrate reasonable accuracy
is obtained by the PM at a 20% uncertainty level with the nominal number of training samples.

7. Summary and conclusions

An efficient framework has been developed for uncertainty propagation from the individual sub-component level
to system level response in built-up structures. In doing so, a theoretical framework of dynamic sub-structuring
combining model reduction with domain decomposition approach has been presented. The proposed methodology
has been initially illustrated in a deterministic configuration of two sub-domains, and then extended for a generalized
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Fig. 13. FRF band plots (dB): H(1, 1) (a) MCS (b) PM, H(26, 26) (c) MCS (d) PM, H(72, 72) (e) MCS (f) PM, H(130, 130) (g) MCS
(h) PM. Note that 5000 MCS samples are performed. 60 sample points are used to train PM.



T. Chatterjee, S. Adhikari and M.I. Friswell / Computer Methods in Applied Mechanics and Engineering 366 (2020) 113060 21

Fig. 13. (continued).

formulation of multiple sub-domains. Subsequently, the proposed methodology has been explored for application
in stochastic dynamic systems. Furthermore, to limit the number of expensive actual simulations, a meta-modelling
technique has been presented. The meta-model has the functional form of Kriging with HDMR basis functions and
stepwise least squares regression is performed to ensure the orthogonality of the component functions.

A simple stochastic dynamic example has been given to illustrate the performance of the proposed strategy. The
approximation capability was demonstrated by the PM, and also some other recently developed and well-known
existing meta-models. This illustrates that any other meta-models, whose implementation codes are already available,
can be readily used to approximate the mode shapes and integrated within the proposed methodology. Also, with
high levels of input uncertainties, the PM is observed to perform well. Later, a large-scale structural engineering
application problem is undertaken where the performance of PM is observed to be satisfactory.

Thus, the main contributions of this work are that the proposed methodology leads to a two-tier improvement
in the computational framework of conventional domain decomposition, which are:

• Firstly, the existing computational framework of DD solvers is enhanced by integrating model-order reduction
for the local dynamic behaviour of sub-structures together with interface solution problems. This improvement
leads to a reduction in the computational effort to solve the actual FE model in a deterministic sense.

• Secondly, in the presence of random parameters at the sub-component level, functional decomposition in
the stochastic space efficiently captures the uncertainty propagation from the input variables in individual
sub-structures to the assembled system level dynamic response.

Therefore, a bi-level decomposition is performed, one in the physical space and other in the stochastic space. It is
worth mentioning that the proposed methodology is generalized so that recent improvements of CMS and DD can
be readily integrated.

The method may be extended in terms of further improvements in the computational framework and increasing
the complexity of application problems. Re-analysis methods [57,58] can be integrated within the proposed approach
to further enhance the computational efficiency in stochastic applications, such as optimization under uncertainty.
Although this work considers parametric uncertainty modelling, random field modelling can be performed to capture
the spatial variability within the sub-components using the proposed framework. However, for straightforward
applicability of the proposed methodology, the spatial randomness would have to be restricted to individual
sub-components. Consideration of stochastic correlation across components would require further investigation.
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[57] D.A. Perdahcioǧlu, H.J.M. Geijselaers, M.H.M. Ellenbroek, A. De Boer, Dynamic substructuring and reanalysis methods in a

surrogate-based design optimization environment, Struct. Multidiscip. Optim. 45 (2012) 129–138.
[58] H.A. Jensen, A. Muñoz, C. Papadimitriou, C. Vergara, An enhanced substructure coupling technique for dynamic re-analyses:

Application to simulation-based problems, Comput. Methods Appl. Mech. Engrg. 307 (2016) 215–234.

http://refhub.elsevier.com/S0045-7825(20)30244-9/sb33
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb33
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb33
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb34
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb34
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb34
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb35
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb35
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb35
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb36
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb37
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb37
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb37
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb38
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb38
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb38
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb39
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb40
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb40
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb40
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb41
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb41
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb41
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb42
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb42
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb42
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb43
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb43
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb43
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb44
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb44
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb44
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb45
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb45
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb45
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb46
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb46
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb46
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb47
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb47
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb47
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb48
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb48
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb48
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb49
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb49
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb49
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb50
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb50
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb50
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb51
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb51
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb51
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb52
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb52
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb52
http://dx.doi.org/10.1007/s11831-016-9178-z
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb54
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb54
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb54
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb55
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb55
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb55
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb56
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb56
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb56
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb57
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb57
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb57
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb58
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb58
http://refhub.elsevier.com/S0045-7825(20)30244-9/sb58

	Uncertainty propagation in dynamic sub-structuring by model reduction integrated domain decomposition
	Introduction
	Component mode synthesis
	Proposed deterministic methodology 
	Integrating model-reduction in the framework of domain decomposition
	Efficient solution scheme by Schur complement
	Reduced model-based domain decomposition for multiple sub-domains

	Proposed stochastic methodology
	Recent works on CMS and DD only applied to stochastic systems 
	Functional decomposition in the stochastic space

	Numerical case study
	Practical structural engineering application
	Summary and conclusions
	Declaration of competing interest
	Acknowledgements
	References


