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ABSTRACT
Robust design optimization (RDO) of large-scale engineering systems is
computationally intensive and requires significant CPU time. Consider-
able computational effort is still required within conventional meta-model
assisted RDO frameworks. The primary objective of this article is to mini-
mize further the computational requirements of meta-model assisted RDO
by developing a global two-layered approximation based RDO technique.
The meta-model in the inner layer approximates the response quantity
and the meta-model in the outer layer approximates the response statis-
tics computed from the response meta-model. This approach eliminates
both model building and Monte Carlo simulation from the optimization
cycle, and requires considerably fewer actual response evaluations than a
single-layered approximation. To demonstrate the approach, two recently
developed compressive sensing enabled globally refined Kriging models
have been utilized. The proposed framework is applied to one test example
and two real-life applications to illustrate clearly its potential to yield robust
optimal solutions with minimal computational cost.
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1. Introduction

Robust design optimization (RDO) is one of the most popular approaches for dealing with optimiza-
tion under uncertainty (Du andChen 2002). RDOhas been applied in various applications to enhance
the quality of products by yielding the least sensitive design (Roy andChakraborty 2015; Chakraborty,
Goswami, and Rabczuk 2019). RDO constitutes a mathematical framework to minimize the effect of
random input parameters on the output response quantities of interest (Zhu, Zhang, and Chen 2015;
Vu-Bac et al. 2016), thereby resulting in a more robust solution.

The RDOproblem involves enhancing the system performance by reducing the performance vari-
ation. In most cases, the variation in the performance functions as defined by the objective and/or
the constraint functions is expressed in terms of the response statistics. Consequently, the solution of
the RDO problem will require repeated computationally expensive simulations integrated within the
optimization routine.

In order to reduce the computational requirements, various efficient meta-modelling schemes
have emerged. The literature in this field is well developed and an overview of the mathemati-
cal framework underpinning the different methods was presented by Chatterjee, Chakraborty, and
Chowdhury (2019). Meta-models have been implemented for design optimization under uncertainty
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(Saijal, Ganguli, and Viswamurthy 2011; Murugan, Ganguli, and Harursampath 2012), although the
following issues still remain to be addressed.

• The accuracy of the meta-models must be sufficient to enable a successful RDO implementation.
Some popular meta-models are susceptible to deviations due to uncertainties within the optimiza-
tion framework andmay yield incorrect optima (Chatterjee, Chakraborty, and Chowdhury 2019).

• It is well known that extensive computations have to be performed within the optimization cycles
in the RDO framework. This restricts the applicability to low and medium scaled problems.

The primary objective of the present work is to address the above issues in meta-model assisted
RDO frameworks. Note that the first issue regarding the accuracy of the meta-model has been
addressed recently by Chatterjee, Chowdhury, and Ramu (2019), and therefore the same meta-
models are adopted here. Thus, the focus here is more towards the improvement of the computational
efficiency of meta-model assisted RDO.

In a meta-model assisted RDO framework, response statistics within the objective and constraint
functions are estimated with the help of a meta-model. In general, the above setting involves a
two-step solution: (i) the response quantity of interest is approximated by the meta-model, which
involves a relatively small number of actual function evaluations for training the meta-model; and
(ii) the response statistics are obtained by performingMonte Carlo simulations (MCSs) on the meta-
model. In this regard, a simple yet effective concept has been devised to decouple (i) and (ii) from
the optimization cycle in RDO. Thus, a global two-layered meta-model assisted response statistics
approximation based RDO framework has been developed, where the response statistics involved in
the objective and constraint problems are approximated before the optimization commences. As a
result, no model building or MCS (points (i) and (ii)) have to be performed within the optimization
routine. This yields optimal solutions in fewer actual response evaluations and results in improvement
in terms of computational effort over recent approaches (Chatterjee, Chowdhury, and Ramu 2019)
so that it can readily be applied to large-scale problems.

The rest of the article is organized as follows. The conventional meta-assisted RDO framework
is briefly outlined in Section 2. In Section 3, the proposed approximation based RDO framework
is developed. The formulation of the two meta-models used is briefly summarised in Section 4. The
performance of the proposed framework is assessed by solving an analytical test example in Section 5.
Section 6 considers two computationally expensive finite element (FE) based practical engineering
problems. Finally, the study is concluded in Section 7.

2. Meta-model assisted robust design optimization

This section describes the framework of conventional meta-model assisted RDO to demonstrate the
enhancement provided by the proposed techniques. A common approach to define the RDOproblem
is based on the statistics (mean and standard deviation) of the response quantities of interest in the
objective ŷ0 and constraint functions ŷc. The optimization problem may be written in the following
form (Chen et al. 1996):

minimize
d⊂D∈RN

hf (d) := αwE(ŷ0(x, d)) + (1 − αw)

√
var(ŷ0(x, d))

subject to hgc(d) := E(ŷc(x, d)) + kc
√
var(ŷc(x, d)) ≤ 0, c = 1, . . . , nc

di,l ≤ di ≤ di,u, i = 1, . . . , nv,

(1)

where hf and hgc are the objective and constraint functions of the RDO problem, respectively; x and
d are the random variables and design variables (DVs), respectively; and E and var represent the
mean and variance, respectively. Note that ŷ0 and ŷc are the objective and constraint functions of the



ENGINEERING OPTIMIZATION 155

deterministic optimization problem.Weightsαw ∈ [0, 1] and kc are assigned to themean and variance
of the response quantities in Problem (1); this approach is known as theweighted summethod (WSM)
and the objective and constraints may be interpreted in terms of confidence intervals.

Remark 2.1: To distinguish between the DVs d (controllable parameters in the optimization) and
other random variables x defined in the probability space, this unique notation is used. To illustrate
this further, the following potential instances are discussed: (i) if all the DVs are random and there are
no other random variables, either notation d or x can be used—this is encountered for the problem
presented in Section 5 and the notation d has been used to denote the randomDVs; (ii) if all the DVs
are random and there are other random variables as in the problems of Section 6, the notation d and
x has been used for the (random) DVs and other random parameters, respectively.

Several other improved RDO methods are given in Messac (1996) and Chen et al. (2000). The
WSM defined in Problem (1) can be viewed as a multi-objective optimization and the RDO prob-
lem may be solved using multi-objective optimization techniques (Srinivas and Deb 1994; Zhang
and Li 2007). Other variants of the RDO formulation define unique metrics of robustness (Du, Sud-
jianto, and Chen 2004; Huang and Du 2007), use sensitivity based approaches (Han and Kwak 2004;
Chakraborty, Bhattacharjya, and Haldar 2012) or use adaptive strategies (Mortazavi, Azarm, and
Gabriel 2013; Cheng et al. 2014).

Broadly speaking, for approximation purposes, meta-models are integrated into the RDO for-
mulation in one of two ways. The first approach is to construct the meta-model outside of the
optimization cycle to approximate the response quantities involved in the objective function and con-
straints (i.e. ŷ0 and ŷc in Problem (1)) and performMCS on the meta-model to evaluate the response
statistics (i.e. E[ŷ0], E[ŷc], var[ŷ0] and var[ŷc]) at every optimization iteration (Bhattacharjya and
Chakraborty 2011). The computational cost using this approach is minimal as no actual response
evaluations are required within the optimization cycle. However, the approach can often have dif-
ficulty capturing the nonlinear response trends across the functional space. In contrast, the second
type of approach involves building a meta-model to approximate the response quantities within each
optimization iteration (Chakraborty et al. 2017b). This means that the stochastic computations lie
within the optimization cycle and make the computation required prohibitive for large-scale prob-
lems. An adaptive form of these two approaches has been proposed by Chakraborty et al. (2017a) to
maintain a balance between required accuracy level and affordable computational cost. An analyt-
ical response moment approximation scheme has been developed by Chatterjee, Chakraborty, and
Chowdhury (2018) so as to form an MCS-free RDO strategy. However, in the above techniques, the
computationally expensive evaluations in the form of actual response calculations and meta-model
building still remained within the optimization cycle.

Model building and MCS were removed from the optimization cycle successfully by Chatterjee,
Chowdhury, and Ramu (2019). However, only a single approximation layer was devised, which still
required a considerable number of actual response evaluations to estimate the statistics. Thus, this
approach did not prove to be particularly suited to solving real-world problems as it turned out to be
computationally prohibitive. For other improvements in meta-model assisted RDO frameworks, the
reader is referred to Ren and Rahman (2013), Zhou et al. (2018) and Shimoyama et al. (2009).

After assessing the current state of the art of meta-model assisted RDO approaches, it was con-
cluded by the present authors that either the approximation accuracy or the computational effort
dominates depending upon the problem complexity. Therefore, in this article, the objective is to
develop a framework that reduces the computational cost by completely decoupling the stochastic
computations from the optimization cycle and at the samemaintaining a desirable level of prediction
accuracy to solve real-world problems.
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Figure 1. Schematic of the proposed RDO framework.

3. Proposedmeta-model assisted robust design optimization framework

The basic idea underlying the proposed meta-model assisted RDO framework is to develop a global
approximation of the response statistics, instead of the response quantities. The term ‘global approx-
imation’ means that the meta-model is built at the start, i.e. before the optimization commences.
The advantage of this approach is that the expensive response evaluations, meta-model building and
MCS to evaluate the response statistics are removed from the optimization cycle. Thus, once themeta-
model has been constructed to predict the response statistics, the RDO framework may be viewed as
a deterministic optimization. The proposed RDO framework is illustrated schematically in Figure 1.

Initially, ns1 input sample points are generated using a suitable experimental design scheme (in
this case, Latin-hypercube sampling has been employed) for each design variable d. In case there are
additional random variables x, ns1 samples of x are generated. Corresponding to these samples of
x and d, ns1 actual responses (denoted by y) involved in the objective and constraint functions are
computed. These samples then allow the meta-model to be built that approximates the relationship
between the DVs (d) and the output response, y(x, d). This is the first-layer meta-model constructed
to predict the expensive actual response, y, cheaply with the help of the approximate response, ŷ.

The next step starts by generating ns2 input sample points (comprising samples of d) to train the
response statistics corresponding to the mean of each DV by a suitable experimental design scheme
(in this work, Latin-hypercube sampling). Subsequently, ns3 random points are to be generated
according to the probability distribution of the DVs. Then ns3 approximate responses ŷ are predicted
by the first-layer meta-model (built in the second step) corresponding to the ns3 random points gen-
erated previously. Next, ns2 estimates of the mean, μ(ŷ), and standard deviation (SD), σ(ŷ), of the
response are computed from each set of approximate response vectors of size ns3 obtained previously.
As the final step of the proposed global approximation framework, the second-layer meta-models
are built to capture the trend between the mean of the DVs and the output response statistics (mean,
μ(ŷ), and SD, σ(ŷ), of the approximate response) obtained earlier. These second-layer meta-models
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Figure 2. Schematic of the global single layered approximation based RDO framework.

may be readily utilized to predict the response statistics within the objective and constraint functions
of the optimization cycle corresponding to each design point. Hence, the optimization cycle is free
from any stochastic computations. The kernel of the proposed framework relies on the assumption of
a parametric probabilistic description of the stochastic input and/or, DVs. The treatment of spatially
varying uncertainties within the proposed framework will be possible with random field modelling.
However, this will require further investigation and is not within the scope of the present work.

To implement the above framework, the number of samples ns1, ns2 and ns3 have to be defined,
and their optimal values are determined via various convergence studies. Specifically, ns1 is deter-
mined corresponding to theminimumapproximation error in estimating the response quantity using
the first-layer meta-model based on leave-one-out cross validation (LOOCV) (Efron and Tibshi-
rani 1997). After selecting an optimal value of ns1, the variation of ŷ is studied in order to select
an appropriate value of ns3. Once ns1 and ns3 are chosen, ns2 is determined corresponding to the
minimumLOOCVerror in approximating the response statistics using the second-layermeta-model.

Remark 3.1: Although the recently proposed approach by the same authors (Chatterjee, Chowd-
hury, and Ramu 2019) may seem to be similar, the proposed approach is muchmore computationally
efficient, especially in solving expensive problems. The difference is relatively subtle but very effec-
tive. To illustrate the difference of the proposed framework, a flowchart of Chatterjee, Chowdhury,
and Ramu (2019) has been illustrated in Figure 2. It can be observed from Figure 2 that the response
quantities y are generated and the response statistics μ(y) and σ(y) are evaluated directly. These
statistics are used to train the meta-models and the approximate response statistics μ(y) and σ(y),
which are predicted by themodels within the optimization cycle. In contrast to Figure 2, the proposed
method limits the number of actual function evaluations (which may be computationally expensive
in the case of large-scale systems). As illustrated in Figure 1, the response quantities y are generated
and then a meta-model is constructed to approximate y. Now ŷ, as predicted by the above surrogate
model, is utilized to generate samples of the response statistics μ(ŷ) and σ(ŷ). These response statis-
tics are used to construct another layer of meta-models. This second layer of meta-models predicts
μ(ŷ) and σ(ŷ) at each optimization iteration.

The dual layer of approximation in the proposed method reduces the number of evaluations of y
to ns1 compared to (ns1 × ns2) in Chatterjee, Chowdhury, and Ramu (2019), which allows the former
to solve comparatively larger-scale problems. It may be noted that, despite the useful framework of
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Chatterjee, Chowdhury, andRamu (2019), only toy problems could be solved, and no real engineering
application problem could be addressed due to the dimensionality issue.

Figure 1 shows the general RDO approach, and any meta-model and/or optimization scheme
can be employed. However, the meta-models should be robust enough to capture the variation of
the response statistics using only a single approximation, before the optimization cycle commences,
to predict the statistics accurately at the design points of subsequent iterations. As previously illus-
trated, a slight deviation in the approximation accuracy of themeta-models in any of the intermediate
iterations may easily lead to false optima. Thus, in order to ensure this requirement is satisfied, adap-
tive sparse refined Kriging models have been employed for the bi-layered approximation of response
quantities and moments. These meta-models are briefly outlined in the next section.

4. Proposedmeta-modelling techniques

The details of the meta-models introduced here can be found in a recent article by Chatterjee and
Chowdhury (2018) where the accuracy of the meta-models has been assessed for the global sensi-
tivity analysis of nonlinear and high-dimensional stochastic systems. The key characteristics of the
proposed meta-model for this application are as follows.

• To enhance the global approximation characteristics of Kriging, the term related to the trend is
replaced by a high-dimensional model representation (HDMR) (Li, Rosenthal, and Rabitz 2001;
Chatterjee, Chakraborty, and Chowdhury 2016).

• Two compressive sensing strategies have been employed that impart adaptive sparsity to the meta-
models, and as a result, the computational complexity in dealing with high-dimensional systems
is reduced (Doostan and Owhadi 2011).

4.1. Improving the approximation potential of Kriging

The functional form of the globally refined Kriging model is obtained by substituting HDMR for its
trend term (Chatterjee, Adhikari, and Friswell 2020), and is given by

ŷ =
⎛
⎝y0 +

M∑
k=1

⎧⎨
⎩

N−k+1∑
i1=1

. . .

N∑
ik=ik−1

k∑
r=1

⎡
⎣

s∑
m1=1

s∑
m2=1

. . .

s∑
mr=1

α
(i1i2...ik)ir
m1m2...mr�

i1
m1

· · · � ir
mr

⎤
⎦

⎫⎬
⎭

⎞
⎠

+ σ 2Z(x,ω), (2)

where y0 represents the zeroth-order component function, implying the mean of response y(x).
Z(x,ω) denotes a zero mean, unit variance Gaussian process and σ 2 represents the process variance.
The maximum order of the component functions and bases� areM and s, respectively.N represents
the number of variables. In the next sub-section, the determination of the unknown coefficients α is
discussed.

4.2. Sparse recovery of the unknown coefficients

In high-dimensional systems, the resulting system of equations is often underdetermined. In such
cases, to ensure a well-posed solution, sparse solutions are recovered by using compressive sensing
strategies as shown in Equation (3):

Pν,δ : minimize
α

‖Wα‖ν subject to ‖�α − y‖2 ≤ ε, (3)
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where ν = 0, 1, the positive diagonal weight matrix W is a measure of the sparsity of α and ‖ · ‖2
denotes the �2-norm quantifying the accuracy of the approximation in constructing the sparse set; ε
is the error tolerance.

To solve the optimization problem in Equation (3), orthogonal matching pursuit (OMP), which
is a compressive sensing algorithm based on the �0-norm, and basis pursuit (BP), which is based
on the �1-norm, have been utilized to determine the sparse set of unknown coefficients (Chatterjee
and Chowdhury 2018). Hereafter, for notational clarity, the globally refined Krigingmodel integrated
with OMP and BP will be referred to as proposed meta-model 1 (PM1) and proposed meta-model 2
(PM2), respectively.

5. Verification on an analytical test problem

The proposed RDO framework (Section 3), combined with the bi-layered approximation using PM1
and PM2 (Section 4), are used for the numerical verification in this section. An analytical test
problem is solved in order to access the performance of the proposed RDO frameworks (PM1-
RDO and PM2-RDO). A speed reducer design problem has been selected for investigation, as it
consists of nonlinear performance functions and multiple constraints. The deterministic optimiza-
tion problem statement is presented in the online Supplemental Data, which can be accessed at
https://doi.org/10.1080/0305215X.2020.1861262. Other details of the RDO problem formulation can
be found in Chatterjee, Chakraborty, and Chowdhury (2019). For the RDO formulation of this prob-
lem, each of the DVs are considered to be normally distributed with 5% variation. The RDO problem
may be stated asμd = argmin[F := μ(f (d)) + σ(f (d))], whereμd denotes the mean of DVs at opti-
mum F and f (d) is defined in the Supplemental Data. The primary motive is to access the accuracy
of the proposed RDO framework in approximating the nonlinear response trends and to evaluate the
computational cost in comparison to several existing meta-model assisted RDO frameworks. The
interior-point optimization algorithm has been used, as implemented by the command fmincon in
MATLAB�.

To access the accuracy of the meta-model assisted RDO frameworks, MCS-based RDO solu-
tions are presented for validation. For comparison, the above surrogate models are implemented
in a conventional high-fidelity RDO (HF-RDO) framework (i.e. the meta-model building and MCS
are performed within the optimization routine). The purpose of this comparison is to illustrate the
improvement in computational effort achieved with a slight compromise in the accuracy by using the
proposed RDO framework as compared to HF-RDO. The RDOmethodology in Chatterjee, Chowd-
hury, and Ramu (2019) using the same meta-models has also been compared. Results achieved with
other meta-models can be found in Chatterjee, Chowdhury, and Ramu (2019).

The details regarding the selection of parameters ns1 , ns2 and ns3 are provided in the Supplemental
Data. Table 1 gives the robust optimal solutions of the speed reducer design problem. The computa-
tional effort required for each of the meta-models to yield the optimal solutions for the speed reducer
design problem are compared in Table 2.

In Table 2, na denotes the number of actual response evaluations per optimization iteration and
selected based on the LOOCV error; nitr is the number of optimization iterations required for
convergence; TNARE represents the total number of actual response evaluations. In Table 2, the
computational effort of the proposed RDO framework in terms of total actual response evaluations
(TNARE) = ns1 whereas for the HF-RDO framework and Chatterjee, Chowdhury, and Ramu (2019),
TNARE = (na × nitr) and (ns1 × ns2), respectively. The reason for expressing the overall computa-
tional cost in terms of actual response evaluations is that the use of meta-models is justified in real
systems where an actual response evaluation takes significant time compared to the response evalu-
ation using the meta-model. As illustrated in Table 1, the results obtained using the proposed RDO
framework are close to those obtained with MCS, which illustrates good approximation accuracy
of the former. Tables 1 and 2 also illustrate that considerable savings in computational cost can be
achieved by the proposed RDO strategy with a slight compromise in the accuracy as compared to the
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Table 1. Robust optimal solutions for the speed reducer design problem.

PM1 PM2 HF-RDO HF-RDO
MCS -RDO -RDO PM1a PM2a (PM1) (PM2)

μd1 3.4863 3.5177 3.5201 3.5177 3.5201 3.4863 3.4863
μd2 0.7 0.7 0.7 0.7 0.7 0.7 0.7
μd3 17 17 17 17 17 17 17
μd4 7.3 7.5524 7.5539 7.5524 7.5539 7.3 7.3
μd5 7.7158 7.7028 7.7084 7.7028 7.7084 7.7158 7.7158
μd6 3.3515 3.3519 3.3516 3.3519 3.3516 3.3515 3.3515
μd7 5.2867 5.2642 5.2647 5.2642 5.2647 5.2866 5.2866
y∗ × 103 3.2325 3.2297 3.2311 3.2297 3.2311 3.2287 3.2303
μ(y∗) × 103 3.0025 2.9983 2.9996 2.9983 2.9996 3.0025 3.0025
σ(y∗) × 102 2.3003 2.3138 2.3153 2.3138 2.3153 2.3003 2.3003
aChatterjee, Chowdhury, and Ramu (2019).

Table 2. Computational cost estimated in terms of response evaluations to solve the speed reducer design problem.

HF-RDO HF-RDO
MCS PM1-RDO PM2-RDO PM1a PM2a (PM1) (PM2)

ns1 – 700 700 700 700 – –
ns2 – 1000 1000 700 700 – –
ns3 – 1000 1000 – – – –
na 1 × 105 – – – – 128 128
nitr 10 16 21 16 21 11 11
TNARE 1 × 106 700 700 4.9 × 105 4.9 × 105 1408 1408
aChatterjee, Chowdhury, and Ramu (2019).

conventional HF-RDO setup. Both the proposed framework and the approach in Chatterjee, Chowd-
hury, and Ramu (2019) yield the same set of optimal solutions. This can be explained by the fact
that they both stem from a similar global approximation concept and employ the samemeta-models.
However, the proposedRDOapproach is superior to that ofChatterjee, Chowdhury, andRamu (2019)
as it achieves the same level of accuracy with much smaller computational cost in terms of TNARE
(Tables 1 and 2).

6. Application to industrial problems

Two offshore structural problems, representing practical real-world structural problems, are consid-
ered in this section. The first problem involves an FE model of a fixed-base offshore jacket platform
(OJP), while the second deals with an OJP supported with piles and considers pile–soil interac-
tion. Initially, probabilistic modelling was performed, followed by the formulation of the robust
sizing optimization problem statement. The formulated RDO problems are solved using the pro-
posed framework owing to its efficiency, and thus obtaining the optimal solutions is computationally
realizable with such realistic and detailed models.

6.1. Fixed offshore jacket platform

A four-legged offshore jacket platform with fixed supports as shown in Figure 3 has been considered
in this example. The other details of the FEmodel of theOJP, offshore sea-states, various loading com-
binations and random parameters can be found in Section 5 of Chatterjee and Chowdhury (2017).
Probabilisticmodelling has been performed by considering uncertainties in thematerial and geomet-
ric and loading parameters. In total, 39 random variables were considered. The structural response
analysis considered ten load cases and eight load combinations. The stochastic static response anal-
ysis of the OJP model with fixed supports was performed in terms of the maximum displacement
and vonMises stress. The performance of PM1 and PM2 to approximate the response statistics of the
above model in Tables 3 and 4 are assessed by comparison to the results fromMCS.
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Figure 3. Four-legged offshore jacket platform with fixed supports. (a) Jacket structural model and (b) Height of structure and
water level.

Table 3. Comparison of the mean of the response quantities corresponding to the OJP model with fixed supports.

Response
Load com-
bination

MCS (na =
1 × 104)

PM1
(na = 700)

PM2
(na = 700)

Maximum displacement
(m)

LC1 0.0600 0.0601 0.0601
LC2 0.0592 0.0594 0.0592
LC3 0.2893 0.2893 0.2893
LC4 0.2834 0.2835 0.2834
LC5 0.3497 0.3498 0.3498
LC6 0.3462 0.3461 0.3462
LC7 0.1834 0.1834 0.1834
LC8 0.1835 0.1835 0.1835

Maximum von Mises stress
(kPa×104)

LC1 9.0153 9.0339 9.0327
LC2 8.9974 9.0050 9.0103
LC3 15.826 15.847 15.843
LC4 15.705 15.726 15.719
LC5 18.042 18.051 18.047
LC6 17.871 17.881 17.885
LC7 16.249 16.249 16.249
LC8 15.714 15.713 15.722

In Tables 3 and 4, na is the number of actual response evaluations. The load combinations are
described in Chatterjee and Chowdhury (2017). After probabilistic modelling of the OJP model with
fixed supports and performance assessment of the proposed meta-models in the stochastic response
analysis, an RDOproblem statement is now formulated. The objective is tominimize the total mass of
the structural model (W) subject to displacement and stress constraints, and the DVs are the optimal
geometrical parameters of the member sections. The RDO problem may be stated as

μ∗
dv = minimize f (x, dv) = αwμ(W) + (1 − αw)σ (W)

subjectto gdLC(x, dv) = [μ(dLC) + 3σ(dLC)] − dmax ≤ 0;

gσLC(x, dv) = [μ(σLC) + 3σ(σLC)] − σmax ≤ 0. (4)

In Problem (4), μ and σ denote the mean and standard deviation, the DVs are considered as ran-
dom and μ∗

dv denotes the mean of the DVs at the optimum f (x, dv), x represents random variables
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Table 4. Comparison of the standard deviation of the response quantities corresponding
to the OJP model with fixed supports.

Response
Load com-
bination

MCS (na =
1 × 104)

PM1
(na = 700)

PM2
(na = 700)

Maximum
displacement
(m)

LC1 0.0023 0.0023 0.0023

LC2 0.0022 0.0023 0.0022
LC3 0.0099 0.0099 0.0097
LC4 0.0097 0.0097 0.0095
LC5 0.0122 0.0122 0.0122
LC6 0.0121 0.0120 0.0120
LC7 0.0122 0.0122 0.0122
LC8 0.0122 0.0122 0.0122

Maximum
von Mises stress
(kPa × 103)

LC1 2.2548 2.3028 2.1892

LC2 2.4527 2.4692 2.3479
LC3 3.6013 3.7153 3.3551
LC4 3.9068 4.0909 3.6536
LC5 3.8695 3.8993 3.5960
LC6 4.0272 4.0517 3.7811
LC7 4.6985 4.6987 4.6975
LC8 4.8141 4.8224 4.7025

(other than the DVs). The constraints are defined such that the maximum nodal displacement dLC
and maximum element stress σLC corresponding to the different load combination (LC) should not
exceed the allowable displacement dmax and stress limit σmax, respectively. Since there are eight load
combinations considered for the stochastic response analysis, sixteen constraints are considered in
Problem (4). The design variable vector dv consists of the stochastic geometric parameters given in
Equation (5). The structural member details can be found in the Supplemental Data.

dv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Diameter of non-structural conductors
Diameter of bracings B27–B54
Diameter of bracings B1–B26

Diameter of short stubs
Diameter of legs

Thickness of non-structural conductors
Thickness of bracings B27–B54
Thickness of bracings B1–B26

Thickness of short stubs
Thickness of legs

Thickness of topside deck and walls

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

Since an actual response evaluation of the above FE model requires significant computational cost,
the proposed efficient framework illustrated in Sections 3 and 4 has been employed to solve the above
formulated RDO problem (Problem (4)). It should be noted that MCS-based RDO evaluation could
not be performed owing to its prohibitive computational cost. In this context, comparison of the
response statistics obtained by PM1, PM2 and MCS in Tables 3 and 4 have been presented to verify
the performance assessment of PM1 and PM2 in terms of accuracy.

In solving the RDO problem by PM1 and PM2, ns1 is selected as 700, ns2 is selected as 5000 and
ns3 is selected as 2000 from the convergence studies undertaken (which have the same form as per-
formed previously). The robust optimal solutions for theOJPmodel with fixed supports are presented
in Table 5 for αw = 0, 0.5 and 1. In this example, the mean and standard deviation objectives are
not strongly conflicting, which means that the optimal solutions are similar for all values of αw. For
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Table 5. Robust optimal solutions for the OJP model with fixed supports.

αw Response quantities/statistics PM1-RDO PM2-RDO

0 f∗(x, dv) 130.0833 130.8703
μ(W) × 104 1.2506 1.2605

σ(W) 130.0883 130.8703
No. of iterations 90 54

0.5 f∗(x, dv) × 103 6.3260 6.5503
μ(W) × 104 1.2521 1.2963

σ(W) 130.9474 137.4053
No. of iterations 26 102

1 f∗(x, dv) × 104 1.2503 1.2963
μ(W) × 104 1.2503 1.2963

σ(W) 130.0978 137.4127
No. of iterations 23 24

Table 6. Total steel mass corresponding to the optimal configuration of the OJP
model with fixed supports.

αw Total steel quantity/savings PM1-RDO PM2-RDO

0 Quantity (t/103) 5.9079 6.0069
Savings (%) 30.4195 29.2540

0.5 Quantity (t/103) 5.9233 6.3656
Savings (%) 30.2388 25.0294

1 Quantity (t/103) 5.9047 6.3653
Savings (%) 30.4571 29.0331

problems with strong conflicting objectives, the proposed methodology can yield optimal solutions
corresponding to multiple αw values, and hence a Pareto front can be obtained with almost no addi-
tional computational effort. The total CPU time required to obtain the robust optimal solutions by
PM1 and PM2 is 4.97 × 104 s and 4.92 × 104 s, respectively, using an Intel� Xeon� CPU E5645
processor @ 2.4GHz.

Furthermore, the total saving in the mass of steel for the jacket structure achieved by solving the
RDO problem is illustrated in Table 6. The material saving in Table 6 has been evaluated correspond-
ing to the structural configuration with the optimized geometric parameters (DVs) over their mean
values. In doing so, the other stochastic parameters of the OJPmodel have been set to their respective
mean values. The total mass of the structural model is 8.4908 × 103 t, which corresponds to themean
of the geometric parameters. Table 6 shows that a 25–30% saving in steel mass has been achieved by
the proposed RDO frameworks.

6.2. Offshore jacket platformwith pile supports considering soil–structure interaction

The previous example in Section 6.1 assumed that the OJPmodel was fixed at the bottom. However, it
has been observed that flexibility of the foundation, and compressibility of the soil underneath, may
affect the structural responses significantly (Ajamy et al. 2014; Nour El-Din and Kim 2014). Thus,
consideration of the soil–structure interaction in the response analysis may prove to be critical in
terms of structural safety andprevention of damage.Moreover, uncertainty related to key geotechnical
parameters such as local soil conditions with varying depths should be accounted for in the realistic
modelling of their interaction with the structural foundation.

In this example, the same jacket structure has been employed, additionally accounting for pile–soil
interaction (Abdel Raheem, Ahmed, and Alazrak 2015). Among various simplified models for cap-
turing the complex phenomenon of soil–structure interaction, a pseudo-static beam on a nonlinear
Winkler foundation (BNWF), also referred to as the p–ymethod, has been utilized in this study (Mat-
lock 1970). The p–y method is recommended by API-RP-2A (American Petroleum Institute 2000)
and is widely used among researchers and practitioners. The various soil types and their location are



164 T. CHATTERJEE ET AL.

Figure 4. The jacket structural model with specifications of soil types.

Table 7. Comparison of the mean of the response quantities corresponding to the OJP
model, also considering pile–soil interaction.

Response
Load com-
bination

MCS (na =
1 × 104)

PM1 (na =
1000)

PM2 (na =
1000)

Maximum
displacement
(m)

LC1 0.1198 0.1199 0.1199
LC2 0.1177 0.1178 0.1178
LC3 0.5998 0.5997 0.5995
LC4 0.5937 0.5935 0.5934
LC5 0.7367 0.7363 0.7361
LC6 0.7314 0.7305 0.7308
LC7 0.2743 0.2742 0.2742
LC8 0.2707 0.2706 0.2706

Maximum
von Mises stress
(kPa × 105)

LC1 1.3896 1.3896 1.3894
LC2 1.3879 1.3881 1.3878
LC3 3.2297 3.2277 3.2282
LC4 3.2216 3.2204 3.2201
LC5 3.6397 3.6370 3.6374
LC6 3.6408 3.6361 3.6396
LC7 2.6021 2.5996 2.6013
LC8 2.5973 2.5956 2.5961

presented in Figure 4 and the details can be found in Section 6 of Chatterjee and Chowdhury (2018).
In total, 65 stochastic variables are considered for this problem, accounting for uncertainties in
the material, geometric, loading and geotechnical parameters. The rest of the data, including load
combinations, are the same as those of the previous example.

The performance of the proposed meta-models in approximating the response statistics of the
piled OJP model is given in Tables 7 and 8. The results achieved by using PM1 and PM2 are close
to those of MCS, and illustrate good performance of the meta-models in terms of approximation
accuracy.

Subsequently, the same RDO formulation of the OJP model considering the pile–soil interaction
given by Problem (4) is investigated. The design variable vector dv consists of the stochastic geometric
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Table 8. Comparison of the standard deviation of the response quantities corresponding
to the OJP model, also considering pile–soil interaction.

Response
Load com-
bination

MCS (na =
1 × 104)

PM1 (na =
1000)

PM2 (na =
1000)

Maximum
displacement
(m)

LC1 0.0048 0.0048 0.0048
LC2 0.0049 0.0049 0.0048
LC3 0.0198 0.0099 0.0097
LC4 0.0195 0.0195 0.0194
LC5 0.0246 0.0248 0.0245
LC6 0.0257 0.0256 0.0249
LC7 0.0088 0.0088 0.0087
LC8 0.0087 0.0086 0.0086

Maximum
von Mises stress
(kPa × 103)

LC1 4.0268 3.9904 3.9795
LC2 4.0326 4.0168 3.9711
LC3 9.3677 9.3123 9.2873
LC4 9.3418 9.3003 9.2594
LC5 1.0604 1.0610 1.0476
LC6 1.0630 1.0567 1.0464
LC7 7.3077 7.2823 7.2054
LC8 7.2941 7.2387 7.1986

parameters given in Equation (6).

dv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Diameter of non-structural conductors
Diameter of bracings B27–B54
Diameter of bracings B1–B26

Diameter of piles
Diameter of short stubs

Diameter of legs
Thickness of non-structural conductors

Thickness of bracings B27–B54
Thickness of bracings B1–B26

Thickness of piles
Thickness of short stubs

Thickness of legs
Thickness of topside deck and walls

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

The proposed RDO framework illustrated in Sections 3 and 4 has been employed to solve this sizing
optimization problem. From the convergence studies undertaken, ns1, ns2 and ns3 are selected as 1000,
5000 and 2000, respectively. The robust optimal solutions for the aboveOJPmodel are given in Table 9
for αw = 0, 0.5 and 1. The total CPU time required to yield the robust optimal solutions by PM1 and
PM2 is 7.42 × 104 s and 7.34 × 104 s, respectively, using an Intel� Xeon� CPU E5645 processor @
2.4GHz. Further, the total savings in the mass of the steel of the jacket structure achieved by solving
the RDO problem are given in Table 10. As for the previous example, the material saving in Table 10
has been evaluated with respect to the total mass of the structural model corresponding to the means
of the geometric parameters, which is 9.6944 × 103 t. Table 10 shows that a 27.5–30% saving in steel
mass has been achieved by the proposed RDO frameworks.

To illustrate the computational benefits of the proposed RDO framework, the time required by
MCS to solve the offshore structural problems was estimated assuming that it would require the same
number of iterations to converge as that by PM1 and PM2. The total time usingMCSwas estimated as
1 × 108 s with no parallel processing and 9.2 × 106 s with parallel processing on a 12-core processor.
The proposed RDO framework required only 0.8–1% of the CPU time to yield the optimal solutions
compared to conventionalMCS-basedRDOwith parallel processing. This indicates that the proposed
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Table 9. Robust optimal solutions for the OJP model considering pile–soil interaction.

αw Response quantities/statistics PM1-RDO PM2-RDO

0 f∗(x, dv) 132.5560 132.5486
μ(W) × 104 1.3623 1.3618

σ(W) 132.5560 132.5486
No. of iterations 84 146

0.5 f∗(x, dv) × 103 6.7883 6.7594
μ(W) × 104 1.3444 1.3387

σ(W) 132.4876 132.1259
No. of iterations 59 88

1 f∗(x, dv) × 104 1.3444 1.3387
μ(W) × 104 1.3444 1.3387

σ(W) 132.4876 132.1259
No. of iterations 39 37

Table 10. Total steel mass corresponding to the optimal configuration of the OJP
model considering pile–soil interaction.

αw Total Steel quantity/savings PM1-RDO PM2-RDO

0 Quantity (t/103) 7.0256 7.0212
Savings (%) 27.5291 27.5749

0.5 Quantity (t/103) 6.8472 6.7899
Savings (%) 29.3698 29.9610

1 Quantity (t/103) 6.8472 6.7899
Savings (%) 29.3698 29.9610

framework is useful for dealing with such computationally intensive problems, the solution of which
would otherwise be rendered prohibitive.

Tables 3 and 7 show that the same structural model subjected to same set of loading condi-
tions, yield responses of highermagnitude by accounting for the soil–structure interaction, compared
to the fixed base. This can be explained by the fact that the structure becomes more flexible and
exhibits responses of higher magnitude because of the flexibility of the foundation and the com-
pressibility of the soil underneath compared to the fixed-base assumption. In order to illustrate
this fact further, the response ratio, defined as the ratio of the response considering the pile–soil
interaction to the response of the fixed model, has been presented in Table 11. The mean response

Table 11. Comparison of response ratios of the OJP model.

Response
Load com-
bination MCS PM1 PM2

Maximum
displacement

LC1 1.9967 1.9950 1.9950
LC2 1.9882 1.9832 1.9899
LC3 2.0733 2.0729 2.0722
LC4 2.0949 2.0935 2.0939
LC5 2.1067 2.1049 2.1043
LC6 2.1127 2.1107 2.1109
LC7 1.4956 1.4951 1.4951
LC8 1.4752 1.4747 1.4747

Maximum
von Mises stress

LC1 1.5414 1.5382 1.5382
LC2 1.5426 1.5415 1.5402
LC3 2.0408 2.0368 2.0376
LC4 2.0513 2.0478 2.0485
LC5 2.0173 2.0148 2.0155
LC6 2.0373 2.0335 2.0350
LC7 1.6014 1.5998 1.6009
LC8 1.6529 1.6519 1.6513
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quantities obtained in Tables 3 and 7 have been utilized to obtain the response ratios in Table 11.
Table 11 shows that the response ratios vary within a range of 1.47 to 2.11. The notable increase
in responses illustrate the fact that ignoring the soil–structure interaction may prove to be detri-
mental to the structural integrity. This is even more important for offshore structures, consider-
ing the high level of uncertainties present in the form of marine loading and the geotechnical
environment.

7. Summary and conclusions

The novelty and contribution of this work lies in the fact that a global bi-layered response statis-
tics approximation based RDO framework has been developed. The proposed RDO framework is
completely free from any stochastic computations within the optimization cycle and thus may be
considered as an equivalent deterministic optimization strategy. This work can be perceived as a
double-layered extension of the recently proposed single-layered framework (Chatterjee, Chowd-
hury, and Ramu 2019), which results in improvement of the overall computational cost. To limit
the number of computationally expensive function evaluations, two adaptive sparse refined Kriging-
based models (Chatterjee and Chowdhury 2018; Chatterjee, Chowdhury, and Ramu 2019) are
utilized for the two-layered approximation of the response functions and moments. These models
have been employed here because they were capable of capturing the global response for the full
range of design parameters. However, the proposed RDO framework is general, so that any meta-
modelling approach may be implemented, as long as it can capture the variation in the response
accurately.

Owing to the efficiency of the proposedRDO framework, two computationally intractable offshore
structural problems were solved by the proposed methods. In this regard, it is worth mentioning that
the proposed framework can yield optimal solutions corresponding to multiple weighing factors αw
without any increase in computational effort, as opposed to MCS-based RDO or conventional meta-
model assisted RDO frameworks. Thus, the study provides the rationale for considering the proposed
framework to solve complex real-world applications.

In spite of the above advantages, there are scenarios as listed below where the potential of the
proposed framework may not be realized and the advantage might be less than for the problems
investigated.

(i) It may prove difficult to achieve an adequate approximation by the proposed framework when
the DVs vary within wide intervals. However, it is reasonable to assume that the decision mak-
ers will possess sufficient knowledge of the variability of the DVs, as these include controllable
parameters that are to be optimized.

(ii) Quite understandably, the proposedmethodologymay not be preferable for addressing problems
in which the DVs are deterministic and/or the random DVs are fewer than the other stochastic
parameters, in comparison to the conventional meta-model assisted RDO approaches. The latter
scenario is often encountered in topology optimization under uncertainty.

A few potential aspects that could be improved include adaptive sampling schemes and error
minimization using Kriging prediction variance. Additionally, considering spatial uncertainty would
enhance the present version of the proposed methodology. Further considerations to predict quanti-
ties such as reliability or the probability of failure would allow its extension to reliability-based design
optimization.
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