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a b s t r a c t 

Structural vibrations are very common in aerospace and mechanical engineering systems, 

where dynamic analysis of modern aerospace structures and industrial machines has be- 

come an indispensable step in their design. Suppression of unwanted vibrations and their 

exploitation for energy harvesting at the same time would be the most desirable scenario. 

The dynamical system presented in this communication is based on a discrete model of 

energy harvesting device realized in such a manner as to achieve both vibration suppres- 

sion and harvesting of vibration energy by introducing the nonlinear energy sink concept. 

The mechanical model is formed as a two-degree of freedom nonlinear oscillator with an 

oscillating magnet and harmonic base excitation. The corresponding mathematical model 

is based on the system of nonlinear nonhomogeneous Duffing type differential equations. 

To explore complex dynamical behaviour of the presented model, periodic solutions and 

their bifurcations are found by using the incremental harmonic balance (IHB) and continu- 

ation methods. For the detection of unstable periodic orbits, the Floquet theory is applied 

and an interesting harmonic response of the presented nonlinear dynamical model is de- 

tected. The main advantage of the presented approach is its ability to obtain approximated 

periodic responses in terms of Fourier series and estimate the voltage output of an energy 

harvester for a system with strong nonlinearity. The accuracy of the presented methodol- 

ogy is verified by comparing the results obtained in this work with those obtained by a 

standard numerical integration method and results from the literature. Numerical exam- 

ples show the effects of different physical parameters on amplitude-frequency, response 

amplitude - base amplitude and time response curves, where a qualitative change is ex- 

plored and studied in detail. Presented theoretical results demonstrate that the proposed 

system has advanced performance in both system requirements - vibration suppression, 

and energy harvesting. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

1. Introduction 

In vibration theory, the concept of dynamic absorbers has a long history and it was initiated in [1] as a device based on

additional mass and spring attached to the main structure. The main property of such devices is the transfer of vibration

energy from the main structure to the tuned vibration absorber. It was demonstrated that nonlinear vibration absorbers are

more effective in vibration absorption than the linear ones since they can cover a wider frequency range. The term non-

linear energy sink (NES) was introduced in [2] for a single degree of freedom lumped-mass system with strong nonlinear
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E-mail address: s.adhikari@swansea.ac.uk (S. Adhikari). 

https://doi.org/10.1016/j.cnsns.2020.105394 

1007-5704/© 2020 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.cnsns.2020.105394
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cnsns
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2020.105394&domain=pdf
mailto:s.adhikari@swansea.ac.uk
https://doi.org/10.1016/j.cnsns.2020.105394


2 D. Karli ̌ci ́c, M. Caji ́c and S. Paunovi ́c et al. / Commun Nonlinear Sci Numer Simulat 91 (2020) 105394 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stiffness and weak linear damping attached to the primary structure with liner or nonlinear properties. Due to their excep-

tional properties and robust design, nonlinear energy sinks have been widely used in engineering practice over the last two

decades with applications ranging from vibration control and suppression to energy harvesting purposes. 

Subsequently, in [3] the authors proposed many different configurations of nonlinear absorbers based on the continuous

(rod, beam, plate) and discrete structures (lumped mass models) with nonlinear single and multiple degrees of freedom

attachments. By using analytical, numerical, and experimental methods, they have studied the targeted energy transfer for

different models of a nonlinear energy sink in coupled discrete and continuous structural vibration systems. The key concept

of a nonlinear energy sink device is to transfer energy from a primary structure to the nonlinear attachment i.e. nonlinear

energy sink, for the entire frequency band, especially in the resonance regime where the energy and vibration amplitudes

are at the highest level [4] . This phenomenon is also known as energy pumping. Moreover, in [4] the authors proposed a

wide spectrum of applications of this physical phenomenon as a concept for passive energy transfer in complex fluid flow,

nonlinear acoustics, or simple mechanical models. On the other hand, the authors in [5] performed a systematic review

of different approaches used in the design and analysis of nonlinear dissipative devices, known as ”nonlinear dampers”,

that appear in structural vibration control practices. Based on the aforementioned, NES belongs to a subgroup of ”nonlinear

dampers”, which is a more general term for nonlinear models used in vibration absorption of complex mechanical systems.

The authors in [5] divided ”nonlinear dampers” into three main groups, (i) Nonlinear Energy Sinks (NESs), (ii) Particle Impact

Dampers (PIDs), and Nonlinear Viscous Dampers (NVDs), and provided a detailed explanation on how damping phenomenon

occurs in all three subgroups. In the following, the focus will be kept on the NES model and its application in vibration

suppression and energy harvesting (EH). 

Genedelman and colleagues [6–8] proposed systematic analytical and numerical approaches for the analysis of a har-

monically excited NES system. By introducing the nonlinear normal mode concept, Genedelman [6] investigated the energy

distribution in a highly asymmetric two-degree of freedom system, which consists of coupled linear and highly nonlinear

damped oscillators employed as NES. Special attention is devoted to the mechanisms of subharmonic resonance and energy

transfer to the nonlinear normal modes. Subsequently, in [7,8] the authors performed bifurcation analyses of NES models by

using the combination of the invariant manifold approach and multiple scales methods, as well as the averaging method.

On the other hand, the numerical continuation technique in combination with the harmonic balance and shooting method

was introduced in [9] to investigate the bifurcation and stability of periodic orbits of NES with weak nonlinearity and linear

damping. They traced frequency - amplitude response curves and detected different bifurcation points such as fold, Hopf,

symmetry braking, and period of doubling bifurcation, which leads to the conclusion that energy transfer is bounded i.e. it

is not possible when damping and nonlinearity in weakly coupled systems have small values. In [10] , the authors suggested

the NES model for passive flutter control of a rigid wing with structural nonlinearity, which belongs to a special class of

NESs used in aeroelasticity problems. They focused their investigation on the multi-degree of freedom NES by explaining the

details of an energy transfer to NES through the phenomenon of nonlinear modal interaction. In another study [11] , a normal

form analytical approach is used to analyse the flutter control and suppression of limit cycle oscillations in an aeroelastic

system with NES. Furthermore, in [12] the authors performed advanced numerical simulations to determine the NES limits

and provide the effective control of transonic flutter. Moreover, vortex-induced vibrations are one of the most interesting

problems where the concept of NES was introduced to absorb vibration energy from a primary structure, as presented in

[13,14] . 

It should be noted that there are two main categories of nonlinear energy harvesting devices, the first one belongs

to mono-stable and the second one to bi-stable harvesters. The general difference between these two concepts is in the

potential energy function of the system, where the mono-stable system has a single stable equilibrium while the bi-stable

system has two stable equilibrium points separated by a potential barrier. An outstanding monograph [15] was published as

a comprehensive study of energy harvesting problems based on the piezoelectric effect. They investigated a wide spectrum

of EH models ranging from linear, to stochastic and nonlinear regimes of vibration, which represents a remarkable source

of fundamental research and application of EH systems. Because of the unique mechanical concept, NES models can be very

useful in EH [16–18] , where it is possible to have simultaneous vibration suppression and energy harvesting. There are two

main directions in the application of NES in combination with EH. The first one includes NES with piezoelectric effects

[19] while the second one is based on the electromagnetic effect [20] . In [21] , the authors suggested a novel piezoelectric

EH device based on the NES concept to achieve simultaneous broadband energy harvesting from a nonlinear energy sink and

vibration suppression of the primary structure. By using the numerical method and nonlinear normal form, they investigated

the transient behaviour and energy transfer at 1: 1 resonance and demonstrated effective performance of NES with quasi-

essentially nonlinear stiffness. By introducing the mixed multi-scale and harmonic balance methods as well as the Newton

- Raphson harmonic balance method, nonlinear dynamic behaviour of a piezoelectric vibration energy harvester working

in conjunction with the NES mechanism was investigated in [22] . The authors demonstrated remarkable properties of the

proposed nonlinear energy sink - energy harvesting (NES-EH) model, where the energy localized branch in the multi-valued

region looks very promising in terms of the energy absorbed from a primary structure and the improvement of energy

conversion efficiency. Recently, some authors investigated a special class of NES-EH model based on the oscillating magnet

between fixed coils, where both functions of such a device, vibration suppression and energy harvesting, are fulfilled [23,24] .

For the investigation of complex dynamic behaviour, the MATCONT software is often used to obtain frequency responses

of EH models or to validate numerical results experimentally. Introducing the analytical approximation method such as the

complexification-averaging method, the steady-state regime of a giant magnetostrictive harvester integrated with a nonlinear
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Fig. 1. The lumped-element model of a nonlinear energy sink - energy harvester device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

energy sink was investigated in [25] based on the previous study [20] . Moreover, by investigating the stability of periodic

orbits, they detected the saddle-node bifurcation and derived the instability boundaries. On the other hand, the application

of the Lyapunov function in the stability analysis with additional control can be used to extend the analysis of nonlinear

discrete NES-EH systems, as given in [26,27] . 

The main objective of this paper is to provide a reliable methodology to analyse the complex dynamic behaviour of a

strongly nonlinear NES-EH with varying the amplitude of external base excitation. The presented NES-EH model is based

on a physically realized system given in [23] exhibiting both energy harvesting and vibration suppression through a nonlin-

ear energy sink device. Herein, numerical simulations are carried out by the incremental harmonic balance (IHB) method in

combination with the continuation technique to generate the response amplitude - base amplitude and frequency-amplitude

response curves (i.e. bifurcation diagrams) that reveal a unique dynamic behaviour of the NES-EH system. Moreover, to de-

tect stable and unstable periodic solution branches, the Floquet theory is introduced in combination with IHB. The main

attention is pointed to the detection of amplitude response functions for different values of excitation frequency and system

parameters, where multiple periodic solutions and unstable branches of periodic responses are detected. The application of

the IHB method in combination with continuation technique for determination of the response amplitude - base amplitude

is the key difference com pared to the previous research [23] . The focus is directed to the determination of voltage responses

of load resistors, which are shown to be significantly influenced by the excitation frequency, the nonlinear stiffness parame-

ter, and the resistance load. Further analysis demonstrates how the system parameters affect the localization of the system’s

energy to the NES mass. The results obtained by the IHB method are verified against the Runge-Kutta method and also

against the relevant results from the literature. 

2. Nonlinear energy sink - energy harvester model 

Let us consider the NES-EH device model formed as a two-mass system coupled by a nonlinear spring and a linear

damper, which is subjected to external harmonic base excitation (see Fig. 1 ). In general, the device is based on two con-

nected oscillators where m p represents a primary mass of the main structure (linear oscillator) while m a is the attached

mass of the nonlinear absorber i.e. the nonlinear energy sink (nonlinear attachment). The terms k p and c p represent, re-

spectively, the stiffness and the damping of the linear spring and dash-pot. The model proposed in this study is given as

a two-degree of freedom NES, where masses m p and m a are connected through a nonlinear spring (with stiffness k n ) and

a linear damper (with damping c a ). The total damping c a consists of the mechanical c am 

and electrical part c e . The base

is harmonically excited y (t) = Y sin �t, where Y is the amplitude and � is the excitation frequency. The energy harvesting

mechanism for the conversion of the mechanical vibration to the electric energy and the corresponding voltage is based on

the electromagnetic phenomenon, where the magnet axially oscillates between two coils placed on the main structure as

shown in Fig. 1 . Mathematical model of the simplified NES-EH model is given in the following form 

m p ̈x p + c p ̇ x p + k p x p − c a ( ̇ x a − ˙ x p ) − k a (x a − x p ) − k n (x a − x p ) 
3 = k p y (t) + c p ̇ y (t) , (1)

m a ̈x a + c a ( ̇ x a − ˙ x p ) + k a (x a − x p ) + k n (x a − x p ) 
3 = 0 , (2)

where x p and x a are displacements of the linear subsystem and nonlinear attachment, while k a and k n are the linear and

nonlinear stiffnesses, respectively. The time derivative ˙ (·) is used to represent d ( · )/ dt , while total damping c a is given by

the formula 

c a = c e + c am 

= 

k 2 t 

2 R coil + R load 

+ c am 

, (3)

where k t is the transduction factor, R coil is the resistance of one coil and R load is the resistance of the load resistor as given

in [24] . As discussed in [24] , estimated amount of harvested energy is equal to the summation of a power dissipated at the
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load resistor over the time period T , which is given as 

E load = 

∫ T 

0 

P load dt, (4) 

where P load is the power dissipated by the load resistor defined as 

P load = i (t) v (t) = i 2 R load = 

k 2 t R load 

(2 R coil + R load ) 2 
˙ z 2 , (5) 

where the term z = (x a − x p ) is the relative displacement between the displacements of the primary structure and NES

attachment, i ( t ) is the current induced in the coil and v ( t ) is the corresponding voltage. 

To analyse the periodic responses of the presented model and their bifurcations by using the IHB and continuation meth-

ods, we introduce some simplifications in Eq. (1) . First, we introduce a new time scale τ = �t and then a new coordinate

z = x a − x p , which yields (
�

ω p 

)
2 ẍ p + �� ˙ x p + x p − λ� ˙ z − kz − Kz 3 = Y sin (τ ) + ��Y cos (τ ) , (6) (

�

ω a 

)
2 ( ̈x p + z̈ ) + λ� ˙ z + kz + Kz 3 = 0 , (7) 

where new parameters are defined as 

ω p = 

√ 

k p 

m p 
, ω a = 

√ 

k p 

m a 
, � = 

c p 

k p 
, λ = 

c a 

k p 
, k = 

k a 

k p 
, K = 

k n 

k p 
. 

and the time derivative operator ˙ (·) takes on a new form d ( · )/ d τ . 

3. The incremental harmonic balance method 

The main advantages of the IHB method are the possibility for obtaining the semi-analytical solution of a system of

nonlinear differential equations and an easy implementation of the continuation algorithm for tracing the responses curves.

Moreover, in comparison to standard perturbation methods, there is no need to introduce a small scale parameter for sys-

tems with strong nonlinearity. In [28] , the authors developed a methodology based on IHB method, Floquet theory and

continuation method to analyse complex dynamic behaviour of a nonlinear dynamic system. Among others, an interesting

application of this methodology to nonlinear problems in structural dynamics, especially to nonlinear vibration of beams

[29–31] , should be mentioned. However, the IHB method was applied in many other engineering problems ranging from the

analysis of the nonlinear dynamic behaviour of a floating body [32] or the subharmonic resonance of a general piecewise-

linear stiffness system [33] , to the vibration suppression using a nonlinear energy sink [34] . In this paper, the main focus is

pointed toward tracing the response amplitude - base amplitude and frequency-amplitude responses of the NES-EH model

as well as the estimation of EH response voltage for different values of the amplitude of external base excitation and de-

tection of bifurcation points. The first step in the IHB method is to introduce the incremental relations for Y, z and x p ,

Y = Y 0 + �Y, z(τ ) = z 0 (τ ) + �z(τ ) , x p (τ ) = x p0 (τ ) + �x p (τ ) , (8)

where Y 0 , z 0 and x p 0 represent a known vibration state, and �Y , �z and �x p are the corresponding increments of the

amplitude of excitation load and amplitudes of displacements z and x p , respectively. By assuming the periodic solutions of

the displacements z ( τ ) and x p ( τ ), the functions ( z 0 ( τ ), �z ( τ )) and ( x p 0 ( τ ), �x p ( τ )) can be taken in the Fourier series as 

x p0 (τ ) = a 10 + 

N h ∑ 

n =1 

[ a 1 n cos (nτ ) + b 1 n sin (nτ ) ] = C A 1 , (9) 

�x p (τ ) = �a 10 + 

N h ∑ 

n =1 

[ �a 1 n cos (nτ ) + �b 1 n sin (nτ ) ] = C �A 1 , 

z 0 (τ ) = a 20 + 

N h ∑ 

n =1 

[ a 2 n cos (nτ ) + b 2 n sin (nτ ) ] = C A 2 , 

�z(τ ) = �a 20 + 

N h ∑ 

n =1 

[ �a 2 n cos (nτ ) + �b 2 n sin (nτ ) ] = C �A 2 , 

where 

C = [ 1 cos (τ ) cos (2 τ ) . . . cos (N h τ ) sin (τ ) sin (2 τ ) . . . sin (N h τ ) ] , 
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A s = 

[
a s 0 a s 1 a s 2 . . . a sN h b s 1 b s 2 . . . b sN h 

]
T , 

�A s = 

[
�a s 0 �a s 1 �a s 2 . . . �a sN h �b s 1 �b s 2 . . . �b sN h 

]
T , (s = 1 , 2) . 

By inserting relations Eq. (8) and Eq. (9) into Eq. (6) and Eq. (7) and neglecting the higher order terms including �x 2p
and �z 2 , linearised differential motion equations are obtained in the following form (

�

ω p 

)
2 �ẍ p + ��� ˙ x p + �x p − λ�� ˙ z − k �z − 3 Kz 2 0 �z (10)

= −
[(

�

ω p 

)
2 ẍ p0 + �� ˙ x p0 + x p0 

]
+ 

[
λ� ˙ z 0 + kz 0 + Kz 3 0 

]
+ Y 0 ( sin (τ ) + �� cos (τ )) + �Y ( sin (τ ) + �� cos (τ )) , 

and (
�

ω a 

)
2 �z̈ + λ�� ˙ z + k �z + 3 Kz 2 0 �z + 

(
�

ω a 

)
2 �ẍ p (11)

= −
[(

�

ω a 

)
2 z̈ 0 + λ� ˙ z 0 + kz 0 + Kz 3 0 

]
−

[(
�

ω a 

)
2 ẍ p0 

]
. 

Then, the Galerkin procedure (i.e. orthogonality conditions for trigonometric functions [35] ) is applied in order to elimi-

nate τ as 

< g(τ ) , f (τ ) > = 

1 

2 π

∫ 2 π

0 

f (τ ) g(τ ) dτ = 0 . (12)

Applying the Galerkin procedure to the Eq. (10) and Eq. (11) , yields ∫ 2 π

0 

C 

T 

[(
�

ω p 

)
2 C̈ + �� ˙ C + C 

]
d τ�A 1 −

∫ 2 π

0 

C 

T 
[
λ� ˙ C + k C + 3 Kz 2 0 C 

]
d τ�A 2 (13)

= −
∫ 2 π

0 

C 

T 

[(
�

ω p 

)
2 C̈ + �� ˙ C + C 

]
d τA 1 + 

∫ 2 π

0 

C 

T 
[
λ� ˙ C + k C + Kz 2 0 C 

]
d τA 2 + 

+ 

∫ 2 π

0 

C 

T 
[ Y 0 ( sin (τ ) + �� cos (τ )) + �Y ( sin (τ ) + �� cos (τ )) ] dτ, 

∫ 2 π

0 

C 

T 

[(
�

ω a 

)
2 C̈ + λ� ˙ C + k C + 3 Kz 2 0 C 

]
d τ�A 2 + 

∫ 2 π

0 

C 

T 

[(
�

ω a 

)
2 C̈ 

]
d τ�A 1 (14)

= −
∫ 2 π

0 

C 

T 

[(
�

ω a 

)
2 C̈ + λ� ˙ C + k C + Kz 2 0 C 

]
d τA 2 −

∫ 2 π

0 

C 

T 

[(
�

ω a 

)
2 C̈ 

]
d τA 1 . 

which leads to the following system of algebraic equations [
K 11 K 12 

K 21 K 22 

]{
�A 1 

�A 2 

}
= 

{
F 1 
0 

}
+ 

[
R 11 R 12 

R 21 R 22 

]{
A 1 

A 2 

}
+ 

{
V 1 

0 

}
�Y. (15)

The general form is given as 

K �A = R + V �Y, (16)

where 

K = 

[
K 11 K 12 

K 21 K 22 

]
, �A = 

{
�A 1 

�A 2 

}
, R = 

{
F 1 
0 

}
+ 

[
R 11 R 12 

R 21 R 22 

]{
A 1 

A 2 

}
, V = 

{
V 1 

0 

}
. 

where the matrices are defined as 

K 11 = 

∫ 2 π

0 

{(
�

ω p 

)
2 C 

T C̈ + ��C 

T ˙ C + C 

T C 

}
dτ, (17)

K 12 = −
∫ 2 π {

λ�C 

T ˙ C + (k + 3 Kz 2 0 ) C 

T C 

}
dτ, 
0 
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K 21 = 

∫ 2 π

0 

{(
�

ω a 

)
2 C 

T C̈ 

}
dτ, 

K 22 = 

∫ 2 π

0 

{(
�

ω a 

)
2 C 

T C̈ + λ�C 

T ˙ C + (k + 3 Kz 2 0 ) C 

T C 

}
dτ, 

F 1 = 

∫ 2 π

0 

{
Y 0 C 

T sin (τ ) + ��Y 0 C 

T cos (τ ) 
}

dτ, 

V 1 = 

∫ 2 π

0 

{
C 

T sin (τ ) + ��C 

T cos (τ ) 
}

dτ, 

R 11 = −
∫ 2 π

0 

{(
�

ω p 

)
2 C 

T C̈ + ��C 

T ˙ C + C 

T C 

}
dτ, 

R 12 = 

∫ 2 π

0 

{
λ�C 

T ˙ C + (k + Kz 2 0 ) C 

T C 

}
dτ, 

R 21 = −
∫ 2 π

0 

{(
�

ω a 

)
2 C 

T C̈ 

}
dτ, 

R 22 = −
∫ 2 π

0 

{(
�

ω a 

)
2 C 

T C̈ + λ�C 

T ˙ C + (k + Kz 2 0 ) C 

T C 

}
dτ. 

In order to analyse the frequency response, i.e. the effects of varying excitation frequency � on the vibration amplitude,

� = �0 + ��, Y 0 −→ Y and Eq. (8) are introduced into Eq. (6) and Eq. (7) to obtain a new system of algebraic equations as [
K 11 K 12 

K 21 K 22 

]{
�A 1 

�A 2 

}
= 

{
F 1 
0 

}
+ 

[
R 11 R 12 

R 21 R 22 

]{
�A 1 

�A 2 

}
+ 

{
V 1 

V 2 

}
��, (18) 

where the only difference with respect to Eq. (15) lies in the vector that multiplies ��, which is given as 

V 1 = 

∫ 2 π

0 

{
�Y C 

T cos (τ ) 
}

d τ −
∫ 2 π

0 

{
2 

�0 

ω 

2 
p 

C 

T C̈ + �C 

T ˙ C 

}
d τA 1 + 

∫ 2 π

0 

{
λC 

T ˙ C 

}
d τA 2 , (19) 

V 2 = −
∫ 2 π

0 

{
2 

�0 

ω 

2 
a 

C 

T C̈ 

}
d τA 1 −

∫ 2 π

0 

{
2 

�0 

ω 

2 
a 

C 

T C̈ + λC 

T ˙ C 

}
d τA 2 . 

It should be noted that Eq. (15) and Eq. (18) are systems of linear algebraic equations in terms of the unknown incre-

ments of amplitudes �A s , whose solution can be found by using the Newton - Raphson iterative procedures. Here, the solu-

tion procedure is divided into two main steps. First, the initial values of A s 0 , �0 or Y 0 in Eq. (15) or Eq. (18) are assumed in

such a manner that the tangent stiffness matrix K is not singular. Second, by using the iterative Newton - Raphson method,

relations Eq. (15) and Eq. (18) are solved, where the results for �A s are obtained iteratively by solving the �A = K 

−1 R until

the residue Euclidian norm ‖ R ‖ is smaller than the pre-set tolerance. Here, the norm of the residuum vector is adopted as

‖ R ‖ ≤ 10 −9 . In every iteration there is A 

p+1 
s = A 

p 
s + �A 

p+1 
s for the fixed value of �0 or Y 0 . In that case, the corrective vector

term R tends to zero when the values of x p 0 ( τ ) and z 0 ( τ ) tend to exact solutions. It is important to note that the matrices

and vectors given in the previous relations are derived in analytical form (e.g. using the software Wolfram Mathematica or

MAPLE), which saves a significant amount of time for the calculation of the incremental solution. 

4. Stability of the periodic solution - Floquet theory 

After finding the periodic solution in the form of Fourier series given in Eq. (9) , the stability of thus obtained solution

can be investigated by introducing a methodology based on the Floquet theory [31,32] . By using the Floquet theory in R 

N 

for the system of nonlinear differential equations, the general form can be written as 

W ( ̈y , ˙ y , y , Y, τ ) = 0 , (20) 

where y = [ y 1 ( τ ) , y 2 ( τ ) , . . . y N ( τ ) ] is the N - dimensional displacement vector and 

˙ y = d y /d τ . By inserting small perturba-

tions �y ( τ ) in a neighbourhood of the periodic solution y 0 ( τ ), i.e. by letting 

y = y 0 + �y ( τ ) , (21) 
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the stability of periodic solutions can be analysed by introducing the linearised system of differential equations with variable

coefficients in terms of small perturbations �y ( τ ). Introducing Eq. (21) into the system of Eq. (20) , after linearisation we

obtain the system of linear differential equations with time periodic coefficients as (
∂W 

∂ ̈y 

)
0 

�ÿ ( τ ) + 

(
∂W 

∂ ̇ y 

)
0 

� ˙ y ( τ ) + 

(
∂W 

∂y 

)
0 

�y ( τ ) = 0 , (22)

where y 0 ( τ ) = [ x p (τ ) , z(τ )] T is the periodic solution determined by the IHB procedures. It should be noted that Eq. (22) rep-

resents the system of perturbed equations in the vicinity of the known periodic solutions y 0 ( τ ). The stability characteristics

of the known periodic solutions are found through the multi-variable Floquet theory. Transformation of Eq. (22) into the

state-space form yields 

dY 

dτ
= P ( τ ) Y , (23)

where Y ( τ ) = [�y , � ˙ y ] T and P ( τ ) denotes the periodic matrix with the period T . 

The stability criteria based on the Floquet theory [28,36] for finding the periodic solutions of the system of equations

Eq. (6) and Eq. (7) is based on determination of the Floquet multipliers (i.e. determination of eigenvalues of the monodromy

matrix M [28,31] ). In the case when all values of Floquet multipliers are located inside the unit circle centred at the origin

of the complex plane, the periodic solutions are stable or asymptotically stable. In contrast to this, when Floquet multipliers

lie outside of the unit circle the periodic solutions are unstable [36] . Depending on a location where the Floquet multipliers

or a pair of complex conjugate multipliers crosses the unit circle, one can detect different bifurcation points such as Hopf,

Saddle-node, and period of doubling bifurcations [36,37] . In the following, the so-called Hsu procedure for the numerical

determination of Floquet multipliers [28,30,38] is adopted. It is assumed that the period T = 2 π of y 0 ( τ ) is divided into N k

sub-intervals, in which the k -th interval is �k = τk − τk −1 for τk = kT /N k . Moreover, P ( τ ) is the continuous periodic matrix

with respect to τ , such that it can be replaced by a constant matrix in the k -th interval for the case when N k is chosen to

be sufficiently large, as 

P k = 

1 

�k 

∫ τk 

τk −1 

P ( τ ) dτ, (24)

where the transition matrix can take the following form 

M = 

N k ∏ 

i =1 

e P i �i = 

N k ∏ 

i =1 

( 

I + 

N j ∑ 

j=1 

( P i �i ) 
j 

j! 

) 

, (25)

in which N j denotes the number of terms in the approximation of the constant matrix P k . From the transition matrix M one

can obtain Floquet multipliers as eigenvalues of Eq. (25) in the form 

det ( M − σ I ) = 0 . (26)

For the presented mathematical model given in Eq. (6) and Eq. (7) , by considering z = x a − x p , the periodic matrix P ( τ )

has the following form 

P (τ ) = −

⎡ 

⎢ ⎣ 

0 −1 0 0 

C 1 
A 1 

B 1 
A 1 

E 1 
A 1 

D 1 
A 1 

0 0 0 −1 

E 2 
A 2 

D 2 
A 2 

C 2 
A 2 

B 2 
A 2 

⎤ 

⎥ ⎦ 

, (27)

where coefficients are given as 

A 1 = 

(
�

ω p 

)
2 , B 1 = �( � + λ) , C 1 = 1 + k + 3 K(x 2 a 0 − 2 x a 0 x p0 + x 2 p0 ) , 

D 1 = −�λ, E 1 = −k − 3 K(x 2 a 0 − 2 x a 0 x p0 + x 2 p0 ) , 

A 2 = 

(
�

ω a 

)
2 , B 2 = �λ, C 2 = k + 3 K(x 2 a 0 − 2 x a 0 x p0 + x 2 p0 ) , 

D 2 = −�λ, E 2 = −k − 3 K(x 2 a 0 − 2 x a 0 x p0 + x 2 p0 ) . 

The terms x a 0 ( τ ) and x p 0 ( τ ) are determined in the form of Fourier’s series. According to the convergence study based on

the transition matrix obtained by the Hsu’s procedure [38,39] the following values are adopted N k = 50 0 0 and N j = 5 . 
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Fig. 2. The illustration of an arc-length continuation scheme for a response curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Continuation method in combination with IHB 

To trace the frequency-amplitude or response amplitude - base amplitude curves, the solution procedure starts from an

arbitrary initial vibration state (it can be started from some linear solution far away from the resonance state or with a small

value of excitation force amplitude). Then, point-to-point calculation is performed by using the �Y incremental equation

Eq. (15) or �� incremental equation Eq. (18) to obtain the corresponding response curves, as shown in [40] . However, this

solution procedure can fail if some limit points (such as turning points) are encountered or solution curve forms a loop

(when the curve cuts itself). In such cases, standard incremental relations formed directly from the IHB methodology do not

yield satisfying results. In order to trace response curves in the entire frequency or force amplitude range, and to eliminate

failures due to the limit points, one may use the arc-length continuation techniques in combination with the IHB method.

Here, a methodology known as the predictor-corrector method based on the arc-length continuation [30,36] is employed. 

Fig. 2 shows the scheme how the arc-length continuation method works when tracing the periodic solution response

curves. In order to trace the response curve, two initial points (X i −2 , X i −1 ) should be first determined by the IHB method

and then by introducing the arc-length continuation parameter η one can find a slope in the following form 

X 

′ = 

X i −1 − X i −2 

‖ 

X i −1 − X i −2 ‖ 

, (28) 

where X is the vector X = [ A , Y ] T or X = [ A , �] T , depending on the response curve, which is necessary to trace the

frequency-amplitude or response amplitude - base amplitude curves. The first predicted solution of the next point X i on

the solution branch is given by the formula 

X p = X i −1 − �ηX 

′ , (29) 

Now, a corrected solution can be found by using the Newton - Raphson method, where the starting point is the first

predicted solution of X i on the tracing branch (i.e. X p ). Before that step, one should extend the system given in equations

Eq. (15) or Eq. (18) by an augmented equation 

g(X ) − η = 0 . (30) 

Based on the methodology from [28,29,37] , the quadratic form of the pseudo arc-length method and function g(X ) = X 

T X

are adopted, where the incremental relation for Eq. (30) is given as 

∂g 

∂A 

T 
�A + 

∂g 

∂Y 
�Y + g − η − �η = 0 , (31) 

By considering the extended system, i.e. combining Eq. (18) and Eq. (31) , the system of incremental equations for tracing

the response amplitude - base amplitude curves can be obtained as ⎡ 

⎣ 

K 11 K 12 −V 1 

K 21 K 22 −V 2 {
∂g 
∂A 1 

}T {
∂g 
∂A 2 

}T ∂g 
∂Y 

⎤ 

⎦ 

{ 

�A 1 

�A 2 

�Y 

} 

= 

{ 

R 1 

�R 2 

�η − g 

} 

, (32) 

where 

R 1 = F 1 + [ R 11 ] A 1 + [ R 12 ] A 2 , 

R 2 = [ R 21 ] A 1 + [ R 22 ] A 2 . 

For tracing the frequency-amplitude response curve, the same methodology can be employed by combining the

Eq. (18) and Eq. (31) and adopting X = [ A , �] T . 
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Table 1 

Material parameters of the pre- 

sented nonlinear NES-EH model. 

Parameter Value 

m p 0.917 kg 

m a 0.061 kg 

k p 4870 N/m 

c p 1.3747 Ns/m 

k a 50.81 N/m 

k n 9.539 × 10 7 N/m 

3 

c am 0.17 Ns/m 

k t 5.03 Tm 

Y 8 × 10 −5 m 

R coil 6 �

Fig. 3. The frequency-amplitude response curve for different values of the resistance load R load , response amplitude ratios (a) A 11 / Y and (b) A 21 / Y ; (c) The 

frequency-response diagram of the primary structure A 11 / Y without the NES mass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Parametric study 

This section is divided into two main parts. In the first part, a comparative study of the results obtained in the present

work against the results given by Kremer and Liu [23] is presented. Based on the IHB and continuation methodology de-

scribed in previous sections, the nonlinear dynamic behaviour of the proposed NES-EH model is studied. Special attention

is devoted to investigation of the periodic responses in the form of frequency-amplitude curves. The periodic orbits ob-

tained by the IHB method are validated with the results obtained by the Runge-Kutta method (ode45 - MATLAB). In the

second part of this section, the influence of the resistance load R load , nonlinear stiffness parameter K and excitation fre-

quency � on the nonlinear response amplitude - base amplitude curves is analysed. The presented analysis of the effect of

change in the amplitude of external base excitation for fixed values of excitation frequency gives a more complete picture of

working conditions of the proposed model, which could be useful in design procedures of NES-EH devices. Moreover, time

response diagrams show the effect of structural parameters and different excitation frequencies on the energy localization

and harvesting performance. In should be noted that all the computations and program codes are developed in the MATLAB

environment. 

6.1. Validation study 

The validation study is performed to show the accuracy of the presented semi-analytical methodology based on the IHB

and continuation methods for tracing the response curves. Material parameters of NES-EH model are given in Table 1 , 

The values of the load resistance are adopted as R load = 12 , 25 , 50 , 100 �. Based on the convergence study given

in numerous papers [31,35,41] , N h = 6 terms are adopted in the Fourier series. Fig. 3 shows the bifurcation diagram that

represents the frequency response for both displacements of the NES-EH system x p ( τ ) and z ( τ ), which are determined in

terms of the Fourier series defined by 

x p (τ ) = A 10 + A 11 cos (τ + φ11 ) + A 12 cos (2 τ + φ12 ) + . . . , (33)

z(τ ) = A 20 + A 21 cos (τ + φ21 ) + A 22 cos (2 τ + φ22 ) + . . . , 

where 

A s 0 = a s 0 , A sn = 

√ 

a 2 sn + b 2 sn , φsn = tan 

−1 (b sn /a sn ) , (s = 1 , 2 ; n = 1 , 2 . . . , 6) . 
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The response diagrams show the influence of resistance load R load when the excitation frequency � varies in the range

8 − 16 Hz. The ordinate axis represents the amplitude ratios A 11 / Y and A 21 / Y for the first harmonic of both displacements

x p ( τ ) and z ( τ ), while the abscissa shows the excitation frequency �. The presented NES-EH model is a two-degree of free-

dom system with two natural frequencies that are determined by neglecting the nonlinear and damping terms in Eq. (9) and

Eq. (15) , which yields 

λ1 / 2 = 

√ 

kω 

2 
p + kω 

2 
a + ω 

2 
p 

2 

±
√ 

1 

4 

(kω 

2 
p + kω 

2 
a + ω 

2 
p ) 

2 − kω 

2 
p ω 

2 
a , (34) 

where the first natural frequency corresponds to f 1 = 

λ1 
2 π = 4 . 565 Hz and it is close to the natural frequency of the at-

tached substructure f a = 4 . 593 Hz. The second natural frequency f 2 = 

λ2 
2 π = 11 . 669 Hz is close to the frequency of a primary

structure f p = 11 . 598 Hz. 

The response diagrams given in Fig. 3 show the dependency between the amplitude and the frequency for the primary

structure system both with ( Fig. 3 (a) and (b)), and without the additional NES device ( Fig. 3 (c)). As stated before, the primary

structure with additional NES device is equivalent to NES-EH system. By comparing the responses of these two systems, a

significant reduction in response amplitude of the system with NES device can be observed, demonstrating the importance

of NES mechanism in vibration suppression. Despite the fact that stability analysis is not performed for these examples,

tracing the response curves can provide many useful insights into the nonlinear behaviour and periodic responses of the

observed systems. 

In Fig. 3 (a), one can observe almost linear change of the frequency - amplitude response curve for an increase of the

excitation frequency � until the value is close to 11 Hz, when the first resonant peak appears. A further increase of the

excitation frequency � leads to almost linear change of the response curve until the excitation frequency reaches the value

close to 12 . 5 Hz, when the response curve forms a loop. This region of coexisting periodic responses within the loop widens

with an increase of the value of the resistance load R load . It should be noted that the second resonant peak appears on the

response curve A 11 at small values of the resistance load. From the physical point of view, such nonlinear response of the

amplitude A 11 is caused by adding the nonlinear attachment to the linear primary structure, which is explained in the

previous studies [9,42] . Moreover, the response amplitude A 11 shows a significant dependence on the resistance load R load 

such that an increase of parameter R load leads to a decrease of the overall system’s damping. In general, for an increase of

the resistance load R load nonlinear phenomena becomes more prominent in the frequency-amplitude response diagrams. 

The second frequency response shows the amplitude ratio A 22 / Y with the hardening spring type nonlinearity, which

implies the jump phenomena. It can be seen that for higher values of the resistance load R load the hardening nonlinearity is

more emphasized, causing the response curve to bend to the right. However, it can be observed that at lower values of the

resistance load R load the response amplitude ratio A 22 / Y changes almost linearly. 

Finally, comparison of the response amplitude ratio A 11 / Y obtained for the primary structure without NES against the re-

sponse amplitudes of NES-EH model in Fig. 3 (c) reveals a significant decrease of the response amplitude due to the attached

NES device. Comparison of the response amplitudes obtained by the IHB and the continuation method given in Fig. 3 and

the results from [23] obtained by combining the mixed multiple scales/harmonic balance method with MATCONT software

[43] shows a fine agreement. 

It should be noted that the periodic time response and phase space diagrams determined by using the IHB methods

for both displacements, x p ( τ ) and x a ( τ ), are validated against the numerical results obtained by the direct numerical in-

tegration (NI) in Matlab (ode 45), Fig. 4 . Values of parameters used in these calculations are given in Table 1 , except for

the values of excitation frequency and resistance load that are adopted as � = ω p and R load = 25 �. One can notice a very

good match between the compared results. Advantages of the IHB method with respect to the perturbation and NI methods

are demonstrated by finding the periodic responses for the system with strong nonlinearity without introduction of the

small scale parameter (unlike in the perturbation methods) and obtaining the semi-analytical results in terms of the Fourier

coefficients. 

6.2. The base amplitude force response of the NES-EH system 

In the following, a nonlinear dynamic behaviour of the NES-EH system within the framework of the IHB and continua-

tion methods is investigated. The obtained results are given in the form of response amplitude - base amplitude response

curves. The material parameters adopted in this numerical investigation are given in Table 1 , where the following values of

resistance loads R load = 12 , 25 , 50 , 100 � and excitation frequency � = 0 . 7 ω p , 0 . 9 ω p , 1 . 1 ω p are adopted. In order

to investigate the influence of the nonlinear stiffness parameter K and NES on the response amplitudes, the following values

of 0 . 1 K, 0 . 4 K and 0 . 8 K are adopted in this section. Any further change of system parameters is additionally mentioned

within the discussion of the obtained results. 

6.2.1. Base amplitude force response diagrams for amplitudes A 11 and A 21 

Figs. 5–9 shows the response amplitude - Base amplitude curves A 11 and A 21 obtained for the displacements x p ( τ ) and

z ( τ ) of the NES-EH system. The response amplitudes are determined in terms of Fourier series from Eq. (33) . The presented

results show the effects of the resistance load R and nonlinear stiffness parameter K on the response amplitude - base
load 
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Fig. 4. The comparison of the response amplitudes obtained by the incremental harmonic balance (IHB) method and direct numerical integration (NI); (a) 

time response and (b) the corresponding phase space. The results obtained by the IHB method are represented by solid lines and results obtained by direct 

NI are represented by discrete markers. 

Fig. 5. The response amplitude - base amplitude curves for different values of the resistance load R load ; a) R load = 12 �, b) R load = 25 �, c) R load = 50 �, 

where � = 0 . 7 ω p . The solid red line represents the response amplitude A 11 , and the dashed blue line is the response amplitude A 21 . The black points 

represent unstable branches of the periodic response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amplitude curves for changes of external base excitation amplitude Y in the range 0 − 0 . 001 m . The ordinate axis represents

the amplitudes A 11 and A 21 while the abscissa shows the base excitation amplitude Y . From the practical point of view, two

cases of excitation frequency � = 0 . 7 ω p and � = 1 . 1 ω p are analysed, i.e. before and after the resonant state. In the case

when the external excitation frequency is close to the natural frequency ω p , the beating phenomenon is detected. Here,

this state can be observed in the case when the excitation frequency takes the following value � = 1 . 1 ω p . A significant

difference in the response curves of the NES-EH system obtained before and after passing through the resonant state can be

observed, which will be explained in detail in the following text. 

Fig. 5 shows the response amplitude - base amplitude of the NES-EH system for the excitation frequency � = 0 . 7 ω p

and load resistance in the range R load = 12 − 50 �. Other material parameters are given in Table 1 . One can notice that

two response amplitude curves A 11 and A 21 show different dynamical behaviour, where in the response curve for A 21 one

can observe a ”hysteresis phenomenon” with coexisting multiple periodic solutions. On the other hand, in the response

curve A 11 one can observe formation of a loop due to NES attachment [9] . An increase of the amplitude of external base

excitation Y , starting from some small value ( 10 −5 m ) leads to an increase of both amplitudes A 11 and A 21 until Y reaches

some value around Y = 0 . 22 × 10 −3 m . Here, periodic solution loses its stability due to the appearance of saddle-node

bifurcation (double green circle). This instability is detected by the calculation of Floquet multipliers, where at least one

of them crosses the unit circle in the complex plane in +1 direction. Fig. 6 shows how Floquet multiplies crossing the

unit circle in the complex plane in +1 direction are determined for the case given in Fig. 5 (c). It should be noted that

the unstable branch of the periodic solutions is located between two saddle-node bifurcation points (double green circles),
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Fig. 6. The Floquet multipliers crossing the unit circle in the complex plane in +1 direction, determined for the case given on Fig. 5 (c), where the R load = 

50 �. The solid red line represents the unit circle in the complex plane, and the blue points are the Floquet multipliers. 

Fig. 7. The response amplitude - base amplitude curves for different values of the nonlinear stiffness parameter K ; a) 0.1 K , b) 0.4 K , c) 0.8 K , where � = 

0 . 7 ω p and R load = 25 �. The solid red line represents the response amplitude A 11 , and the dashed blue line is the response amplitude A 21 . The black 

points represent unstable branches of the periodic response. 

Fig. 8. The response amplitude - base amplitude curves for different values of the resistance load R load ; a) R load = 12 �, b) R load = 25 �, c) R load = 50 �, 

where � = 1 . 1 ω p . The solid red line represents the response amplitude A 11 , and the dashed blue line is the response amplitude A 21 . 
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Fig. 9. The response amplitude - base amplitude curves for different values of the nonlinear stiffness parameter K ; a) 0.1 K , b) 0.4 K , c) 0.8 K , where � = 

1 . 1 ω p and R load = 25 �. The solid red line represents the response amplitude A 11 , and the dashed blue line is the response amplitude A 21 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as shown by both response amplitudes. Further increase of Y , leads to an increase of both response amplitudes until the

value of Y = 1 × 10 −3 m is reached. In addition, by comparing the response amplitudes obtained for different values of

the resistance load R load in the range 12 - 50 �, it can be seen that an increase of the value of resistance load amplifies

the nonlinear behaviour of the system. One can observe that reduction of the electric damping leads to higher vibration

amplitudes of the system and therefore larger branches of unstable periodic response, which is attributed to direct relation

between the resistance load and the electric damping c e . 

In order to investigate the effect of NES on the dynamic behaviour of the proposed NES-EH system, the response ampli-

tude - base amplitude diagrams are traced for different values of the nonlinear stiffness parameter K and shown in Fig. 7 .

It can be observed that an increase of the nonlinear stiffness parameter K leads to a considerable decrease of the response

amplitudes A 11 and A 21 . Here, an increase of the amplitude of external base excitation Y leads to an increase of both am-

plitudes A 11 and A 21 until Y reaches the value of approximately Y = 0 . 62 × 10 −3 m, where the periodic solution loses its

stability due to the appearance of a saddle-node bifurcation (double green circle). It can be noticed that for an increase of

the nonlinear stiffness parameter, the unstable branch of the periodic response is shifted to the left hand side. As expected,

an increase of the nonlinear stiffness parameter leads to a reduction of the unstable branch of the periodic response. 

For an increase in the external excitation frequency ratio �/ ω p the system passes through a resonant state, while for the

fixed value of �/ω p = 1 . 1 , which is close to the resonant frequency, the system shows an interesting nonlinear behaviour

that is known from the literature as the beating phenomenon. Special attention is devoted to this state of the system in

the next section, showing the energy transfer from the primary structure to the NES device when the system is excited

with the frequency close to the resonant one. The nonlinear dynamic behaviour of the NES-EH system excited by the fre-

quency near the resonant one is presented in Figs. 8 and 9 . The obtained response amplitude - base amplitude diagrams for

higher values of excitation frequency are traced for different values of resistance load R load = 12 , 25 , 100 � and nonlinear

stiffness parameters K . One can observe a similar nonlinear properties of the response amplitudes, where the traced curve

A 11 makes a loop while the curve A 21 demonstrates the ”hysteresis phenomenon”. One can notice the coexisting multiple

periodic solutions for both response amplitudes and similar range of values of the amplitude of excitation force Y . However,

comparing the values of excitation frequency far from ( �/ω p = 0 . 7 ), and near the resonance frequency ( �/ω p = 1 . 1 ), one

can notice significantly higher values of the response amplitudes near the resonance state. On the other hand, the nonlinear

behaviour causing the three coexisting periodic solutions appears at smaller values of the external force amplitude Fig. 8 ,

which are detected near Y = 0 . 1 × 10 −3 . Fig. 9 shows that the response amplitudes are also influenced by the changes of the

nonlinear stiffness parameter, where loops are shifted to the left for an increase of K . For practical applications of the pro-

posed nonlinear NES-EH system it is important to note that values of the response amplitude A 11 are significantly smaller

then the response amplitude A 21 for all values of the amplitude of excitation load Y . This is especially obvious at higher

values of excitation frequency � = 1 . 1 ω p . One of the main future tasks will be to find the optimal values of the nonlinear

stiffness parameter and the corresponding mechanical and electrical damping in order to extend the vibration attenuation

capabilities of the proposed NES-EH system. 

6.2.2. The voltage responses curves 

Figs. 10 and 11 illustrate the estimated voltage across the load resistor amplitude A 31 of the proposed NES-EH model

for different values of the resistance load R load = 12 , 25 , 50 , 100 �, nonlinear stiffness parameter 0.1 K , 0.4 K and 0.8 K , and

values of the excitation frequency � = ( 0 . 7 , 0 . 9 , 1 . 1 ) ω p . In [24] , the authors defined the amount of harvested energy as a

summation of the power dissipated by the load resistor over a time period T . According to this definition, the voltage across

the resistor given in Eq. (7) is used for tracing the corresponding response curves of voltage amplitude A 31 for different

values of Y . The amplitude A 31 is defined in a similar way as it has been done for response amplitudes A 11 and A 21 , shown

in Eq. (33) . By increasing the amplitude of base excitation Y , the values of the response amplitude A linearly increase
31 
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Fig. 10. The voltage response curves, for different values of the resistance load R load = 12 , 25 , 50 �, and the excitation frequency � given, (a) � = 

0 . 7 ω p , (b) � = 0 . 9 ω p , (c) � = 1 . 1 ω p . 

Fig. 11. The voltage response curve, for different values of the nonlinear stiffness parameter 0.1 K , 0.4 K and 0.8 K , and the excitation frequency � given, (a) 

� = 0 . 7 ω p , (b) � = 0 . 9 ω p , (c) � = 1 . 1 ω p . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

until they reach the point where the periodic response loses its stability, which leads to the appearance of the jump-up

phenomenon. This process is known as forward force sweeping. Now, if sweeping starts from higher values of the amplitude

of excitation force and goes backwards, the response amplitude A 31 will decrease until the point where the periodic solution

loses its stability leading to the jump-down effect. Moreover, this sweeping process in forward and backward direction

creates a ”hysteresis-loop” or a ”hysteresis-phenomenon”, as stated in the above examples. Moreover, up to three coexisting

periodic solutions can be observed, corresponding to stable, unstable and again stable branches of the periodic responses in

the range where hysteresis loop appears. From the practical viewpoint, especially for energy harvesting application, the range

of values of the excitation amplitude Y with coexisting multiple responses is important for simultaneous output voltage

generation and vibration suppression by the NES-EH system. 

By comparing the periodic responses obtained for different values of the load resistance R load it can be noticed that an

increase of the parameter R load leads to higher values of the response amplitude A 31 , Fig. 10 . The physical explanation of

this phenomenon is attributed to the relationship with the electrical damping c e , where an increase the resistance load

R load reduces the values of the electrical damping. Based on this fact, it can be concluded that reducing the overall damping

in the system leads to higher values of the response amplitudes, which is useful for energy harvesting application. On the

other hand, an increase of the nonlinear stiffness parameter decreases the response amplitude A 31 for all values of excitation

frequency, Fig. 11 . From the physical point of view, this means that an increase of the nonlinear stiffness parameter leads

to an increase of the overall stiffness of the system, while the response amplitude A 31 decreases. Comparing the response

amplitudes obtained for the cases when the excitation frequency is far from ( �/ω p = . 7 ), and close to the resonant frequency

( �/ω p = . 9 and �/ω p = 1 . 1 ), it is evident that the amplitude A 31 has higher values near the resonant state. This could be

of practical significance in design procedures of NES-EH devices by pointing out the adequate values of material parameters

of the system and excitation frequency, which can reduce the unstable branches and eliminate jumps in estimated voltage

responses. 

6.3. Time responses of the NES-EH system 

In order to investigate performances of the proposed NES-EH device in vibration suppression and energy harvesting appli-

cation, the time responses for displacements x p ( t ), x a ( t ) and output voltage v ( t ) diagrams are investigated in this subsection.



D. Karli ̌ci ́c, M. Caji ́c and S. Paunovi ́c et al. / Commun Nonlinear Sci Numer Simulat 91 (2020) 105394 15 

Fig. 12. The time responses of the primary structure for different excitation frequencies, (a) � = 0 . 7 ω p - far from the resonant state and (b) � = 1 . 1 ω p 

- close to the resonant state (beating phenomenon). 

Fig. 13. The time responses of the displacements x p ( t ) and x a ( t ) for different values of the nonlinear stiffness parameter K , (a) 0 . 1 K, (b) 0 . 4 K, (c) 0 . 8 K, 

where � = 0 . 7 ω p and R load = 25 �. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, direct numerical integration is used (ode45 in Matlab) for solving the system given in Eq. (1) and Eq. (2) for different

values of the nonlinear stiffness parameter K , resistance load R load and small values of the amplitude of the external base

excitation Y = 0 . 8 × 10 −4 . From the physical viewpoint, these two parameters are directly related to the overall stiffness and

damping of the presented system. If these are optimally combined, it is possible to achieve both initial aims, i.e. vibra-

tion suppression and energy harvesting. For better understanding of the energy transfer and localisation phenomenon, the

following initial conditions are adopted x p (0) = 3 × 10 −3 m, ˙ x p (0) = 0 in each presented time simulation. The zero initial

conditions for the nonlinear attachment are assumed. It should be pointed out that two groups of simulations are presented

i.e. the case when the excitation frequency is considered to be far from, and the case when it is close to the resonance state.

Fig. 12 shows the time responses of the primary structure without the nonlinear attachment, for two values of the excita-

tion frequencies ( �/ω p = . 7 and �/ω p = 1 . 1 ). When the values of the excitation frequency are close to one of the natural

frequencies of the system, the beating phenomenon emerges. This case is observed in Fig. 12 b), where one can notice the

response in the form of a wave with modulated amplitude. 

Fig. 13 , illustrates time responses of the primary structure x p ( t ) and the nonlinear attachment x p ( t ) for the time period

T = 5 s and for different values of the nonlinear stiffness parameter K . It is evident that introducing the nonlinear attach-

ment as an additional NES mass reduces the response amplitudes, showing very good performance in vibration suppression

application. Due to the energy transfer phenomenon, energy moves from the primary excited structure to the nonlinear

attachment i.e. NES mass, and then dissipates through the mechanical and electrical damping. This phenomenon is man-

ifested in Fig. 13 in the form of a reduced amplitudes of the primary structure. Comparison of the response amplitudes

x p ( t ) from Figs. 12 a) and 13 shows that the amplitude x p ( t ) of the NES-EH device decreases much faster then those of
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Fig. 14. The time responses of voltage across the load resistor for different values of the nonlinear stiffness parameter K , (a) 0 . 1 K, (b) 0 . 4 K, (c) 0 . 8 K, 

where � = 0 . 7 ω p and R load = 25 �. 

Fig. 15. The time responses of the displacements x p ( t ) and x a ( t ) for different values of the nonlinear stiffness parameter K , (a) 0 . 1 K, (b) 0 . 4 K, (c) 0 . 8 K, 

where � = 1 . 1 ω p and R load = 25 �. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the model with only the primary structure. By investigating the influence of the nonlinear stiffness parameter K on the

vibration attenuation, it can be concluded that an increase in the parameter K leads to an increase in the amplitude x a ( t )

at the beginning of the simulation. Moreover, it can be observed that an increase of the nonlinear stiffness extends a time

period that is necessary for attenuation of the response amplitudes x p ( t ) and x a ( t ). At the same time, the energy harvesting

application can be analysed through the series of voltage response diagrams given in Fig. 14 . It can be seen that at lower

values of K , the response voltage v ( t ) has higher values at the beginning of the simulation (maximum response voltage is

close to 1 V ) and then rapidly decreases. On the other hand, for higher values of the non-linear stiffness parameter K , one

can observe a higher peak of the voltage response after which the amplitude of the voltage response gradually decreases

to some finite small value. As already mentioned, setting the excitation frequency close to the resonant one (in this case

� = 1 . 1 ω p ) causes the beating phenomenon implying the reversible energy transfer between the primary structure and

NES mass, Fig. 15 . It can be noticed that the proposed NES-EH device shows advanced energy absorption characteristics,

which is based on the fact that the energy is localized to the NES mass in some short time interval and then dissipated

through damping [3] . Comparing the response diagrams obtained for different values of the nonlinear stiffness parameter

K , it is found that an increase of the values of K decreases the influence of the beating phenomenon. On the other hand,

Fig. 16 shows quite interesting application of beating phenomenon in amplification of the voltage response, which is most

observable for higher values of the nonlinear stiffness parameter K ( Fig. 16 c)). 

To further understand the effects of varying resistance load R load on damping, time responses of the primary structure

x p ( t ) and the nonlinear attachment x a ( t ) are presented in Figs. 17–20 . From the electrical damping relation Eq. (3) , it is

obvious that an increase of the resistance load decreases a value of the electrical damping and therefore overall damping

of the system, leading to larger oscillation amplitudes. Consequently, energy localisation to NES takes longer. Moreover,

significantly higher response voltages are obtained for an increased load resistance R load parameter, thus exhibiting improved

harvesting properties. For higher excitation frequencies � = 1 . 1 ω p , which cause the beating phenomenon, the effects of

the resistance load R load become more prominent. It can be noticed that an increase of the parameter R load leads to larger

oscillations of the amplitude as shown in Fig. 19 . This can blunt the effect of energy localization to NES and even make it

impossible to complete the dissipation process of the transferred energy. Due to this fact, one should be careful during the

design process of the combined NES-EH in order to avoid weak performance of the device. Further, Fig. 20 shows the voltage
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Fig. 16. The time responses of voltage across the load resistor for different values of the nonlinear stiffness parameter K , (a) 0 . 1 K, (b) 0 . 4 K, (c) 0 . 8 K, 

where � = 1 . 1 ω p and R load = 25 �. 

Fig. 17. The time responses of the displacements x p ( t ) and x a ( t ) for different values of the nonlinear stiffness parameter R load , (a) R load = 12 �, (b) R load = 

25 �, (c) R load = 50 �, where � = 0 . 7 ω p . 

Fig. 18. The time responses of voltage across the load resistor for different values of the nonlinear stiffness parameter R load , (a) R load = 12 �, (b) R load = 

25 �, (c) R load = 50 �, where � = 0 . 7 ω p . 

 

 

 

 

 

 

 

responses for different values of the resistance load R load excited in the beating regime. It can be observed that increasing

the resistance load R load reduces the electrical damping effect and, correspondingly, the overall system’s damping, which

yields higher voltage v ( t ). Moreover, from Fig. 20 c) it is apparent that the beating phenomenon becomes more prominent,

which results in higher estimated power of the energy harvester. 

Finally, numerical results show that varying the nonlinear stiffness significantly mitigates the influence of the beating

phenomenon on the response amplitude. Moreover, an increase of the nonlinear stiffness also reduces the estimated voltage

response. From the physical point of view, the resistance load has a significant effect on overall damping in the system and

the corresponding responses. Furthermore, when the system is excited with a frequency close to the resonant state, the
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Fig. 19. The time responses of the displacements x p ( t ) and x a ( t ) for different values of the nonlinear stiffness parameter R load , (a) R load = 12 �, (b) R load = 

25 �, (c) R load = 50 �, where � = 1 . 1 ω p . 

Fig. 20. The time responses of voltage across the load resistor for different values of the nonlinear stiffness parameter R load , (a) R load = 12 �, (b) R load = 

25 �, (c) R load = 50 �, where � = 1 . 1 ω p . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

influence of the resistance load on the response becomes more prominent. Satisfying NES performance is observed in all

presented cases, where energy is localized in short time intervals. 

7. Summary and conclusion 

In this communication, the nonlinear dynamic behaviour of a two-degree of freedom NES-EH system subject to the pe-

riodic base excitation is investigated. The corresponding mathematical model of the system is presented in the form of two

Duffing type nonlinear differential equations, where nonlinearity is introduced through a nonlinear spring. The electromag-

netic phenomenon is employed for the energy harvester mechanism based on a magnet oscillating between two coils placed

on the primary structure. Periodic responses in terms of the Fourier series are obtained by using the incremental harmonic

balance (IHB) method in combination with the arc-length continuation technique, while the stability is investigated by using

the Floquet theory. Completed set of integrals for the IHB method is derived in analytical form in order to reduce the com-

putation time. The presented results show the effects of the attached NES mass to the primary structure response amplitude

mitigation. In order to analyse the influence of different material parameters such as the nonlinear stiffness, resistance load,

frequency and the amplitude of excitation force, the corresponding frequency and force response curves are traced and the

time history diagrams are obtained. 

The main focus in the parametric study is devoted to the analysis of the effects of resistance load and nonlinear stiffness

parameter on the traced response amplitude - base amplitude, frequency-amplitude and time response curves. In conclusion,

this study demonstrates significant influence of both parameters in reducing the response amplitudes of the system, espe-

cially at higher values of the excitation frequency. The unstable branch of the periodic response is detected between two

saddle-node bifurcation points. The time response curves show the influence of NES in vibration attenuation and energy

harvesting performance. The targeted energy transfer case is observed, where energy from the primary structure goes to

the NES subsystem in very short time, i.e. the effect of energy localization occurs. The estimated output voltage during the

vibration of NES-EH system appears to be significant and it is demonstrated that the system analysed herein can perform

simultaneously as an energy source and vibration attenuation device. 
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