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An efficient semi-numerical framework is used in this paper to analyze the dynamic model of an axially moving 

beam with a nonlinear attachment composed of a nonlinear energy sink and a piezoelectric device. The govern- 

ing equations of motion of the system are derived by using the Hamilton’s principle with von Karman strain- 

displacement relation and Euler - Bernoulli beam theory. The nonlinear energy sink is modeled as a lumped - 

mass system composed of a point mass, a spring with nonlinear cubic stiffness and a linear viscous damping ele- 

ment. The piezoelectric device is placed in the ground configuration. Frequency response curves of the presented 

nonlinear system are determined by introducing the incremental harmonic balance and continuation method 

for different values of material parameters. Based on the Floquet theory, the stability of periodic solutions was 

determined. Moreover, the presented results are validated with the results obtained by a numerical method as 

well as the results from the literature. Numerical examples show a significant effect of the nonlinear attachment 

on frequency response diagrams and vibration amplitude reduction of the primary beam structure. 
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. Introduction 

Vibration studies of axially moving and spinning beams have at-

racted considerable attention of the scientific community since such

odels are extensively used in different industrial fields and aerospace

ngineering. Some typical examples of the engineering applications in-

lude, but are not limited to, rotary drill-strings in oil wells, drilling ma-

hines in manufacturing, Cardan shafts of automobiles, extrusion pro-

esses, deployment of appendages in space, robotic manipulators, tele-

copic members of loading vehicles, machine tools and chain-saw blades

1–3] . However, undesired vibration and instabilities can cause failures

f such structures over time and it is crucial to reduce vibration ampli-

udes by using passive, semi-active or active vibration absorbers or any

ombination there of [4] . 

In a wide spectrum of engineering applications, a nonlinear energy

ink (NES) is introduced as a passive nonlinear vibration absorber. The

ain feature of the NES is to transfer the mechanical energy from a pri-

ary structure to the nonlinear attachment. This concept has several

dvantages such as simple configuration, high robustness and broad-

and vibration attenuation properties [4,5] . It is well known that lin-

ar vibration absorbers attenuate vibrations of the main structure by

edistribution of its vibration energy through spring and attached ad-

itional masses. However, NES composed of a nonlinear spring, weak

amper and a point mass has wider frequency bandwidth of attenua-
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ion due to strong nonlinear stiffness. The first model of NES was in-

roduced by Vakakis and his co-workers [6–8] . Afterwards, this concept

volved with the introduction of different nonlinear characteristics such

s the nonlinear cubic stiffness [6] , polynomial stiffness [9] , non-smooth

tiffness [10] , different types of the nonlinear damping models [11] ,

ibro-impact models [12] , chatter control [13] and multiple degrees of

reedom NES systems [14,15] . Moreover, the combination of NES with

n energy harvesting device allows conversion of mechanical energy to

lectrical energy as shown in [16] . The main physical phenomenon that

ccurs in NES is the targeted energy transfer (energy pumping), where

 certain amount of mechanical energy given to the main structure is

ransiently transmitted to NES, as shown in some experiments [17,18] . 

One particular application of NES attachments is in structural dy-

amic models, where the primary structure is based on continuous ele-

ents such as strings [19] , beams [20] , pipes [21] , plates [22] or wings

23] . Recently, the interest in such models has increased, especially in

echanical, civil engineering and aerospace applications for vibration

uppression and control. For example, in some research work, special

ttention is paid to axially-moving structures with NES [24] , where the

uthors mostly considered linear models for primary structures with

onlinear attachments. Moreover, the problems with nonlinear axially

oving strings or beams with NES or NES-EH models are addressed in a

imited number of studies. In this paper, our attention will be primarily

ocused on the application of a nonlinear model of an axially moving
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Fig. 1. Mechanical model of an axially moving beam with a nonlinear attach- 

ment, a) Nonlinear energy sink (NES), and b) Nonlinear energy sink with an 

energy harvester NES-EH. 
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eam with NES-EH device. In the series of papers, Li-Qun Chen and co-

orkers analyzed different structural models with NES, starting from a

ew discrete NES with inertia [25,26] , axially moving beam with NES

nd considered thermal shock and impulse induced vibration [27,28] ,

nd finally vibration reduction in a spacecraft [29] . They used both the-

retical and experimental approaches in order to analyze the effects of

ES on primary structures. Zhang et al. [30] successfully controlled vi-

ration response of an axially moving string by introducing NES into

he system, where a numerical approach was employed to obtain the

requency response of the system. On the other hand, Zulli and Luongo

31,32] have shown the effect of the attached NES on the vibration of

 nonlinear string model by using the perturbation multiple scales and

armonic balance methods based on transient analyses for both the in-

ernal resonant and non-resonant cases. 

In recent years, there has been an increased effort to develop effi-

ient energy harvesting devices [33] . Different NES configurations cou-

led with energy harvesting devices were addressed in the literature to

chieve both efficient vibration suppression and energy harvesting. Kre-

er and Liu [34] investigated energy harvesting using a nonlinear en-

rgy sink of a specific configuration with essential non-linearity and low

amping. They studied the transient behavior of the system and demon-

trated that the proposed apparatus is capable of harvesting energy in a

roadband manner. In another study, the same group of authors [35] fo-

used on harmonically forced responses of the system and investigated

he steady-state responses analytically and experimentally. The results

ave shown typical behavior for NES and broadband energy harvest-

ng and vibration attenuation capabilities. Zhang et al. [36] developed

n energy harvester utilizing the localized vibration energy from NES,

here the electrical energy is obtained by using the direct piezoelectric

ffect. Through the experimental and numerical analysis, the authors

onfirmed that NES based piezoelectric energy harvester is effective in

ibration suppression of the primary system with significant broadband

oltage output. Another approach in the analysis of the dynamics of a

onlinear energy sink with an integrated piezoelectric energy harvester

as applied in a paper by Li et al. [37] , where the complexification-

veraging method was employed to examine vibration absorption and

tudy the dynamic behavior of the observed system. Another concept of

nergy harvesters coupled with NES was used by Blanchard et al. [38] ,

here vortex-induced vibration (VIV) of a cylinder is suppressed with an

nternal dissipation due to rotational NES. They designed NES suggest-

ng its application in energy harvesting from VIV in submarine flows

n order to generate electric power. Recently, Rasil Raj and Santhosh

39] studied the two-degree-of-freedom nonlinear system acting simul-

aneously as a vibration absorber and an energy harvester. The authors

sed the multi-harmonic balance method together with the arc-length

ontinuation to generate frequency response curves for different values

f system parameters. They additionally contributed to this subject by

erforming the optimization procedure based on genetic algorithm in

ombination with response surface methodology to generate the opti-

al frequency response of a multi-functional energy harvesting system.

The main purpose of this paper is to analyze a novel model of axially

oving nonlinear beam with an attached NES-EH device for vibration

eduction purposes. Moreover, by introducing the nonlinear attachment

n the ground configuration the classical NES can be extended with EH,

hus, producing a unified device for vibration control as shown in [7,40] .

n order to study the proposed nonlinear system, we will introduce the

ethodology based on the IHB, Floquet stability theory and continua-

ion methods for obtaining the amplitude-frequency responses in the the

rimary resonance state. The mathematical model of the axially moving

eam is derived by using the Hamilton principle and the Euler-Bernoulli

eam theory, and it is afterwards discretized by the Galerkin method.

he effect of the NES-EH attachment on the axially moving beam is pre-

ented in frequency response diagrams and verified with the results from

he literature. In general, the proposed methodology is suitable for de-

ermination of the amplitude-frequency curves of a strongly nonlinear

ystem. The accuracy of the IHB method was demonstrated by compar-
2 
ng the results with those obtained through direct numerical integration

nd fine agreement is achieved. From the physical viewpoint, the axi-

lly moving beam with the nonlinear attachment, composed of coupled

ES and EH devices, can be used as a tensioner in the belt drive system

41] , which is an excellent example of the application of coupled NES-

H devices for simultaneous vibration reduction and energy harvesting

urposes. 

. Problem formulation 

.1. Mechanical model 

Let us consider a slender axially moving beam influenced by a trans-

erse periodic force 𝐹 ( 𝑥, 𝑡 ) , with a NES and a piezoelectric device at-

ached at distance d from the origin, as shown in Fig. 1 . It is assumed

hat the transport velocity is constant V and the attachment is modeled

s a lumped - mass system. The mechanical model of the nonlinear en-

rgy sink is composed of one nonlinear spring (of stiffness k ) and one

inear dashpot element (of damping b ) connected to the point mass m .

oreover, the piezoelectric device is placed in ground configuration,

here stiffness, loaded resistance and capacitance are given as 𝑘 𝑝 , 𝑅, 𝐶 𝑝 ,

espectively. The piezoelectric device is introduced for the EH purpose.

he adopted model of the axially moving beam is based on the Euler -

ernoulli beam theory with the following properties: Youngs modulus

, mass density 𝜌, length 𝐿, cross-section area 𝐴, the moment of inertia

, and simply supported boundary conditions. The 𝑥 -coordinate is taken

long the length of the axially moving beam and the 𝑧 -coordinate is in

he thickness direction of a beam. It should also be noted that the bend-

ng vibration of an axially moving beam occurs in the thickness direction

ith transverse displacement denoted by 𝑤 ( 𝑥, 𝑡 ) and axial displacement

y 𝑢 ( 𝑥, 𝑡 ) . 
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.2. The equations of motion 

In order to derive a differential equation of motion of the axially

oving beam, we will introduce a few assumptions. First, we neglect

he cross-sectional rotary inertia and the shear deformation, in line with

he Euler - Bernoulli beam theory. Secondly, we assume that the beam

s influenced by the constant tension force 𝑃 during movement with

onstant transport speed 𝑉 . We introduce two reference systems where

he first one is inertial, based on the origin with unit vectors e 𝑥 , e 𝑧 and

he corresponding coordinates ( 𝑥, 𝑧 ), with the frame e �̃� , e �̃� moving in

he 𝑥 direction with speed 𝑉 . In this case, the displacement and the

elocity vector of an arbitrary point 𝑀 of the axially moving beam are

iven as 

 𝑀 

( 𝑥, 𝑡 ) = [ 𝑢 ( 𝑥, 𝑡 ) + 𝑥 ( 𝑡 ) ] e 𝑥 + 𝑤 ( 𝑥, 𝑡 ) e 𝑧 , (1)

 𝑀 

( 𝑥, 𝑡 ) = 

𝑑 p 𝑀 

𝑑𝑡 
( 𝑥, 𝑡 ) = 

[
𝑢, 𝑡 + 𝑢, 𝑥 𝑉 + 𝑉 

]
e 𝑥 + ( 𝑤, 𝑡 + 𝑤, 𝑥 𝑉 ) e 𝑧 , (2)

here 𝑉 = 

𝑑𝑥 

𝑑𝑡 
. The constitutive equation is given in the following form

𝑥𝑥 ( 𝑥, 𝑡 ) = 𝐸𝜀 𝑥𝑥 ( 𝑥, 𝑡 ) = 𝐸 

[
𝑢, 𝑥 − 𝑧𝑤, 𝑥𝑥 + 

1 
2 
( 𝑤, 𝑥 ) 2 

]
, (3)

here 𝜎𝑥𝑥 ( 𝑥, 𝑡 ) and 𝜀 𝑥𝑥 ( 𝑥, 𝑡 ) represents the normal stress and von Kar-

an’s strain, respectively. The differential equations of motion can be

erived by introducing the Hamilton’s principle in the following form 

∫
𝑡 2 

𝑡 1 

[ 𝐾 − ( 𝑈 + 𝑊 )] 𝑑𝑡 = 0 , (4)

here 𝛿 is the variation operator, 𝐾 and 𝑈 represent the kinetic and the

otential energy, respectively, and 𝑊 is the work of external forces, and

hese are given as 

 = 

𝜌𝐴 

2 ∫
𝐿 

0 
( 𝑣 𝑀 

) 2 𝑑𝑥, (5)

 = 

1 
2 ∫𝑉 𝜎𝑥𝑥 𝜖𝑥𝑥 𝑑𝑥, 

 = ∫
𝐿 

0 

[ 1 
2 
𝑃 ( 𝑤, 𝑥 ) 2 − 𝐹 ( 𝑥, 𝑡 ) 𝑤 

]
𝑑𝑥. 

ntroducing the relations Eq. (5) into Eq. (4) , and using the methodol-

gy presented in [42,43] , we get the following system of differential

quations for the axial and transverse displacements 

𝐴 

[
�̈� + 2 𝑉 �̇� , 𝑥 + 𝑉 2 𝑢, 𝑥𝑥 

]
− 𝐸𝐴 

[
𝑢, 𝑥𝑥 + 𝑤, 𝑥 𝑤, 𝑥𝑥 

]
= 0 , (6)

𝐴 

[
�̈� + 2 𝑉 �̇� , 𝑥 + 𝑉 2 𝑤, 𝑥𝑥 

]
+ 𝐸𝐼𝑤, 𝑥𝑥𝑥𝑥 

− 

[(
𝑃 + 𝐸 𝐴𝑢, 𝑥 + 

1 
2 
𝐸 𝐴 ( 𝑤, 𝑥 ) 2 

)
𝑤, 𝑥 

]
, 𝑥 = 𝐹 ( 𝑥, 𝑡 ) , (7) 

ith the corresponding simply supported boundary conditions as shown

n [43,44] . In order to analyze the transverse vibration of axially mov-

ng beams with NES-EH Fig. 1 , we will neglect the axial vibration mode

 ( 𝑥, 𝑡 ) by assuming a weak coupling between axial and transverse vibra-

ion modes [44,45] and extend Eq. (7) with additional terms through

irac delta function and external concentrated load as shown in [16,46] ,

𝐴 

[
�̈� + 2 𝑉 �̇� , 𝑥 + 𝑉 2 𝑤, 𝑥𝑥 

]
+ 𝐸𝐼𝑤, 𝑥𝑥𝑥𝑥 − 

[(
𝑃 + 

1 
2 
𝐸𝐴 ( 𝑤, 𝑥 ) 2 

)
𝑤, 𝑥 

]
, 𝑥 (8)

+ 

{
𝑘 [ 𝑤 ( 𝑑, 𝑡 ) − 𝑦 ( 𝑡 ) ] 3 + 𝑏 [ �̇� ( 𝑑, 𝑡 ) − �̇� ( 𝑡 ) ] 

}
𝛿( 𝑥 − 𝑑) = 𝐹 ( 𝑥, 𝑡 ) , 

 ̈𝑦 + 𝑘 [ 𝑦 ( 𝑡 ) − 𝑤 ( 𝑑, 𝑡 ) ] 3 + 𝑏 [ ̇𝑦 ( 𝑡 ) − �̇� ( 𝑑, 𝑡 ) ] + 𝑘 𝑝 𝑦 ( 𝑡 ) − 

𝜃

𝐶 𝑝 

𝑄 ( 𝑡 ) = 0 , (9)

 �̇� ( 𝑡 ) − 

𝜃

𝐶 𝑝 

𝑦 ( 𝑡 ) + 

1 
𝐶 𝑝 

𝑄 ( 𝑡 ) = 0 . (10)
3 
ifferential equations given in Eqs. (8) –(10) describe the presented sys-

em with NES-EH device (see Fig. 1 ), where 𝑦 ( 𝑡 ) represents displacement

f a point mass 𝑚, 𝑄 ( 𝑡 ) is the output electrical charge and 𝜃 is the electro-

echanical coupling coefficient as defined in [46] . 

By introducing the dimensionless quantities: 

 

∗ = 𝑡 

√ 

𝑃 

𝜌𝐴𝐿 

2 , 𝑤 

∗ = 

𝑤 

𝐿 

, 𝑥 ∗ = 

𝑥 

𝐿 

, 𝑦 ∗ = 

𝑦 

𝐿 

, 𝑣 ∗ = 𝑉 

√ 

𝜌𝐴 

𝑃 
, (11)

 

∗ = 

𝑑 

𝐿 

, 𝑣 1 = 

√ 

𝐸𝐴 

𝑃 
, 𝑣 𝑓 = 

√ 

𝐸𝐼 

𝑃 𝐿 

2 , 𝑘 ∗ = 

𝑘𝐿 

3 

𝑃 
, 𝑏 ∗ = 

𝑏 √
𝑃 𝜌𝐴 

, 

 

∗ = 𝑄 ( 𝑡 ) 
𝜃𝐿 

, �̃� = 
𝐶 𝑝 𝑅 

𝐿 

√ 

𝑃 

𝜌𝐴 

, �̃� = 𝜃
2 𝐿 

𝐶 𝑝 𝑃 
, 𝜀 = 𝑚 

𝜌𝐴𝐿 
, �̃� 𝑝 = 

𝑘 𝑝 𝐿 

𝑃 
, 𝐹 ∗ = 𝐹 𝐿 

𝑃 
, 

nto Eqs. (8) –(10) and omitting asterisk notation yields dimensionless

quations of motion of the axially moving beam with NES-EH attach-

ent in the following form 

�̈� + 2 𝑣 �̇� , 𝑥 + 𝑣 2 𝑤, 𝑥𝑥 
]
+ 𝑣 2 

𝑓 
𝑤, 𝑥𝑥𝑥𝑥 − 

[(
1 + 

1 
2 
𝑣 2 1 ( 𝑤, 𝑥 ) 2 

)
𝑤, 𝑥 

]
, 𝑥 (12)

+ 

{
𝑘 [ 𝑤 ( 𝑑, 𝑡 ) − 𝑦 ( 𝑡 ) ] 3 + 𝑏 [ �̇� ( 𝑑, 𝑡 ) − �̇� ( 𝑡 ) ] 

}
𝛿( 𝑥 − 𝑑) = 𝐹 ( 𝑥, 𝑡 ) , 

 ̈𝑦 ( 𝑡 ) + 𝑘 [ 𝑦 ( 𝑡 ) − 𝑤 ( 𝑑, 𝑡 ) ] 3 + 𝑏 [ ̇𝑦 ( 𝑡 ) − �̇� ( 𝑑, 𝑡 ) ] + ̃𝑘 𝑝 𝑦 ( 𝑡 ) − �̃� 𝑄 ( 𝑡 ) = 0 , (13)

̃
 �̇� ( 𝑡 ) − 𝑦 ( 𝑡 ) + 𝑄 ( 𝑡 ) = 0 . (14)

n this paper, the symbol ̇( ⋅) represents 𝜕 ( ⋅)∕ 𝜕 𝑡, ( ⋅) , 𝑥 is 𝜕 ( ⋅)∕ 𝜕 𝑥, ( ⋅) , 𝑥𝑥 de-

otes 𝜕 2 ( ⋅)∕ 𝜕𝑥 2 and so on for derivatives of higher order. 

. Approximate method 

.1. The Galerkin discretization 

In order to discretize the partial differential equation of the presented

odel of the axially moving beam with nonlinear attachment and reduce

t to a system of ordinary differential equations, we will apply the Gar-

ekin method [47] . The discretization process leads to a mathematical

odel with finite number of degrees of freedom where the nonlinear

odal coupling is taken into account. Therefore, within the framework

f this paper, the solution of the partial differential equation Eq. (8) will

e approximated by expanding the transverse displacement 𝑤 ( 𝑥, 𝑡 ) into

he series of admissible functions 𝜙𝑗 ( 𝑥 ) that satisfy the boundary con-

itions, and time functions 𝑞 𝑗 ( 𝑡 ) . The approximated solutions for trans-

erse displacement 𝑤 ( 𝑥, 𝑡 ) and external load 𝐹 ( 𝑥, 𝑡 ) are given as 

 ( 𝑥, 𝑡 ) = 

𝑁 ∑
𝑗=1 

𝑞 𝑗 ( 𝑡 ) 𝜙𝑗 ( 𝑥 ) , (15)

 ( 𝑥, 𝑡 ) = 

𝑁 ∑
𝑗=1 

𝑓 𝑗 ( 𝑡 ) 𝜙𝑗 ( 𝑥 ) , (16)

here 𝜙𝑗 ( 𝑥 ) = sin ( 𝑗𝜋𝑥 ) satisfies the simply supported boundary condi-

ions, and the time periodic function is given as 𝑓 𝑗 ( 𝑡 ) = 𝑓 𝑗 sin 𝜔𝑡 . The

erms 𝑓 𝑗 and 𝜔 represent amplitude and frequency of the external load,

espectively. 

Inserting Eqs. (15) and (16) into Eq. (12) , and taking into account

he orthogonality conditions, we will obtain a system of 𝑁 ordinary

ifferential equations as follows 

𝑁 

𝑗=1 
𝑀 𝑖𝑗 ̈𝑞 𝑗 + 

𝑁 ∑
𝑗=1 

𝐶 𝑖𝑗 �̇� 𝑗 + 

𝑁 ∑
𝑗=1 

𝐾 𝑖𝑗 𝑞 𝑗 + 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑟 =1 

𝑁 ∑
𝑔=1 

�̃� 𝑖𝑗𝑟𝑔 𝑞 𝑗 𝑞 𝑟 𝑞 𝑔 + (17)

 

 

 

 

 

𝑘 

[ 
𝑁 ∑
𝑗=1 

𝑞 𝑗 𝜙𝑗 ( 𝑑) − 𝑦 

] 3 
+ 𝑏 

[ 
𝑁 ∑
𝑗=1 

�̇� 𝑗 𝜙𝑗 ( 𝑑) − �̇� 

] ⎫ ⎪ ⎬ ⎪ ⎭ 𝜙𝑖 ( 𝑑) = 𝑓 𝑖𝑗 cos (Ω𝑡 ) , 
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here 

 𝑖𝑗 = ∫
1 

0 
𝜙𝑖 𝜙𝑗 𝑑𝑥, 𝐶 𝑖𝑗 = 2 𝑣 ∫

1 

0 
𝜙𝑖 𝜙𝑗,𝑥 𝑑𝑥 �̃� 𝑖𝑗𝑟𝑔 = − 

3 
2 
𝑣 2 1 ∫

1 

0 
𝜙𝑖 𝜙𝑗,𝑥 𝜙𝑟,𝑥 𝜙𝑔,𝑥𝑥 , 𝑑𝑥 

 𝑖𝑗 = ( 𝑣 2 − 1) ∫
1 

0 
𝜙𝑖 𝜙𝑗,𝑥𝑥 𝑑𝑥 + 𝑣 2 

𝑓 ∫
1 

0 
𝜙𝑖 𝜙𝑗,𝑥𝑥𝑥𝑥 𝑑𝑥, 

 ̃𝑖𝑗 = ∫
1 

0 
𝑓 𝜙𝑖 𝜙𝑗 𝑑𝑥, Ω = 𝜔 

√ 

𝜌𝐴𝐿 

2 

𝑃 
. 

By restricting the number of transverse degrees of freedom 𝑁 = 2 in
he series solution Eqs. (15) and (16) , and after introducing weak modal

amping 𝜇11 and 𝜇22 , we obtain the reduced mathematical model of

xially moving beam with nonlinear attachment in the following form 

̈ 1 + 𝜇11 ̇𝑞 1 − 𝜇12 ̇𝑞 2 + 𝑘 11 𝑞 1 + 𝑘 12 𝑞 1 𝑞 
2 
2 + 𝑘 13 𝑞 

3 
1 + 2 𝑘 ( 𝑞 1 − 𝑦 ) 3 

+ 2 𝑏 ( ̇𝑞 1 − �̇� ) = 𝑓 1 cos (Ω𝑡 ) , (18) 

̈ 2 + 𝜇21 ̇𝑞 1 + 𝜇22 ̇𝑞 2 + 𝑘 21 𝑞 2 + 𝑘 22 𝑞 2 𝑞 
2 
1 + 𝑘 23 𝑞 

3 
2 = 𝑓 2 cos (Ω𝑡 ) , (19)

 ̈𝑦 + 𝑘 ( 𝑦 − 𝑞 1 ) 3 + 𝑏 ( ̇𝑦 − �̇� 1 ) + ̃𝑘 𝑝 𝑦 − �̃� 𝑄 = 0 , (20)

̃
 �̇� − 𝑦 + 𝑄 = 0 , (21)

here we defined new parameters as 

12 = 

16 𝑣 
3 

, 𝑘 11 = − 𝜋2 ( 𝑣 2 − 1) + 𝜋4 𝑣 2 
𝑓 
, 𝑘 12 = 3 𝜋4 𝑣 2 1 , 𝑘 13 = 

3 
8 
𝜋4 𝑣 2 1 , 

21 = 

16 𝑣 
3 

, 𝑘 21 = −4 𝜋2 ( 𝑣 2 − 1) + 16 𝜋4 𝑣 2 
𝑓 
, 𝑘 22 = 3 𝜋4 𝑣 2 1 , 𝑘 23 = 6 𝜋4 𝑣 2 1 . 

or simplicity, the above equations are derived for the case when the

onlinear attachment is placed at the half of the beam’s length i.e. 𝑑 = 

1 
2 .

owever, the proposed methodology gives enough information for accu-

ate modeling of the proposed system where the effects of the nonlinear

ttachment are given on the frequency response diagrams. 

.2. The incremental harmonic balance method 

In order to get the periodic response of the presented system of

onlinear differential equations Eqs. (18) –(21) , we will introduce the

emi-analytical technique known as the incremental harmonic balance

ethod (IHBM) [48–50] . One of the most important advantages of the

HBM lies in the fact that it can be easily combined with the continuation

lgorithms for finding the system response for different model parame-

ers. In the following, we will use the IHBM to get the frequency response

f the axially moving beam with a NES-EH attachment. The first step in

he IHBM is to introduce a new time scale 𝜏 = Ω𝑡 into Eqs. (18) –(21) ,

here we get 

2 𝑞 1 + 𝜇11 Ω�̇� 1 − 𝜇12 Ω�̇� 2 + 𝑘 11 𝑞 1 + 𝑘 12 𝑞 1 𝑞 
2 
2 + 𝑘 13 𝑞 

3 
1 + 2 𝑘 ( 𝑞 1 − 𝑦 ) 3 

+ 2 𝑏 Ω( ̇𝑞 1 − �̇� ) = 𝑓 1 cos 𝜏, (22) 

2 𝑞 2 + 𝜇21 Ω�̇� 1 + 𝜇22 Ω�̇� 2 + 𝑘 21 𝑞 2 + 𝑘 22 𝑞 2 𝑞 
2 
1 + 𝑘 23 𝑞 

3 
2 = 𝑓 2 cos 𝜏, (23)

 Ω2 �̈� + 𝑘 ( 𝑦 − 𝑞 1 ) 3 + 𝑏 Ω( ̇𝑦 − �̇� 1 ) + ̃𝑘 𝑝 𝑦 − �̃� 𝑄 = 0 , (24)

̃
 Ω�̇� − 𝑦 + 𝑄 = 0 , (25)

n which the time derivative ̇( ⋅) will be used to represent 𝑑 ( ⋅)∕ 𝑑 𝜏. 

In the second step, we will introduce the incremental relation for

eneralized coordinates 𝑞 1 , 𝑞 2 , 𝑦 and 𝑄 as well as excitation frequency

in order to linearize the nonlinear system Eqs. (18) –(21) . Here,

 10 , 𝑞 20 , 𝑦 0 , 𝑄 0 and Ω0 represents initial vibration state while increments

n their neighborhood are given as 

 1 = 𝑞 10 + Δ𝑞 1 , 𝑞 2 = 𝑞 20 + Δ𝑞 2 , 𝑦 = 𝑦 0 + Δ𝑦, (26)

 = 𝑄 + Δ𝑄, Ω = Ω + ΔΩ. 
0 0 

4 
In order to determine periodic solutions of the system Eqs. (18) –(21) ,

e can assume solutions for 𝑞 10 , 𝑞 20 , 𝑦 0 and 𝑄 0 and their increments in

he form of a finite Fourier series as: 

 10 ( 𝜏) = 

𝑀 ∑
𝑛 =1 

[
𝑎 1 𝑛 cos (2 𝑛 − 1) 𝜏 + 𝑏 1 𝑛 sin (2 𝑛 − 1) 𝜏

]
= C A 1 , (27)

 20 ( 𝜏) = 

𝑀 ∑
𝑛 =1 

[
𝑎 2 𝑛 cos (2 𝑛 − 1) 𝜏 + 𝑏 2 𝑛 sin (2 𝑛 − 1) 𝜏

]
= C A 2 , 

 0 ( 𝜏) = 

𝑀 ∑
𝑛 =1 

[
𝑎 3 𝑛 cos (2 𝑛 − 1) 𝜏 + 𝑏 3 𝑛 sin (2 𝑛 − 1) 𝜏

]
= C A 3 , 

 0 ( 𝜏) = 

𝑀 ∑
𝑛 =1 

[
𝑎 4 𝑛 cos (2 𝑛 − 1) 𝜏 + 𝑏 4 𝑛 sin (2 𝑛 − 1) 𝜏

]
= C A 4 , 

here 

 = [ cos ( 𝜏) cos (3 𝜏) … cos ( 𝑛𝜏) sin ( 𝜏) sin (3 𝜏) … sin ( 𝑛𝜏) ] , 

 𝑝 = 

[
𝑎 𝑝 1 𝑎 𝑝 3 … 𝑎 𝑝𝑛 𝑏 𝑝 1 𝑏 𝑝 3 … 𝑏 𝑝𝑛 

]𝑇 
, ( 𝑝 = 1 , ..., 4) . 

nd for the increments as 

𝑞 1 = C ΔA 1 , Δ𝑞 2 = C ΔA 2 , Δ𝑦 = C ΔA 3 , Δ𝑄 = C ΔA 4 , (28)

here 

A 𝑝 = 

[
Δ𝑎 𝑝 1 Δ𝑎 𝑝 3 … Δ𝑎 𝑝𝑛 Δ𝑏 𝑝 1 Δ𝑏 𝑝 3 … Δ𝑏 𝑝𝑛 

]𝑇 
, ( 𝑝 = 1 , ..., 4)

Now, by inserting relations Eqs. (27) and (28) into Eq. (26) and ap-

lying the Galerkin procedure [48] , we can neglect the higher order

erms to get the system of algebraic equations as 

 

 

 

 

 

 

K 11 K 12 K 13 0 
K 21 K 22 0 0 
K 31 0 K 33 K 34 
0 0 K 43 K 44 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
ΔA 1 
ΔA 2 
ΔA 3 
ΔA 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
F̃ 1 
F̃ 2 
0 
0 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
R̃ 1 
R̃ 2 
R̃ 3 
R̃ 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
+ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
Ṽ 1 
Ṽ 2 
Ṽ 3 
Ṽ 4 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
ΔΩ, (29) 

here 

̃
 1 = R 11 A 1 + R 12 A 2 + R 13 A 3 , R̃ 2 = R 21 A 1 + R 22 A 2 , 

̃
 3 = R 31 A 1 + R 33 A 3 + R 34 A 4 , R̃ 4 = R 43 A 3 + R 44 A 4 , 

̃
 1 = V 11 A 1 + V 12 A 2 + V 13 A 3 , Ṽ 2 = V 21 A 1 + V 22 A 2 , 

̃
 3 = V 31 A 1 + V 33 A 3 , Ṽ 4 = R 44 A 4 , 

n which K 𝑖𝑗 , R 𝑖𝑗 and V 𝑖𝑗 are matrices and F̃ 𝑖 are vectors defined in

ppendix 1 . The Galerkin procedure [48] is introduced in order to

liminate the parameter 𝜏 through the orthogonality conditions of the

rigonometric functions. 

The Eq. (29) can be written in the simplified form as 

 ΔA = R + V ΔΩ. (30)

f we need just a single frequency response we can introduce ΔΩ = 0
nto the system of linear algebraic equations Eq. (30) . In order to solve

he system Eq. (30) , we start with the solution process by initializing

he coefficients A in such a manner that the tangent stiffens matrix K

s not a singular matrix. Then, by using the Newton - Raphson iterative

rocedure we find the solution of ΔA iteratively by solving 

A = K 

−1 R ⟶ A 𝑖 +1 = A 𝑖 + ΔA 𝑖 +1 , (31)

he iterations are performed until the residue Euclidian norm ‖R ‖ is

maller than a pre-set tolerance (we adopt 𝜁 = 10 −12 ). 
It is important to note that the corrective vector term R tends to zero

hen the values of coordinates tend to the exact solutions. In order to

etermine amplitude - frequency responses of the system, the value of Ω
hould increase with increment ΔΩ and the solution of A at the previous

requency step is used as the initial guess for finding the solution for the

urrent frequency. Better accuracy is achieved for smaller increments

Ω. 
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f  
. The continuation method 

The drawback of the previously described procedure for simple in-

rementation of the excitation frequency ΔΩ in the process of obtaining

he frequency response curves lies in the fact that a frequency response

eaches certain limit points (such as turning points) or solution curves

re obtained in the form of loops, where the tangent stiffens matrix K be-

omes a singular matrix. In such cases, the previously described simple

ncremental procedure fails. In order to avoid such cases and to elimi-

ate failures due to the limit points, we will introduce a numerical con-

inuation method [51,52] known as the pseudo-arc-length continuation

echnique, which traces out periodic solution branches of the proposed

onlinear system in the form of an amplitude-frequency response. The

olution process starts from an arbitrary initial state (e.g. linear solution

ar away from the resonance state). Then, a point-to-point calculation is

erformed by using the predictor-corrector methodology to obtain the

orresponding response curves as shown in [44,50,51] . 

At the beginning of the tracing process, the incremental relation

iven in Eq. (30) is used to determine two initial periodic solutions that

re far away from the resonant state. Afterwards, we extend the IHBM

ith augmented equation and the predictor-corrector methodology. One

f the most used continuation approaches is the pseudo-arc-length con-

inuation method, which is able to track possible solutions including the

imit points and loops. By introducing the parameter 𝜂, the augmented

quation is given as 

( X ) − 𝜂 = 0 , (32)

here X = [ A , Ω] 𝑇 . By using the quadratic form of the pseudo arc-length

ontinuation approach, as shown in [50,51] , we adopt the following

ugmented equation 

( X ) − 𝜂 = X 

′𝑇 ( X − X 𝑘 −1 ) − 𝜂 = 0 , (33)

here the slope is defined in terms of the two previous points X 𝑘 −1 and

 𝑘 −2 on the response curves, and it is given as 

 

′ = 

X 𝑘 −1 − X 𝑘 −2 ‖X 𝑘 −1 − X 𝑘 −2 ‖ . (34)

he first predicted solution is calculated based on the first two periodic

olutions obtained from IHBM 

 𝑢 = X 𝑘 −1 + Δ𝜂X 

′. (35)

n order to obtain the periodic solution, we will extend the tangent stiff-

ess matrix by introducing the augmenting equation and then applying

he Newton-Raphson iterative procedure for the corrected solution. By

ombining Eqs. (30) and (33) , the extended tangent stiffness matrix can

e obtained in the following form 

 

K V 

𝜕𝑔 

𝜕 A 

𝜕𝑔 

𝜕Ω

] { 

ΔA 

ΔΩ

} 

= 

{ 

R 

Δ𝜂 − 𝑔 

} 

. (36)

or more details reffer to the following literature [50,51] . 

It is important to note that further points are calculated by updating

he values of 𝑋 

′ while the value of parameter 𝜂 is considered to be zero.

he parameter Δ𝜂 is adopted as the arc increment having a small value.

n the literature, one can find more details on how to set the values of

he parameter Δ𝜂 [52] . In order to determine the periodic responses of

he axially moving beam with nonlinear attachments, it is important to

et the initial step size of the excitation frequency and tolerance which

s related to the degree of nonlinearity and other material parameters of

he system. For higher accuracy of periodic solutions, we introduced the

olerance of the order 𝜁 = 10 −10 which can go up to 𝜁 = 10 −16 . Setting

mall enough tolerances leads to amplitude-frequency solutions without

ny breaks in the simulation process. 

. Stability analysis of periodic solution 

By considering the Floquet stability theory and the Hsu procedures

eveloped in [44,53,54] , stability of a periodic solution of the axially
5 
oving beam with NES-EH attachment will be determined. Inserting

mall perturbations Δy ( 𝜏) in the neighborhood of a periodic solution

 0 ( 𝜏) , i.e. by letting 

 = y 0 + Δy ( 𝜏) , (37)

he stability of the periodic solution can be analyzed by introducing the

inearized system of differential equations with variable coefficients in

erms of small perturbations Δy ( 𝜏) . Applying the Floquet theory in ℝ 

𝑁 ,

he system of nonlinear differential equations in the general form can

e written as 

 ( y , ẏ , ̈y , 𝜏) = 0 , (38)

here y = [ 𝑦 1 ( 𝜏) , 𝑦 2 ( 𝜏) , … 𝑦 𝑁 

( 𝜏) ] is the 𝑁 - dimensional displacement

ector and ẏ = 𝑑 y ∕ 𝑑𝜏. Inserting Eq. (37) into Eq. (38) , and after per-

orming linearization, one can obtain the system of linear differential

quations with time dependent coefficients as 
 

𝜕 W 

𝜕 ̈y 

) 

0 
Δÿ ( 𝜏) + 

( 

𝜕 W 

𝜕 ̇y 

) 

0 
Δẏ ( 𝜏) + 

( 

𝜕 W 

𝜕 y 

) 

0 
Δy ( 𝜏) = 0 , (39)

n which y 0 ( 𝜏) = [ 𝑞 10 ( 𝜏) , 𝑞 20 ( 𝜏) , 𝑦 0 ( 𝜏) , 𝑄 0 ( 𝜏)] 𝑇 is the periodic solution de-

ermined by the IHB procedure. It should be noted that Eq. (39) rep-

esents the system of perturbed equations in the vicinity of the known

eriodic solutions y 0 ( 𝜏) . The stability properties of the determined peri-

dic solutions are found through the Hsu procedures given in [53,54] .

ransformation of Eq. (39) into the state-space form yields 

𝑑 Y 

𝑑𝜏
= P ( 𝜏) Y , (40)

here Y ( 𝜏) = [Δy , Δẏ ] 𝑇 and P ( 𝜏) denotes the periodic matrix with

he period 𝑇 . The stability criteria based on the Floquet theory

52,55] for determination of the stability property of the periodic so-

utions Eq. (27) is based on solving the eigenvalues of the monodromy

atrix i.e. Floquet multipliers. In the case where all values of Floquet

ultipliers are located inside the unit circle centered at the origin of

he complex plane, the periodic solutions are stable or asymptotically

table. On the other hand, when the Floquet multipliers lie outside of

he unit circle in the complex plane, the periodic solutions are unstable

52,55] . The stability of the periodic solutions, depending on a location

here the Floquet multipliers or a pair of complex conjugate multipliers

rosses the unit circle, one can detect different bifurcation points such as

opf, Saddle-node, and period of doubling bifurcations [52,55] . In the

ollowing, it is assumed that the period 𝑇 = 2 𝜋 of 𝑦 0 ( 𝜏) is divided into 𝑁 𝑘 

ub-intervals, in which the 𝑘 th interval is Δ𝑘 = 𝜏𝑘 − 𝜏𝑘 −1 for 𝜏𝑘 = 𝑘𝑇 ∕ 𝑁 𝑘 .

n the case when the 𝑃 ( 𝜏) is the continuous periodic matrix with respect

o 𝜏, such that it can be replaced by a constant matrix in the 𝑘 th interval

or the case when 𝑁 𝑘 is chosen to be sufficiently large, as 

 𝑘 = 

1 
Δ𝑘 

∫
𝜏𝑘 

𝜏𝑘 −1 

P ( 𝜏) 𝑑𝜏, (41)

here the transition matrix can take the following form 

 = 

𝑁 𝑘 ∏
𝑖 =1 

𝑒 P 𝑖 Δ𝑖 = 

𝑁 𝑘 ∏
𝑖 =1 

⎛ ⎜ ⎜ ⎝ I + 

𝑁 𝑗 ∑
𝑗=1 

(
P 𝑖 Δ𝑖 

)𝑗 
𝑗! 

⎞ ⎟ ⎟ ⎠ , (42)

n which 𝑁 𝑗 denotes the number of terms in the approximation of the

onstant matrix P 𝑘 . From the transition matrix M one can obtain Floquet

ultipliers as eigenvalues of Eq. (42) in the form 

et ( M − 𝜎 I ) = 0 . (43)

. Numerical results 

In this Section, the previously presented methodology based on IHB,

he continuation technique and the Floquet stability theory is used to de-

ermine the stable and unstable branches of the periodic responses of the

xially moving beam with coupled NES-EH attachment. The amplitude-

requency response diagrams are used to investigate the effects of the



D. Karli či ć, M. Caji ć, S. Paunovi ć et al. International Journal of Mechanical Sciences 195 (2021) 106230 

Fig. 2. The amplitude-frequency response curves of the axially moving beam for different values of transporting speed 𝑣 and the excitation load amplitude 𝑓 1 = 0 . 0055 . 
Blue solid lines represent stable branches, while the red dotted lines represent unstable branches of the amplitude-frequency response curves. The response amplitude 

𝐴 11 , given in the sub-figure a), and response amplitude 𝐴 22 , given in the sub-figure b), are defined in Eq. (44) . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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ransporting speed as well as the presence of the nonlinear attachment

n the dynamic behavior of the axially moving beam. For better un-

erstanding of the effect of nonlinear attachment, this section will be

ivided into two parts. In the first part, the axially moving beam with

nd without the attachments is analyzed for different values of trans-

orting speed 𝑣 and the obtained results are compared with the results

rom the literature [44] . Afterwards, a detailed analyses of the effect of

xially transporting speed and transverse load on the periodic response

ill be shown. In the second part, we will present the frequency and time

esponse diagrams, where the effects of energy transfer and dissipation

hrough nonlinear attachment will be studied. It should be noted that all

he system parameters given in Appendix 1 are first determined in the

ymbolic form and then introduced into the IHB code developed in the

atlab software. We define the response amplitudes from Eq. (27) as 

 1 ( 𝜏) = 𝐴 11 cos ( 𝜏 + 𝜙11 ) + 𝐴 12 cos (3 𝜏 + 𝜙12 ) + ..., (44)

 2 ( 𝜏) = 𝐴 21 cos ( 𝜏 + 𝜙21 ) + 𝐴 22 cos (3 𝜏 + 𝜙22 ) + ..., 

 ( 𝜏) = 𝐴 31 cos ( 𝜏 + 𝜙31 ) + 𝐴 32 cos (3 𝜏 + 𝜙32 ) + ..., 

 ( 𝜏) = 𝐴 41 cos ( 𝜏 + 𝜙41 ) + 𝐴 42 cos (3 𝜏 + 𝜙42 ) + ..., 

here 

 𝑗𝑘 = 

√ 

𝑎 2 
𝑖𝑗 
+ 𝑏 2 

𝑗𝑘 
, 𝜙𝑗𝑘 = tan −1 ( 𝑏 𝑗𝑘 ∕ 𝑎 𝑖𝑗 ) , 𝑗 = 1 , ..., 4 𝑘 = 1 , ..., 5 . 

he system parameters of the presented axially moving beam are

dopted from [56] , where the value of the axial transporting speed is

dopted as 𝑣 = {0 . 2 , 0 . 4 , 0 . 6 , 0 . 8} . 
When considering the nonlinear problem of the axially moving beam,

here the cubic nonlinearity plays an important role in the discretized

odel, three to one internal resonance can be observed. Starting from

he discretized equations Eqs. (18) –(21) , and neglecting the external

amping parameters ( 𝜇11 , 𝜇22 ) , the characteristic equation for the linear

ystem of axially moving beam takes the following form 

 

4 − ( 𝑘 11 + 𝑘 21 + 𝜇12 𝜇21 ) 𝜔 

2 + 𝑘 11 𝑘 22 = 0 . (45) 

he characteristic equation is solved for 𝑣 = 0 . 6 with the following val-

es of natural frequencies 𝜔 1 = 2 . 8223 and 𝜔 2 = 9 . 1398 . In the nonlinear

ystem with cubic nonlinearity, the phenomenon known as internal res-

nance occurs between modes when 𝜔 ≈ 3 𝜔 . 
2 1 

6 
.1. Comparative study 

In order to validate the extended model of axially moving beam with

onlinear attachments, the IHB, continuation method and Floquet sta-

ility theory are used to trace the periodic responses and determine

heir stability for different values of transporting speed 𝑣 . It should be

oted that the results obtained in [44] are presented only for the val-

es of transporting speed 𝑣 = 0 . 6 and the amplitude of excitation load

 1 = 0 . 0055 . However, in this paper, we extend the parametric analy-

es to different values of transporting speed 𝑣 = {0 . 2 , 0 . 4 , 0 . 6 , 0 . 8} and

igher values of excitation load amplitude 𝑓 1 = 0 . 0077 . The nonlinear

henomenon known as nonlinear “hysteresis ”, with coexisting periodic

rbits, is detected on the amplitude-frequency response diagrams. For

he solution process, the first five odd terms in the Fourier series ( 𝑀 = 5)
re adopted in Eqs. (27) and (28) . The Hsu procedure is adopted for ap-

roximation of the transition matrix to analyze the stability of periodic

olutions. Based on the convergence study given in [57] , the transition

atrix is determined by adopting the following values of parameters:

 𝑘 = 5000 and 𝑁 𝑗 = 5 . 
Fig. 2 shows the effect of different values of transporting speed

 = {0 . 2 , 0 . 4 , 0 . 6 , 0 . 8} on the amplitude-frequency response for the case

f an axially moving beam without a nonlinear attachment. The ordinate

xis represents the amplitudes 𝐴 11 and 𝐴 22 of the two most influenced

odes of both displacements, while the abscissa shows frequency ratio

∕ 𝜔 1 . For the complete analysis of the amplitude-frequency response,

ranches of stable and unstable periodic solutions are determined based

n the Floquet stability theory. The blue solid line represents stable peri-

dic solutions while red point branches represents unstable periodic so-

utions. Both amplitude-frequency responses, 𝐴 11 and 𝐴 22 , show a non-

inear ”hysteresis ” part of the response with coexisting multiple periodic

olutions. Forward frequency sweeping, for which the frequency ratio

ncreases Ω∕ 𝜔 1 starting from some small value ( Ω∕ 𝜔 1 = 0 . 6 ), leads to an

ncrease of both amplitudes 𝐴 11 and 𝐴 22 until Ω∕ 𝜔 1 reaches the value

here the periodic solution loses its stability due to the appearance of

 saddle-node bifurcation. This instability is detected by the calculation

f Floquet multipliers, where at least one of them crosses the unit circle

n the complex plane in +1 direction. Further increase in the frequency

atio Ω∕ 𝜔 1 leads to the ”jump-down ” effect, i.e. a dramatic decrease in

he values of the response amplitude. On the other hand, the backward

requency sweeping will start from some higher values of the frequency
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Fig. 3. The amplitude-frequency response curves of the axially moving beam for different values of transporting speed 𝑣 and excitation load amplitude 𝑓 1 = 0 . 0077 . 
The blue solid lines represent the stable branches, while the red dotted lines represent the unstable branches of the amplitude-frequency response curves. The response 

amplitude 𝐴 11 , given in the sub-figure a), and the response amplitude 𝐴 22 , given in the sub-figure b), are defined in Eq. (44) . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The amplitude-frequency response curves 𝐴 11 , 𝐴 22 and 𝐴 31 of the axially moving beam with the NES device. The blue solid lines represent stable branches, 

while the red dotted lines represent unstable branches on the frequency response diagrams. The response curves 𝐴 11 , 𝐴 22 and 𝐴 31 are given in sub-figures a), b) and 

c), respectively, for the excitation load amplitude 𝑓 1 = 0 . 0055 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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atio ( Ω∕ 𝜔 1 = 2 ) and decrease while the response amplitude slowly in-

reases. However, when the frequency ratio reaches the value where the

eriodic solution loses its stability, the ”jump-up ” phenomena will ap-

ear and the response amplitude will increase. This process of forward

nd backward frequency sweeping results in a generation of the afore-

entioned “hysteresis ” phenomenon with coexisting periodic solutions.

or the values of transporting speed 𝑣 = 0 . 6 , the 3:1 internal resonance

an be detected ( Fig. 2 ) since the natural frequencies 𝜔 2 and 𝜔 1 are com-

ensurable in ratio 𝜔 2 ≈ 3 𝜔 1 . From the physical point of view, the nat-

ral frequencies of the axially moving beam are directly dependent on

he transporting speed 𝑣 . Further increase of the transporting speed until

he value 𝑣 = 0 . 8 results in increased values of the response amplitude,

hen the nonlinear hysteresis phenomenon becomes more prominent. 

Fig. 3 shows the amplitude-frequency responses of the axially mov-

ng beam without the external nonlinear attachment, influenced by the

igher values of excitation load amplitude 𝑓 1 = 0 . 0077 , varying trans-

orting speed 𝑣 and obtained for the frequency ratio Ω∕ 𝜔 1 within the

ange 0 . 6 − 2 . 5 . The frequency response diagrams for amplitudes 𝐴 11 and

 22 shown in Fig. 3 exhibit nonlinear hysteresis phenomenon showing

oexisting multiple periodic solutions. The stable and unstable branches
7 
f the periodic solutions are displaying similar properties, as in the pre-

ious case. However, an increase of the transporting speed can cause

idening of unstable branches. Moreover, by comparing the amplitudes

iven in Figs. 2 and 3 , it can be concluded that an increase of the val-

es of excitation load amplitude increases the magnitudes of response

mplitudes, which leads to an extended frequency range in which the

hysteresis ” appears in the amplitude-frequency response for all the val-

es of transporting speed 𝑣 . It should be noted that there are signifi-

ant differences in the response amplitudes for the cases with lower and

igher values of excitation load 𝑓 1 when the transporting speed is equal

o 𝑣 = 0 . 6 . However, these changes are obvious when the axially trans-

orting speed reaches the value 𝑣 = 0 . 8 , since the response amplitude

 11 significantly decreases while the amplitude 𝐴 22 becomes larger. 

Further, Figs. 4 and 5 show the effects of a NES attachment on vi-

ration amplitudes of the axially moving beam. Here, the response dia-

rams are determined for the values of excitation load 𝑓 1 = 0 . 0055 and

 1 = 0 . 0077 , respectively. Comparing the amplitudes ( 𝐴 11 and 𝐴 22 ) , one

an notice a significant reduction of their magnitudes due to the intro-

uced NES device. Moreover, both stable and unstable branches of the

eriodic solution are determined, where the blue solid lines represent
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Fig. 5. The amplitude-frequency response curves 𝐴 11 , 𝐴 22 and 𝐴 31 of the axially moving beam with the NES device. The blue solid lines represent stable branches, 

while the red dotted lines represent unstable branches of the amplitude-frequency response curves. The response curves 𝐴 11 , 𝐴 22 and 𝐴 31 are given in a), b) and c), 

respectively for the excitation load amplitude 𝑓 1 = 0 . 0077 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 6. The periodic solutions obtained by the incremental harmonic balance (IHB) method and direct numerical integration (NI) depicted in the phase plane. 

The results obtained with the IHB method are represented by the blue solid lines while the results obtained b direct NI are represented by the red circles. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

8 



D. Karli či ć, M. Caji ć, S. Paunovi ć et al. International Journal of Mechanical Sciences 195 (2021) 106230 

Fig. 7. The amplitude-frequency response curves 𝐴 11 of the axially moving beam with nonlinear NES-EH attachment for different values of transporting speed 𝑣, 

and linear stiffness parameter ̃𝑘 𝑝 . 
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table branches, while the red points represent unstable branches of the

eriodic responses. It can be observed that the introduced NES device

eads to a decrease in vibration response amplitudes more than 50% of

he initial vibration amplitudes of the pristine axially moving beam. An

nteresting behavior can be noticed for the case with excitation load

 1 = 0 . 0055 , where the response amplitude 𝐴 11 loop vanishes ( Fig. 4 )

hile in the case of 𝑓 1 = 0 . 0077 a loop appears again. By analyzing the

esponse amplitudes 𝐴 11 and 𝐴 22 for 𝑣 = 0 . 6 , it can be observed that

he energy transfer occurs between the first and the second vibration

ode through the internal resonance phenomena. The material param-

ters used in this case for tracing the frequency response diagrams are:

 = 50 , 𝑏 = 0 . 05 , �̃� 𝑝 = 3 , 𝜖 = 0 . 1 . 

alidation of the proposed solution 

In order to show the correctness of the presented methodology for

olving the coupled system of nonlinear differential equations, the ap-

roximate results obtained by the IHB method are compared with the

esults obtained by the Runge-Kutta method ( 𝑜𝑑𝑒 45 in Matlab). The pe-

iodic solutions are depicted in the phase plane, where the velocity is

iven on the ordinate axis while the displacement is on the abscissa.

ig. 6 shows periodic solutions determined by solving Eqs. (22) –(25) ,
9 
here the blue solid line represents the solution determined by the

HB method while the ”red circles ” correspond to the periodic solutions

ound by direct numerical integration. It can be noticed that the periodic

olutions obtained by the approximate IHB method are in good agree-

ent with those obtained by the numerical integration method. The fol-

owing dimensionless parameters are adopted in this analysis: 𝑣 = 0 . 6 ,
 1 = 0 . 07 , 𝑘 = 10 , 𝑏 = 0 . 05 , �̃� 𝑝 = 3 , 𝜖 = 0 . 1 , �̃� = 5 , �̃� = 1 , Ω = 0 . 9 𝜔 1 . Val-

es of other system parameters are adopted from Huang et al. [44] . The

nitial conditions used in the numerical calculation are generated by the

eriodic solution obtained from the IHB method when setting 𝜏 = 0 . 

.2. Parametric study 

Here, we investigate how the transporting speed 𝑣, linear stiffness

arameter �̃� 𝑝 , and excitation load amplitude 𝑓 1 , affect the amplitude-

requency responses for amplitudes 𝐴 11 , 𝐴 22 , 𝐴 31 and 𝐴 41 of the pre-

ented axially moving beam model with a NES-EH device attached. The

esponse amplitudes 𝐴 11 , 𝐴 22 , 𝐴 31 are the amplitudes of the mechanical

isplacements and 𝐴 41 corresponds to the output electrical charge, de-

ned in Eq. (44) . The particular cases of the excitation load amplitude

re adopted as lower 𝑓 1 = 0 . 0055 , 𝑓 1 = 0 . 0077 and higher 𝑓 1 = 0 . 07 val-

es, for which significant changes of the amplitudes can be observed.
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Fig. 8. The amplitude-frequency response curves 𝐴 22 of the axially moving beam with nonlinear NES-EH attachments for different values of transporting speed 𝑣 

and linear stiffness parameter ̃𝑘 𝑝 . 
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oreover, different qualitative behavior of the frequency responses

an be noticed for the moving beam with NES-EH device presented in

igs. 7–11 . The frequency ratio Ω∕ 𝜔 1 is varied in the range 0 . 6 − 2 for

ower load values, and in the range Ω∕ 𝜔 1 = 0 . 6 − 4 . 5 for higher values

f the excitation load. 

Fig. 7 shows the amplitude-frequency responses for the amplitude

 11 of the axially moving beam with NES-EH and different values of

ransporting speed 𝑣, linear stiffness �̃� 𝑝 and excitation load 𝑓 1 . Start-

ng from some small value of the frequency ratio Ω∕ 𝜔 1 = 0 . 6 , which

s far from the resonance state, a continuous increase of its value in-

reases the response amplitude 𝐴 11 until the frequency ratio parameter

eaches a peak value where the periodic solution loses its stability. Am-

litude 𝐴 11 is very sensitive to changes in the frequency ratio Ω∕ 𝜔 1 ,

here small increase in this parameter results in a significant decrease

f the amplitude. It should be noted that for all values of transporting

peed 𝑣 we have similar behavior of the frequency response curves with

 pronounced stiffness hardening effect. Moreover, variation of the lin-

ar stiffness parameter �̃� 𝑝 causes small changes of the amplitude 𝐴 11 .

owever, in the case when the transporting speed is 𝑣 = 0 . 6 and excita-
10 
ion load 𝑓 1 = 0 . 0077 , the response curve forms a loop where two peak

mplitudes can be observed, represented by the blue solid line on 7 (c)

nd (d). 

Fig. 8 shows the amplitude-response curves for the amplitude 𝐴 22 
etermined for the axially moving beam with an NES-EH attached, for

ifferent values of linear stiffness parameter �̃� 𝑝 , transporting speed 𝑣

nd excitation load 𝑓 1 . It can be observed that an increase of the trans-

orting speed 𝑣 from the value 0.2 to some higher values causes a sig-

ificant and qualitative changes in the amplitude-frequency response

urves near the resonance state. The value of the response amplitude 𝐴 22 
s the biggest for the case when transporting speed is equal to 𝑣 = 0 . 6 .
urther, an increase of the value of linear stiffness parameter �̃� 𝑝 for a

xed value of transporting speed 𝑣 = 0 . 6 leads to an increase of the area

ith coexisting periodic solutions, where the response curve forms a

oop. Similar behavior can be noticed in Fig. 7 , where the amplitude

 11 has a local minimum. A detailed analysis of the response ampli-

udes 𝐴 11 and 𝐴 22 shows energy transfer between the first two vibra-

ion modes that is caused by the internal resonance phenomena when

 2 ≈ 3 𝜔 1 . Moreover, one can notice a weak influence of parameter �̃� 𝑝 
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Fig. 9. The amplitude-frequency response curves 𝐴 31 of the axially moving beam with nonlinear NES-EH attachment for different values of transporting speed 𝑣 and 

linear stiffness parameter ̃𝑘 𝑝 . 
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n the internal resonance and mode interactions. On the other hand,

he effect of the excitation load on the response amplitude 𝐴 22 reflects

n an increase of the nonlinear hysteresis region with coexisting periodic

olutions. 

Fig. 9 shows traced amplitude-frequency curves of the amplitude 𝐴 31 
or different values of transporting speed 𝑣 and linear stiffness parame-

er �̃� 𝑝 . One can observe similar frequency responses like in the case of

he amplitude 𝐴 11 . However, there are some obvious differences, espe-

ially for the value of the linear stiffness parameter equal to ̃𝑘 𝑝 = 3 . One

an notice that an increase of transporting speed decreases the response

mplitude 𝐴 31 , where the hardening nonlinearity is displayed. However,

hen the liner stiffness parameter is equal to �̃� 𝑝 = 0 , the transporting

peed has a similar influence on the response amplitude 𝐴 31 , as shown

n Fig. 7 . In general, a significant reduction of amplitudes 𝐴 11 and 𝐴 22 by

ttaching the EH-NES can be observed, where a significant increase of

he response amplitude 𝐴 31 indicates that a large amount of mechanical

nergy is transferred to the nonlinear attachment. This implies that the

ain goal of attaching the NES-EH device on the axially moving beam
s fulfilled. s  

11 
Fig. 10 shows the results for the response amplitude 𝐴 41 , correspond-

ng to the electrical degree of freedom, in the case of the axially moving

eam system with NES-EH attachment. Here we analyses the model with

ower 𝑓 1 = 0 . 0055 and higher values 𝑓 2 = 0 . 0077 of the external load am-

litude. In Fig. 10 , it can be noticed that for lower values of external load

mplitude 𝑓 1 = 0 . 0055 the response amplitude 𝐴 41 increases for an in-

rease of the transporting speed 𝑣 . However, for the higher values of

xcitation load 𝑓 1 = 0 . 0077 , there are no significant changes in the peak

alue of the response amplitude 𝐴 41 while the interval with multiple pe-

iodic orbits is increased for an increase of the transporting speed 𝑣 . On

he other hand, an increase of the linear stiffness parameter �̃� 𝑝 implies

educed response amplitudes, as shown in Fig. 10 (b). Based on the pre-

ious, it can be concluded that the presented system can harvest more

nergy for larger transporting speed and external load amplitude. 

The influence of higher values of the excitation load amplitude on

he amplitude-frequency response curves 𝐴 11 , 𝐴 22 and 𝐴 31 of the axially

oving beam with the attached NES-EH device is presented in Fig. 11 .

he following values of material parameter values are adopted: linear

tiffness parameter �̃� 𝑝 = 3 , excitation load amplitude 𝑓 1 = 0 . 07 , electro-
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Fig. 10. The amplitude-frequency response curves 𝐴 41 of the axially moving beam with nonlinear NES-EH attachment for different values of transporting speed 𝑣, 

and linear stiffness parameter ̃𝑘 𝑝 . 
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echanical coupling �̃� = 4 and �̃� = 2 . It can be observed that higher

alues of the excitation load lead to a significant change in the fre-

uency response curves. By tracing the response curves, starting from

∕ 𝜔 1 = 0 . 8 , the values of the response amplitude 𝐴 11 increase and cre-

te a loop, while for further increase of its value the frequency response

urve reaches the turning point. After reaching its peak value, for fur-

her increase of the frequency ratio one can observe a decrease of the

esponse amplitude 𝐴 11 . However, an increase of the transporting speed

 causes that the hardening stiffness nonlinearity effect. The maximum

esponse amplitude value remains the same for all three analyzed cases.

evertheless, an increase of the transporting speed 𝑣 leads to an increase

f the maximum value of the response amplitude 𝐴 22 and a widening

f the loop (interval with multiple periodic solutions). Comparing the

mplitude-frequency response curves for 𝐴 22 , 𝑓 1 = 0 . 0055 ( Fig. 8 ) and

 1 = 0 . 07 ( Fig. 11 ), a significant difference between these two cases can

e observed. In the case of the response amplitudes 𝐴 31 and 𝐴 41 , one can

otice a softening stiffness nonlinearity effect. The major consequence

f increasing the external load amplitude 𝑓 1 = 0 . 07 are much higher re-

ponse amplitudes, as shown in Fig. 11 . 
12 
.3. Time response diagrams 

To investigate performances of the presented model of an axially

oving beam with an attached NES-EH device in the sense of vibration

uppression and energy harvesting, the corresponding time response di-

grams are presented in Figs. 12–15 . The material parameters used in

his analysis are: 𝑓 1 = 0 . 0055 , 𝑘 = 10 , 𝑏 = 0 . 5 , �̃� 𝑝 = 5 , 𝜖 = 0 . 1 , �̃� = 3 , �̃� =
 , Ω = 0 . 95 𝜔 1 . The initial conditions are adopted as 𝑞 1 (0) = 0 . 03 , �̇� 1 (0) =
 . 03 , 𝑞 2 (0) = 0 . 01 , �̇� 2 (0) = 0 in each presented time simulation. The ini-

ial conditions for the nonlinear attachment are 𝑦 (0) = 0 . 01 , �̇� (0) = 0 and

 (0) = 0 . Time responses are obtained for the coordinates 𝑞 1 ( 𝜏) , 𝑞 2 ( 𝜏) ,
 ( 𝜏) and �̇� ( 𝜏) , by using the direct numerical integration (ode45 in Mat-

ab) and solving the system equations Eqs. (22) –(25) for time period

 = 150 . Figs. 12–15 show time response diagrams for different values

f transporting sped 𝑣 = 0 . 2 , 0 . 4 , 0 . 6 and 0.8. It should be noted the blue

olid lines represent the amplitude of the primary structure without a

onlinear attachment, the red solid lines show the amplitudes of the

rimary structure, and the green solid lines are related to the amplitude

f the NES mass (for Figs. 12–15 , sub-figures (a) and (b)). In all cases,
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Fig. 11. The amplitude-frequency response curves 𝐴 11 , 𝐴 22 and 𝐴 31 and 𝐴 41 of the axially moving beam with nonlinear NES-EH attachments for different values 

of transporting speed 𝑣, and linear stiffness parameter ̃𝑘 𝑝 and excitation load 𝑓 1 = 0 . 07 . 

Fig. 12. The time response diagrams for the transporting speed 𝑣 = 0 . 2 . 
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ub-figures (c) shows the electric current responses during a long time

ntegration. 

One can observe that the introduced NES-EH device has a large effect

n the response amplitudes, which is displayed in the form of reduced

mplitude of the primary structure. The main reason for this lies in the

ransfer of mechanical energy from the excited axially moving beam
13 
tructure to the NES-EH attachment, which is then dissipated through

he mechanical NES damping. Part of that energy can be captured by the

ntroduced EH device, as shown in sub-figures (c) ( Figs. 12–15 ). By com-

aring the response amplitudes 𝑞 1 ( 𝜏) and 𝑞 2 ( 𝜏) from Figs. 12–15 , it can

e observed that amplitudes of 𝑞 1 ( 𝜏) and 𝑞 2 ( 𝜏) of the system with NES-

H device decrease much faster then those for the case with the primary
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Fig. 13. The time response diagrams for the transporting speed 𝑣 = 0 . 4 . 

Fig. 14. The time response diagrams for the transporting speed 𝑣 = 0 . 6 . 

Fig. 15. The time response diagrams for the transporting speed 𝑣 = 0 . 8 . 
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tructure alone. After investigating the effects of the transporting speed

 on vibration attenuation, it can be concluded that an increase of this

arameter leads to minor changes in the amplitudes 𝑞 1 ( 𝜏) and 𝑞 2 ( 𝜏) at

he beginning of the simulation. At the same time, the energy harvesting

pplication can be analyzed through the series of 𝐴 41 response ampli-

ude diagrams given in sub-figures (c) ( Figs. 12–15 ). It can be observed

hat for lower values of transporting speed 𝑣 responses �̇� are higher at

he beginning of the simulation and then rapidly decrease due to im-

osed vibration reduction through NES-EH device. On the other hand,

igher values of transporting speed 𝑣 lead to higher initial response am-

litudes, which after reaching the peak value gradually decrease to some

nitely small value. Based on such behavior, it can be pointed out that

he presented nonlinear attachment, such as a NES-EH device, shows

reat performance in energy localization and dissipation characteristics

n short time intervals. 

In this study, both NES and NES-EH configurations were investi-

ated. However, we focused primarily on NES-EH system since the re-

ults indicated that there are no significant differences in their perfor-

ance regarding the vibration attenuation application. Therefore, it can
14 
e concluded that introducing the EH element does not by itself im-

rove the vibration reduction capabilities of the device. Nevertheless,

ompared to the pure NES device, a NES-EH can transform part of the

echanical vibration energy into the electrical one. However, the pre-

ented analysis also showed certain drawbacks of the proposed NES-EH

evice configuration i.e. it demonstrated that the portion of the har-

ested energy is relatively small and that it depends on how fast the

ES will transfer the energy from the main structure to the attachment

nd dissipate it through the mechanical damper. Despite this deficiency,

he amount of harvested electrical energy could be sufficient to supply

ome small monitoring devices and sensors such as MEMS or NEMS. 

. Conclusions 

In this paper, we used a semi-numerical approach to study the non-

inear periodic responses of an axially moving beam with nonlinear at-

achment such as a nonlinear energy sink coupled with an energy har-

esting device. We have shown that by attaching this device onto the

rimary structure one can exploit both vibration suppression and energy
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arvesting capabilities of the presented system. The governing equations

f the system are derived by using the Euler-Bernoulli beam theory,

on Karman strain-displacement relation and Hamilton’s principle. The

alerkin method is introduced to discretize the partial differential equa-

ions to the system of nonlinear ordinary differential equations. Two

ources of nonlinearity are considered - the geometric nonlinearity that

ntroduces the large amplitude deflections into the system, as well as a

onlinearity of the spring in the nonlinear energy sink device. The prob-

em of finding the periodic responses in the form of amplitude-frequency

iagrams is resolved by using the semi-numerical IHB and continuation

ethod. This methodology significantly simplifies the calculation of pe-

iodic solutions compared to the classical numerical integration meth-

ds, thus very efficiently providing the complex amplitude-frequency re-

ponses of strongly nonlinear systems with turning points and multiple

eriodic solutions. Complete set of integrals for IHB is derived in the an-

lytic form, where the computation time for determination of responses

s significantly reduced. Application of the Floquet stability theory and

he Hsu procedure to investigate the stability of a periodic solution sig-

ificantly improved the qualitative analysis of the system’s nonlinear be-

avior. Considering the direct numerical integration, the time response

iagrams are determined to study the amplitude response reduction and

nergy localization and dissipation through the application of the NES-

H attachment. Validation study have shown a good agreement of the

esults obtained by the presented method with the results from the lit-

rature. Parametric study revealed that performance of the nonlinear

ttachment becomes more prominent for an increase of the linear stiff-

ess and transporting speed. Moreover, it was shown that an increase of

he transporting speed leads to amplification of the hardening stiffness

onlinearity effect. 

Since undesired vibration of engineering structures can be induced

y various sources such as earthquakes, acoustic noise, machine or

ehicle-induced vibration or flow-induced vibration, introduction of the

ES or coupled NES-EH devices can be advantageous for vibration ab-

orption and energy harvesting purposes. Based on the presented results,

t can be concluded that methodology used in this study can be applied

o analyze systems with higher number of structural elements and de-

rees of freedom with strong nonlinearities, which can be an important

tep in future design of novel passive vibration control devices. 
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ppendix A. Matrix coefficients 

Matrices and vectors in Eq. (22) : 

 11 = ∫
2 𝜋

0 

{
Ω2 
0 C 

𝑇 C 

′′ + Ω0 ( 𝜇11 + 2 𝑏 ) C 

𝑇 C 

′ + 

(
𝑘 11 + 𝑘 12 𝑞 

2 
20 + 3 𝑘 13 𝑞 2 10 

+ 6 𝑘𝑞 2 10 − 12 𝑘𝑞 10 𝑦 0 + 6 𝑘𝑦 2 0 
)
C 

𝑇 C 

}
𝑑𝜏, (46) 
15 
 12 = ∫
2 𝜋

0 

{
𝜇12 Ω0 C 

𝑇 C 

′ + 2 𝑘 12 𝑞 10 𝑞 20 C 

𝑇 C 

}
𝑑𝜏, 

 13 = ∫
2 𝜋

0 

{
−2 𝑏 Ω0 C 

𝑇 C 

′ + 6 𝑘 (− 𝑞 2 10 + 2 𝑞 10 𝑦 0 − 𝑦 2 0 ) C 

𝑇 C 

}
𝑑𝜏, 

 11 = − ∫
2 𝜋

0 

{
Ω2 
0 C 

𝑇 C 

′′ + Ω0 ( 𝜇11 + 2 𝑏 ) C 

𝑇 C 

′ + 

(
𝑘 11 + 𝑘 13 𝑞 

2 
10 + 2 𝑘𝑞 2 10 

)
C 

𝑇 C 

}
 12 = − ∫

2 𝜋

0 

{
−Ω0 𝜇12 C 

𝑇 C 

′ + 𝑘 12 𝑞 10 𝑞 20 C 

𝑇 C 

}
𝑑𝜏, 

 13 = − ∫
2 𝜋

0 

{
−2 𝑏 Ω0 C 

𝑇 C 

′ + 2 𝑘 
(
−3 𝑞 2 10 + 3 𝑞 10 𝑦 0 − 𝑦 2 0 

)
C 

𝑇 C 

}
𝑑𝜏, 

 11 = − ∫
2 𝜋

0 

{
2Ω0 C 

𝑇 C 

′′ + ( 𝜇11 + 2 𝑏 ) C 

𝑇 C 

′}𝑑𝜏, 
 12 = − ∫

2 𝜋

0 

{
− 𝜇12 C 

𝑇 C 

′}𝑑𝜏, 
 13 = − ∫

2 𝜋

0 

{
−2 𝑏 C 

𝑇 C 

′}𝑑𝜏, 
̃
 1 = ∫

2 𝜋

0 

{
𝑓 1 C 

𝑇 cos 𝜏
}
𝑑𝜏, 

Matrices and vectors in Eq. (23) : 

 21 = ∫
2 𝜋

0 

{
𝜇21 Ω0 C 

𝑇 C 

′ + 2 𝑘 22 𝑞 10 𝑞 20 C 

𝑇 C 

}
𝑑𝜏, (47)

 22 = ∫
2 𝜋

0 

{
Ω2 
0 C 

𝑇 C 

′′ + Ω0 𝜇22 C 

𝑇 C 

′ + 

(
𝑘 21 + 𝑘 22 𝑞 

2 
10 + 3 𝑘 23 𝑞 2 20 

)
C 

𝑇 C 

}
𝑑𝜏, 

 21 = − ∫
2 𝜋

0 

{
−Ω0 𝜇21 C 

𝑇 C 

′ + 𝑘 22 𝑞 10 𝑞 20 C 

𝑇 C 

}
𝑑𝜏, 

 22 = − ∫
2 𝜋

0 

{
Ω2 
0 C 

𝑇 C 

′′ + Ω0 𝜇22 C 

𝑇 C 

′ + 

(
𝑘 21 + 𝑘 23 𝑞 

2 
20 
)
C 

𝑇 C 

}
𝑑𝜏, 

 21 = − ∫
2 𝜋

0 

{
𝜇21 C 

𝑇 C 

′}𝑑𝜏, 
 22 = − ∫

2 𝜋

0 

{
2Ω0 C 

𝑇 C 

′′ + 𝜇22 C 

𝑇 C 

′}𝑑𝜏, 
̃
 2 = ∫

2 𝜋

0 

{
𝑓 2 C 

𝑇 cos 𝜏
}
𝑑𝜏, 

Matrices from Eq. (24) : 

 31 = ∫
2 𝜋

0 

{
− 𝑏 Ω0 C 

𝑇 C 

′ − 𝑘 (3 𝑞 2 10 − 6 𝑞 10 𝑦 0 + 3 𝑦 2 0 ) C 

𝑇 C 

}
𝑑𝜏, (48)

 33 = ∫
2 𝜋

0 

{
𝜀 Ω2 

0 C 

𝑇 C 

′′ + Ω0 𝑏 C 

𝑇 C 

′ + ̃𝑘 𝑝 C 

𝑇 C − 𝑘 
(
−3 𝑞 2 10 + 6 𝑞 10 𝑦 0 − 3 𝑦 2 0 

)
C 

𝑇 C

 34 = ∫
2 𝜋

0 

{
− ̃𝐺 C 

𝑇 C 

}
𝑑𝜏, 

 31 = − ∫
2 𝜋

0 

{
− 𝑏 Ω0 C 

𝑇 C 

′ − 𝑘 
(
𝑞 2 10 − 3 𝑞 10 𝑦 0 

)
C 

𝑇 C 

}
𝑑𝜏, 

 33 = − ∫
2 𝜋

0 

{
Ω2 
0 𝜀 C 

𝑇 C 

′′ + ̃𝑘 𝑝 C 

𝑇 C + Ω0 𝑏 C 

𝑇 C 

′ + 𝑘 
(
𝑦 2 0 − 3 𝑞 10 𝑦 0 

)
C 

𝑇 C 

}
𝑑𝜏, 

 34 = − ∫
2 𝜋 {

− ̃𝐺 C 

𝑇 C 

}
𝑑𝜏, 
0 
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 31 = − ∫
2 𝜋

0 

{
− 𝑏 C 

𝑇 C 

′}𝑑𝜏, 
 33 = − ∫

2 𝜋

0 

{
2Ω0 𝜀 C 

𝑇 C 

′′ + 𝑏 C 

𝑇 C 

′}𝑑𝜏, 
atrices from Eq. (25) : 

 43 = − ∫
2 𝜋

0 

{
C 

𝑇 C 

}
𝑑𝜏, 

 44 = ∫
2 𝜋

0 

{
�̃� Ω0 C 

𝑇 C 

′ + C 

𝑇 C 

}
𝑑𝜏, 

 43 = − ∫
2 𝜋

0 

{
− C 

𝑇 C 

}
𝑑𝜏, 

 44 = − ∫
2 𝜋

0 

{
�̃� Ω0 C 

𝑇 C 

′ + C 

𝑇 C 

}
𝑑𝜏, 

 44 = − ∫
2 𝜋

0 

{
�̃� Ω0 C 

𝑇 C 

′}𝑑𝜏. 
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