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A B S T R A C T

An enrichment scheme based upon the Neumann expansion method is proposed to augment the deterministic
coefficient vectors associated with the polynomial chaos expansion method. The proposed approach relies upon
a split of the random variables into two statistically independent sets. The principal variability of the system
is captured by propagating a limited number of random variables through a low-ordered polynomial chaos
expansion method. The remaining random variables are propagated by a Neumann expansion method. In turn,
the random variables associated with the Neumann expansion method are utilised to enrich the polynomial
chaos approach. The effect of this enrichment is explicitly captured in a new augmented definition of the
coefficients of the polynomial chaos expansion. This approach allows one to consider a larger number of
random variables within the scope of spectral stochastic finite element analysis in a computationally efficient
manner. Closed-form expressions for the first two response moments are provided. The proposed enrichment
method is used to analyse two numerical examples: the bending of a cantilever beam and the flow through
porous media. Both systems contain distributed stochastic properties. The results are compared with those
obtained using direct Monte Carlo simulations and using the classical polynomial chaos expansion approach.
. Introduction

System and structural uncertainties may result in considerable dif-
erences arising in the responses of seemingly equivalent systems. Such
ncertainties can occur in numerous ways including during the manu-
acturing or assembly processes of a structure, or in an applied load.
onsequently, methods for quantifying and analysing stochastically
arametrised systems have been developed. Through the use of such
fficient numerical algorithms, systems that are governed by stochastic
artial differential equations can be efficiently analysed.

Due to its rigour and efficient manner, the stochastic finite element
pproach has been widely utilised to model and propagate uncertainty.
hrough this approach, one or more distributed parameters can be
odelled by random fields. In the context of elliptic problems, the

overning equation can be expressed as

− ∇𝑛 [𝑎(𝑥, 𝜃)∇𝑛𝑢(𝑥, 𝜃)
]

= 𝑝(𝑥); 𝑥 in 𝒟 (1)

ith the Dirichlet boundary condition 𝑢(𝑥, 𝜃) = 0, 𝑥 on 𝜕𝒟 . The spacial
omain under consideration is defined as 𝒟 ∈ R𝑑 with piecewise
ipschitz boundary 𝜕𝒟 , and 𝑑 is less than or equal to 3. In the above
quation, 𝑥 is the spatial variable, 𝜃 denotes sample space, 𝑝(𝑥) is the
xcitation, 𝑢(𝑥, 𝜃) is the response of the system and 𝑎(𝑥, 𝜃) is the random
ield describing a system parameter. The random field is on a bounded
omain on R𝑑 and on the probability space (𝛩, , 𝑃 ). The differential
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operator is given by ∇, whilst the value of 𝑛 is problem dependent.
To solve the stochastic partial differential equation given in Eq. (1), it
is necessary to discretise both the response and the random field. The
response field can be discretised by utilising the conventional finite
element method, while the stochastic field can be discretised, in our
case, through the Karhunen–Loève expansion

𝑎(𝑥, 𝜃) = 𝑎0(𝑥) +
∞
∑

𝑖=1

√

𝜈𝑖𝜉𝑖(𝜃)𝜑𝑖(𝑥) (2)

In the above expression 𝑎0(𝑥) is the mean function, 𝜉𝑖(𝜃) are uncorre-
lated standard Gaussian random variables. 𝜈𝑖 and 𝜑𝑖(𝑥) correspond to
the eigenvalues and eigenfunctions of the autocorrelation function of
the random field. Substituting the Karhunen–Loève expansion into Eq.
(1) and truncating the series up to 𝑀th term, the discretised equation
can be expressed as
[

𝐀0 +
𝑀
∑

𝑖=1
𝜉𝑖(𝜃)𝐀𝑖

]

𝐮(𝜃) = 𝐟 (3)

The response vector 𝐮(𝜃) may be obtained by directly solving the above
equation through the use of a direct Monte Carlo method. However
the convergence rate of the method is notoriously slow, hence a large
number of computationally expensive simulations is required. In order
to overcome the computational cost, a number of efficient techniques
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have been proposed to approximate the response of structural sys-
tems. One such method is the Polynomial Chaos Expansion [PCE].
The PCE method was first discussed by Wiener in his 1938 work [1].
This work utilised both Hermite polynomials and Gaussian random
variables to describe a stochastic process. The first application of the
PCE method in conjunction with the stochastic finite element method
was conducted and was entitled the Spectral Stochastic Finite Element
Method. The first application of the PCE method to analyse engineering
systems was conducted by Gahnem and Spanons [2], and the proposed
framework was entitled the Spectral Stochastic Finite Element Method.
Following this, the PCE method has been widely applied in numerous
fields including structural dynamics [3,4], heat transfer [5,6] and
fluid dynamics [7,8]. The method has also been utilised to analyse
systems undergoing static loads [9] and dynamic loads in both the
time [10] and frequency [11,12] domains. In addition to analysing
the responses of stochastically parametrised systems, the PCE method
has also been applied to the random eigenvalue problem [13,14]. In
turn, methods which hybridise the perturbation method and the PCE
have been suggested to analyse the random eigenvalue problem [15].
These hybridised methods have been obtained by utilising a collection
of methods including the Rayleigh quotient, the power method and the
inverse power method.

One of the main necessities of the PCE method is to determine
the deterministic PCE coefficients. The methods for obtaining these
deterministic coefficients can be categorised into two groups, intrusive
or non-intrusive methods [16]. The intrusive method corresponds to
the method discussed above. This method ensures that the residual of
stochastic finite element formulation is orthogonal to the basis asso-
ciated with the PCE method. Non-intrusive methods are often treated
as black box solvers where a number of samples are treated deter-
ministically. Extensive literature have discussed different non-intrusive
methods. These approaches include projection methods [17,18], least
squares approximations [19,20], stochastic collocation methods [21,
22] and efficient sampling methods such as Latin hypercube or quasi
sampling methods [23,24]. Numerous studies have been conducted to
compare different non-intrusive methods [25–28]. In one such study,
the effect of altering the number of sample points for non-intrusive PCE
methods was systematically examined [28]. The work concluded that
in order to have an accurate account of a stochastic system, the number
of sample points is required to be at least twice the number of terms in
PCE.

One of the main restrictions associated with the PCE is the large
computational cost associated with high dimensional systems. The
number of terms associated with the PCE increases exponentially with
the dimension of the stochastically parametrised system. In order to
address this issue, sparse representations of the PCE have been sug-
gested [29–33]. Such methods are achieved by only retaining the
dominant basis functions which are associated with the PCE method.
It has also been demonstrated that the convergence of the statistical
moments can be very slow for dynamic problems. In order to address
this, a method for accelerating the convergence of the first two statisti-
cal moments has been suggested [4]. Furthermore, the PCE is reported
to produce erroneous peaks at resonance frequencies [4]. This is of
importance as the resonance values have physical interpretation. For
a comprehensive discussion about the limitations, see [34–36].

One of the most pressing issues associated with the PCE is its vul-
nerability to the curse of dimensionality when the number of stochastic
dimensions is large. In numerous studies, the number of stochastic
dimensions is often truncated. This can lead to valuable information
being omitted from the solution. As a result, this work aims to ad-
dress this issue by exploring a hybrid enrichment method. A limited
number of hybrid methods have been suggested in conjunction with
the PCE. Among the hybrid techniques, the Kriging method [37] has
recently been utilised to produce a new non-intrusive meta-modelling
method [38,39]. In these studies, a system’s global behaviour is mod-
elled by the PCE, and the local behaviour by the Kriging method. The
2

Arnoldi-based Krylov subspace technique [40] has also been used in
conjunction with the PCE method [41]. The work applies the Arnoldi-
based Krylov subspace technique to reduce the size of the governing
stochastic finite element equation prior to utilising the PCE method.
In our proposed method, a hybridised Neumann enrichment approach
is proposed to enrich the PCE method. This is achieved by initially
propagating a limited number of random variables through the PCE
method. The remaining random variables are utilised to enrich the PCE
coefficients by the use of a Neumann series expansion.

The paper is structured as follows. An overview of the well-
established polynomial chaos expansion is given in Section 2. In a
similar manner, Section 3 outlines the Neumann Expansion method.
Section 4 introduces the novel enrichment approach. Closed-form ex-
pression for both the mean and the variance of the classical polynomial
chaos expansion method and the Neumann enriched polynomial chaos
expansion method are discussed and provided in Section 5. Section 6
utilises the Neumann enriched polynomial chaos expansion method
to approximate the response of a Euler–Bernoulli cantilever beam
and a flow through a porous media. Both systems contain stochastic
properties. These results are compared with the benchmark direct
Monte Carlo simulation approach and the classical polynomial chaos
method. The major findings and conclusions are consequently drawn
in Section 7.

2. Polynomial chaos expansion

Let 𝝃(𝜃) = {𝜉1(𝜃), 𝜉2(𝜃),… , 𝜉𝑀 (𝜃)} be a set of 𝑀 independent and
dentically distributed input random vectors that represent the input
ncertainty of a system (here 𝜃 denotes the sample space). By applying
he PCE approach, the stochastic response 𝑢𝑗 (𝜃) can be represented with
mean-square convergent series as

𝑢𝑗 (𝜃) = 𝑢(𝑗)𝑖0
ℎ0 +

∞
∑

𝑖1=1
𝑢𝑖1ℎ1(𝜉𝑖1 (𝜃))

+
∞
∑

𝑖1=1

𝑖1
∑

𝑖2=1
𝑢(𝑗)𝑖1 ,𝑖2

ℎ1(𝜉𝑖1 (𝜃), 𝜉𝑖2 (𝜃))

+
∞
∑

𝑖1=1

𝑖1
∑

𝑖2=1

𝑖2
∑

𝑖3=1
𝑢(𝑗)𝑖1 ,𝑖2 ,𝑖3

ℎ1(𝜉𝑖1 (𝜃), 𝜉𝑖2 (𝜃), 𝜉𝑖3 (𝜃))

+
∞
∑

𝑖1=1

𝑖1
∑

𝑖2=1

𝑖2
∑

𝑖3=1

𝑖3
∑

𝑖4=1
𝑢(𝑗)𝑖1 ,𝑖2 ,𝑖3 ,𝑖4

ℎ1(𝜉𝑖1 (𝜃), 𝜉𝑖2 (𝜃), 𝜉𝑖3 (𝜃), 𝜉𝑖4 (𝜃)) +⋯

(4)

where 𝑢(𝑗)𝑖1 ,…,𝑖𝑝
and 𝑢(𝑗)𝑖0

are deterministic constants to be determined and
ℎ𝑝(𝜉𝑖1 (𝜃),… , 𝜉𝑖𝑝 (𝜃)) is the 𝑝th order chaos term. The accuracy of the
approximation can be controlled by the order of the chaos terms. The
higher the order, the more accurate the approximation. When utilising
Gaussian random variables the chaos terms correspond to Hermite
polynomial, where the Hermite polynomial are orthogonal with respect
to the Gaussian joint distribution function. Due to the response of Eq.
(3) being a vector, the scalars 𝑢(𝑗)𝑖1 ,…,𝑖𝑝

and 𝑢(𝑗)𝑖0
can be replaced by the

vectors 𝐮(𝑗)𝑖1 ,…,𝑖𝑝
∈ R𝑁 and 𝐮(𝑗)𝑖0

∈ R𝑁 . After a finite truncation, the
polynomial chaos expansion can be written as

𝐮(𝜃) =
𝑃
∑

𝑘=1
𝐻𝑘(𝝃(𝜃))𝐮𝑘 (5)

where 𝐻𝑘(𝝃(𝜃)) are the polynomial chaoses and 𝐮𝑘 are deterministic
vectors that need to be determined. The expression for the polynomial
chaoses of order 𝑝 is given by

𝐻𝑘(𝝃(𝜃)) = (−1)𝑝 𝜕𝑝

𝜕𝜉𝑖1 … 𝜕𝜉𝑖𝑝
exp−

1
2 𝝃

𝑇 (𝜃)𝝃(𝜃) (6)

Although this work focuses on the Gaussian distribution, other non-
Gaussian random distributions can be considered through the use of
a Wiener–Askey polynomial chaos expansion [42,43]. This approach
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Table 1
Types of Wiener–Askey polynomial chaoses and their corresponding random input
variables.

Random input Wiener–Askey chaos Support

Beta Jacobi [a, b]
Gamma Laguerre [0, ∞]
Gaussian Hermite (−∞, ∞)
Uniform Legendre [a, b]

Table 2
The value of 𝑃 when 𝑀 = {2, 3, 5, 10, 20, 50, 100} and 𝑝 = {1, 2, 3}.
𝑉 𝑎𝑙𝑢𝑒𝑜𝑓𝑀 2 3 5 10 20 50 100

1st order PC 3 4 6 11 21 51 101
2nd order PC 6 10 21 66 231 1326 5151
3rd order PC 10 20 56 286 1771 23426 176851

provides generalised functional basis where the basis ensure that or-
thogonality with respect to the probability density functions is kept.
Different types of Wiener–Askey polynomial chaoses and their corre-
sponding random variables and supports are provided in Table 1. The
value of 𝑃 arising in Eq. (5) is determined by a basic random variable
𝑀 and by the order of the PCE (𝑝). In this instance, 𝑀 corresponds to
the order of the Karhunen–Loève expansion

𝑃 =
𝑝
∑

𝑗=0

(𝑀 + 𝑗 − 1)!
𝑗!(𝑀 − 1)!

=
(

𝑀 + 𝑝
𝑝

)

(7)

t is evident that 𝑃 increases rapidly when either the order of the
arhunen–Loève expansion or the order of the Polynomial Chaos ex-
ansion is increased. This is illustrated in Table 2.

The unknown deterministic vectors 𝐮𝑘 can be obtained by utilising
Galerkin error minimising approach [2]. This approach is initiated

y substituting the approximation for 𝐮(𝜃), which is given by Eq. (5),
into the governing discretised model. The residual of the discretised
system is subsequently made orthogonal to the space spanned by the
polynomial chaoses. In turn, this leads to a system of linear equations
of size 𝑁𝑃 × 𝑁𝑃 , where 𝑁 corresponds to the number of degrees of
freedom associated with a structure

⎡

⎢

⎢

⎢

⎢

⎣

𝐴1,1 ⋯ 𝐴1,𝑁𝑃
𝐴2,1 ⋯ 𝐴2,𝑁𝑃
⋮ ⋮ ⋮

𝐴𝑁𝑃 ,1 ⋯ 𝐴𝑁𝑃 ,𝑁𝑃

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢̃1
𝑢̃2
⋮

𝑢̃𝑁𝑃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓1
𝑓2
⋮

𝑓𝑁𝑃

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(8)

or

𝐀̃𝐔0 = 𝐅 (9)

By correctly arranging the linear equations, it can be deduced that

𝐔0 = {𝐮𝑇1 ,𝐮
𝑇
2 ,… ,𝐮𝑇𝑃 }

𝑇 (10)

ne of the major drawbacks associated with the PCE approach is the
igh computational cost associated with computing the deterministic
ectors 𝐮𝑘. As the value of 𝑃 increases exponentially with 𝑀 , this work
ims to produce a reduced method which would incorporate a limited
umber of random variables within the polynomial chaos expansion.

. Neumann expansion method

Following the application of the stochastic finite element method,
he response vector 𝐮(𝜃) can be obtained by inverting the system matrix.
owever, due to the high computational cost associated with inverting

he system matrix, a Neumann expansion can be utilised to approximate
he inversion. In turn, an approximation for the response vector can be
omputed. Eq. (3) can be expressed as

0

[

𝐈 + 𝐀−1
0

∞
∑

𝐀𝑖𝜉𝑖(𝜃)

]

𝐮(𝜃) = 𝐟0 (11)

𝑖=1 v

3

here 𝐀0 is the deterministic contribution of the system matrix, and 𝐈
s a 𝑁 × 𝑁 identity matrix. By manipulating the above equation, the
esponse vector can take the following form

(𝜃) =

[

𝐈 + 𝐀−1
0

∞
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]−1

𝐮0 (12)

here

0 = 𝐀−1
0 𝐟0 (13)

f the inverse of the system matrix exists, the inverse observed in Eq.
12) can by expanded by a convergent series. Thus by applying the
eumann series expansion, Eq. (12) can be expressed as

(𝜃) =
∞
∑

𝑘=0
(−1)𝑘

[

𝐀−1
0

∞
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]𝑘

𝐮0 (14)

here the first three terms of the Neumann series expansion are given
y

(𝜃) =
⎡

⎢

⎢

⎣

𝐈 − 𝐀−1
0

∞
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃) +

(

𝐀−1
0

∞
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

)2

−⋯
⎤

⎥

⎥

⎦

𝐮0 (15)

y applying suitable truncations to the Karhunen–Loève expansion and
he order of the Neumann series expansion, a closed form expression
or the response vector can be obtained. One of the main limitations
ssociated with the Neumann expansion method is that the coefficient
f variation associated with the stochastic system must not exceed 20%.
urthermore, the spectral radius of the result of 𝐀−1

0
∑∞

𝑖=0 𝐀𝑖𝜉𝑖(𝜃) must
e smaller than 1 to ensure the convergence of the Neumann series
xpansion.

. Neumann enriched polynomial chaos expansion

.1. Partitioning the stochastic space

The exponentially increasing cost is one of the main limitations asso-
iated with the PCE method. As a result, the values of 𝑀 and 𝑝 must be
ept relatively low in order for the PCE method to be computationally
easible. This is especially true if the number of degrees of freedom is
arge. However, by limiting the value of either 𝑀 or 𝑝, valuable in-
ormation concerning the stochastic properties of the structural system
s lost. Therefore, this section aims to suggest a new hybrid method
hich enriches a low-ordered PCE representation with a Neumann
xpansion. The crux of the proposed method is to propagate a limited
umber of random variables through a low-ordered PCE method before
ropagating the remaining random variables by a Neumann expansion.
he limited number of random variables propagated through the PCE
ould contribute towards the principal variability of the system. The

emaining random variables would in turn enrich the response vector.
e initially consider the stochastic finite element representation of a

ystems’ stiffness matrix

(𝜃) = 𝐀0 +
𝑀
∑

𝑖=1
𝜉𝑖(𝜃)𝐀𝑖 (16)

n this instance 𝐀0 ∈ R𝑁×𝑁 represents a deterministic, positive definite,
ymmetric matrix. 𝐀𝑖 ∈ R𝑁×𝑁 are general symmetric matrices for
= 1, 2,… ,𝑀 which contribute towards the stochastic nature of the

tiffness matrix and 𝜉𝑖(𝜃) corresponds to a set of random variables for
= 1, 2,… ,𝑀 . The key is to partition the random variables into two

ets
𝐱(𝜃) = {𝜉𝑖(𝜃)}, 𝑖 = 1,… ,𝑀1

𝐲(𝜃) = {𝜉𝑗 (𝜃)}, 𝑗 = 𝑀1 + 1,… ,𝑀
(17)

ence 𝐱(𝜃) and 𝐲(𝜃) are vectors of dimensions 𝑀1 and 𝑀2 such that
1+𝑀2 = 𝑀 . Our intention is to construct a polynomial chaos with the
ector 𝐱(𝜃), and then enriching our solution by performing a Neumann
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expansion with the vector 𝐲(𝜃). Our formulation exploits the fact that
𝐱(𝜃) and 𝐲(𝜃) are statistically independent random vectors. By utilising
the sets 𝐱(𝜃) and 𝐲(𝜃), the system matrix can be further decomposed as

𝐀(𝜃) = 𝐀0 +
𝑀1
∑

𝑖=1
𝑥𝑖(𝜃)𝐀𝑖 +

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁𝑗 = 𝐀𝑦(𝜃) +

𝑀1
∑

𝑖=1
𝑥𝑖(𝜃)𝐀𝑖 (18)

where

𝐀𝑦(𝜃) = 𝐀0 +
𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁𝑗 (19)

is effectively the unvarying contribution seen while considering the
PCE with respect to the random variables 𝑥𝑖 (which occupy the set
𝐱(𝜃)). In order to partition the stochastic space in a rational manner,
the response of the system when utilising Eq. (3) may be considered.
We initially consider the response of (3) in the following form

𝐮(𝜃) =
[

𝐀0 +
𝑀
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]−1

𝐟0

=

[

𝐈 + 𝐀−1
0

𝑀
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]−1

𝐀−1
0 𝐟0

⏟⏟⏟
𝐮0

(20)

where 𝐮0 corresponds to the response of the underlying deterministic
system. By applying a first-order expansion method, one has

𝐮(𝜃) ≈
[

𝐈 − 𝐀−1
0

𝑀
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]

𝐮0 (21)

The first-order perturbation is only used to determine the importance
of the random components. It is not used to obtain the statistics
of the response quantity. Subtracting the response of the underlying
deterministic system results in

𝐮(𝜃) − 𝐮0 = −

[

𝐀−1
0

𝑀
∑

𝑖=1
𝐀𝑖𝜉𝑖(𝜃)

]

𝐮0 (22)

By applying a sensitivity analysis with respect to the random variables
𝜉𝑖, it is apparent that
𝜕
𝜕𝜉𝑖

(

𝐮(𝜃) − 𝐮0
)

= −
[

𝐀−1
0 𝐀𝑖

]

𝐮0 (23)

here 𝜕
𝜕𝜉𝑖

corresponds to taking the partial derivative with respect to
he random variables.

Recall that the vector 𝐮0 is the response vector of the underlying
deterministic system. This is not affected by uncertainty in the model.
Therefore, the sensitivity of the stochastic response with respect to
the 𝑖th random variable 𝜉𝑖 is characterised by the matrix 𝐀−1

0 𝐀𝑖 only.
Several matrix norm can be used to explicitly quantify this sensitivity.
We use the Frobenius norm and define a scalar parameter

𝛼𝑖 =
‖

‖

‖

𝐀−1
0 𝐀𝑖

‖

‖

‖𝐹
(24)

where ‖∙‖𝐹 denotes the Frobenius norm. The scalars 𝛼𝑖 are referred to
s the sensitivity norm. They are subsequently normalised, such that

𝑖 =
𝛼𝑖

∑𝑀
𝑖=1 𝛼𝑖

(25)

This naturally implies that ∑𝑀
𝑖=1 𝛾𝑖 = 1. The resulting scalars, 𝛾𝑖, are re-

ferred to as the relative importance factors of the random components. By
considering these relative importance factors, the following inequality
can be utilised to partition the stochastic space

𝛾𝑖 > ℎ (26)

where the value of ℎ is to be appropriately chosen. For the values of 𝑖
hich satisfy the above inequality, the corresponding random variables
re to occupy the set 𝑥(𝜃). If accuracy is of importance, the value of ℎ

should be kept low in order for a larger number of the principal random
4

components to be incorporated within the PCE propagation. However
if computational speed is of most importance, the value of ℎ should
be kept high to incorporate the vast majority of the random variables
within the Neumann enrichment.

4.2. An enriched polynomial chaos expansion of the stochastic space

Subsequently to partitioning the stochastic space, it is possible to
express the response vector of a stochastic system in the following form

𝐮(𝜃) =
𝑃1
∑

𝑘=1
𝐻𝑘(𝐱(𝜃))𝐮𝑘(𝐲(𝜃)) (27)

where 𝐻𝑘(𝝃(𝜃)) are polynomial chaoses and 𝐮𝑘(𝐲(𝜃)) are vectors that
eed to be determined. The polynomial chaoses are a function of the
et 𝐱(𝜃), whilst the vectors 𝐮𝑘 are a function of the set 𝐲(𝜃). The number
f terms arising in the summation is defined by

1 =
𝑝
∑

𝑗=0

(𝑀1 + 𝑗 − 1)!
𝑗!(𝑀1 − 1)!

(28)

Eq. (27) captures the essential idea proposed in this study. By allowing
the deterministic PCE coefficients to be random, it reduces the ‘burden’
on the polynomial chaos expansion. The coefficient vectors 𝐮𝑘(𝐲(𝜃)) can
e obtained through the following set of 𝑃1𝑁 × 𝑃1𝑁 equations

𝐀̃0 +
𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

]

𝐔𝑦(𝜃) = 𝐅 (29)

here 𝐀̃0, 𝐁̃𝑗 and 𝐅 are obtained by utilising the underlying PCE
pproach [2]. The coefficient vectors can then be obtained by noting
hat

𝑦(𝜃) = {𝐮𝑇𝑦1 (𝜃),𝐮
𝑇
𝑦2
(𝜃),… ,𝐮𝑇𝑦𝑃1

(𝜃)}𝑇 (30)

owever, solving such a large system for every realisation is compu-
ationally very expensive. As a result a Neumann series expansion can
e utilised to compute the enriched coefficient vectors. In essence, we
im to compute the following

𝑦(𝜃) =

[

𝐀̃0 +
𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

]−1

𝐅 (31)

y employing a Neumann series expansion it is possible to convey 𝐔𝑦(𝜃)
as follows

𝐔𝑦(𝜃) =
⎡

⎢

⎢

⎣

𝐈 − 𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗 +

(

𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)2

−⋯
⎤

⎥

⎥

⎦

𝐔0 (32)

=
⎡

⎢

⎢

⎣

𝐈 +
∞
∑

𝑘=1

(

−𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
⎤

⎥

⎥

⎦

𝐔0 (33)

The series arising in Eq. (33) can be truncated, thus allowing a low-
order Neumann series expansion to approximate the vector 𝐔𝑦(𝜃)

𝐔𝑦(𝜃) ≈
⎡

⎢

⎢

⎣

𝐈 +
𝑃2
∑

𝑘=1

(

−𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
⎤

⎥

⎥

⎦

𝐔0 (34)

The number of terms retained in the series, 𝑃2, corresponds to the order
of the Neumann series expansion. The number of terms retained can
either be pre-defined in order to comply with computational cost, or a
convergence criteria can be set

‖

‖

‖

‖

(

−𝐀̃−1
0

∑𝑀2
𝑗=1 𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑃2‖
‖

‖

‖

‖

‖

‖

‖

∑𝑃2
𝑘=1

(

−𝐀̃−1
0

∑𝑀2
𝑗=1 𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
‖

‖

‖

‖

≤ 𝜀 (35)

The validity of the inequality must be checked for when additional

terms are retained in the series. However, it should be noted that in
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order for the Neumann series to converge, the absolute eigenvalues
of

(

−𝐀̃−1
0

∑𝑀2
𝑗=1 𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
∀ 𝑘 = 1,… , 𝑃2 must be less than one.

hrough this novel partitioning approach, we expect that including
he additional 𝑀2 terms substantially enriches the response vectors,
nd in turn, better captures the stochastic properties of a randomly
arametrised system.

The proposed expression for the PCE coefficients gives an alterna-
ive interpretation to their meaning in the context of stochastic response
nalysis. While employing only a PCE approach, the set of random
ariables 𝐲(𝜃) in Eq. (17) can be considered as ‘ignored’ or ‘missing’
ariables as the PCE is with 𝐱(𝜃) only. From the expression of the
esponse in Eq. (34), therefore, we have

𝑦(𝜃) ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐈 +
𝑃2
∑

𝑘=1

(

−𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the contribution of ignored random variables

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐔0 (36)

he consequence of considering the ‘additional’ set of random vari-
bles 𝐲(𝜃) is that the coefficients of the classical PCE just need to be
corrected’ as above, leaving the rest of the PCE method unaltered.
herefore, this seemingly minor modification to the classical PCE co-
fficients allows us to include the effect of possibly large numbers
f random variables which would otherwise be ignored or would be
omputationally too expensive to be included in the original analysis.
ne can view this as a simple post processing of a classical PCE analysis.
his way of viewing Eq. (36) can have a profound impact on the ap-
licability of the PCE analysis in general. For example, one can obtain
he PCE coefficients using a non-intrusive or other efficient approaches
nd then apply the corrections as per Eq. (36) to include the effect of
ther random variables which were not originally included in the PCE
nalysis for computational efficiency. Therefore, the proposed scheme
resents a balanced approach in comparison to when considering either
he PCE or Neumann series expansion approaches individually. For the
emainder of this study, the proposed Neumann Enriched Polynomial
haos Expansion method is given the acronym NEPC.

. Response statistics

Based upon the methods described in Sections 2 and 4 , this section
iscusses the first two moments of the response vectors. The moments
f the PCE method are initially considered.

.1. The polynomial chaos expansion: First moment

Due to the deterministic nature of the coefficient vectors, the first
oment, which corresponds to the mean of the PCE method can be

asily expressed as

{

𝐮𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1
E
{

𝐻𝑘(𝐱(𝜃))
}

𝐮0𝑘 = 𝐮01 (37)

here E{∗} corresponds to the expected value.

.2. The polynomial chaos expansion: Second moment

In a similar manner, the deterministic nature of the vectors 𝐮0𝑘 can
again be utilised to define the variance of the response vector. The
expected value of 𝐮𝑃𝐶 (𝜃)𝐮𝑇𝑃𝐶 (𝜃) is defined as

E
{

𝐮𝑃𝐶 (𝜃)𝐮𝑇𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1

𝑃1
∑

𝑗=1
E
{

𝐻𝑘(𝐱(𝜃))𝐻𝑗 (𝐱(𝜃))
}

𝐮0𝑘𝐮
𝑇
0𝑗

(38)

Due to the orthogonal nature of the polynomial chaoses, it can be
deduced that 𝐻𝑘(𝐱(𝜃))𝐻𝑗 (𝐱(𝜃)) = 0 when 𝑘 ≠ 𝑗, thus the above
expression can be simplified significantly

E
{

𝐮𝑃𝐶 (𝜃)𝐮𝑇𝑃𝐶 (𝜃)
}

=
𝑃1
∑

E
{

𝐻2
𝑘 (𝐱(𝜃))

}

𝐮0𝑘𝐮
𝑇
0𝑘

(39)

𝑘=1

5

Thus the variance of the 𝑖th element of the response vector can be
expressed as

𝜎2𝑢𝑃𝐶𝑖
= E

{

𝑢𝑃𝐶 (𝜃)𝑢𝑇𝑃𝐶 (𝜃)
}

𝑖 − E
{

𝑢𝑃𝐶 (𝜃)
}2
𝑖 (40)

where E
{

𝑢𝑃𝐶 (𝜃)𝑢𝑇𝑃𝐶 (𝜃)
}

𝑖 is the 𝑖th diagonal element of the matrix
E
{

𝐮𝑃𝐶 (𝜃)𝐮𝑇𝑃𝐶 (𝜃)
}

and E
{

𝑢𝑃𝐶 (𝜃)
}2
𝑖 is the squared value of the 𝑖th

lement of the vector E
{

𝐮𝑃𝐶 (𝜃)
}

. If needs be, the standard deviation
f the 𝑖th element of the response vector can be computed by noting
hat 𝜎𝑢𝑃𝐶𝑖

=
√

𝜎2𝑢𝑃𝐶𝑖
where 𝜎𝑢𝑃𝐶𝑖

is the standard deviation of the 𝑖th
lement.

.3. The Neumann enriched polynomial chaos method: First moment

Due to the stochastic nature of both the scalars and the coefficient
ectors associated with the NEPC method, the first moment of the
esponse vector of the NEPC method takes the following form

{

𝐮𝑁𝐸𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1
E
{

𝐻𝑘(𝐱(𝜃))𝐮𝑦𝑘 (𝜃)
}

(41)

owever, due to the polynomial chaoses and the stochastic vectors
eing independent from one another, the expected value operator can
een treated as a multiplicative function, hence

{

𝐮𝑁𝐸𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1
E
{

𝐻𝑘(𝐱(𝜃))
}

E
{

𝐮𝑦𝑘 (𝜃)
}

(42)

here the expected values of the stochastic 𝐮𝑦𝑘 (𝜃) vectors can be
omputed from

E
{

𝐔𝑦(𝜃)
}

= E
[

𝐮𝑇𝑦1 (𝜃) 𝐮
𝑇
𝑦2
(𝜃)…𝐮𝑇𝑦𝑃1

(𝜃)
]𝑇

=
[

E
{

𝐮𝑇𝑦1 (𝜃)
}

E
{

𝐮𝑇𝑦2 (𝜃)
}

…E
{

𝐮𝑇𝑦𝑃1
(𝜃)

}]𝑇 (43)

or notational convenience, the matrix 𝐔𝑦(𝜃) can be redefined

𝑦(𝜃) =

[

𝐈 +
𝑃2
∑

𝑘=1
(−1)𝑘𝛤𝑘(𝜃)

]

𝐔0 (44)

here 𝛤𝑘(𝜃) =
(

𝐀̃−1
0

∑𝑀2
𝑗=1 𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
. Thus by taking the expected value

f the matrix 𝐔𝑦(𝜃), it is apparent that the variable 𝛤𝑘(𝜃) contains all
he stochastic properties of the matrix

E
{

𝐔𝑦(𝜃)
}

= E

{[

𝐈 +
𝑃2
∑

𝑘=1
(−1)𝑘𝛤𝑘(𝜃)

]

𝐔0

}

=

[

𝐈 +
𝑃2
∑

𝑘=1
(−1)𝑘E

{

𝛤𝑘(𝜃)
}

]

𝐔0

(45)

he number of terms retained in the summation, 𝑃2, corresponds to
he order of the Neumann expansion. We initially consider the cases
or when 𝑃2 = 1 and 𝑃2 = 2. In order to gain an expression for the
ean of the response vector when a first order Neumann expansion is
tilised, the expected value of 𝛤1(𝜃) needs to be explored

E
{

𝛤1(𝜃)
}

= E

{

𝐀̃−1
0

𝑀2
∑

𝑗1=1
𝑦𝑗1 (𝜃)𝐁̃𝑗1

}

= 𝐀̃−1
0

𝑀2
∑

𝑗1=1
E
{

𝑦𝑗1 (𝜃)
}

𝐁̃𝑗1

(46)

ue to 𝑦𝑗 (𝜃) being a Gaussian random variable, it can be deduced
hat E

{

𝑦𝑗1 (𝜃)
}

= 0. Thus by combining the result of Eq. (46) with
q. (45), it is apparent that performing a NEPC with a first order
eumann expansion does not enrich the approximation of the mean
f the response vector in comparison to the PCE method. In a similar
anner, the expected value of the mean of the approximated response

ector is explored when 𝑃2 = 2. It has already been ascertained that
{

𝛤 (𝜃)
}

= 0, therefore the expected value of 𝛤 (𝜃) is considered
1 2
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I
e

E

T
c
t
n
c

E
{

𝛤2(𝜃)
}

= E
⎧

⎪

⎨

⎪

⎩

(

𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)2⎫
⎪

⎬

⎪

⎭

= 𝐀̃−1
0

𝑀2
∑

𝑗1=1

𝑀2
∑

𝑗2=1
E
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)
}

𝐁̃𝑗1 𝐀̃
−1
0 𝐁̃𝑗2

(47)

t can be noted that E
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)
}

= 0 when 𝑗1 ≠ 𝑗2, thus the
xpression for E

{

𝛤2(𝜃)
}

can be simplified to

{

𝛤2(𝜃)
}

= 𝐀̃−1
0

𝑀2
∑

𝑗=1
E
{

𝑦2𝑗 (𝜃)
}

𝐁̃𝑗𝐀̃−1
0 𝐁̃𝑗 (48)

herefore, it is apparent that the second term arising in the summation
ontained within Eq. (45) enriches the mean of the response vector. In
urn, the induced error is reduced. To gain a general overview of the
ature of the terms arising in the summation when 𝑃2 > 2, the general
ase for 𝛤𝑟 is considered

E
{

𝛤𝑟(𝜃)
}

= E
⎧

⎪

⎨

⎪

⎩

(

𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑟⎫
⎪

⎬

⎪

⎭

= 𝐀̃−1
0

𝑀2
∑

𝑗1=1

𝑀2
∑

𝑗2=1
…

𝑀2
∑

𝑗𝑟=1
E
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)… 𝑦𝑗𝑟 (𝜃)
}

𝐁̃𝑗1 𝐀̃
−1
0 𝐁̃𝑗2 … 𝐀̃−1

0 𝐁̃𝑗𝑟

(49)

By combining the above expression with the following relationship [44]

E
{

𝑦𝑟𝑗
}

=

{

0, if 𝑟 is odd.
𝜎𝑟(𝑟 − 1)!!, if 𝑟 is even.

(50)

it is apparent that E
{

𝛤𝑟(𝜃)
}

= 0 when the value of 𝑟 is odd. Therefore,
in order to enrich the mean of the response vector, considering a Neu-
mann Expansion with a odd valued order (𝑟) is needless. Considering
an order of 𝑟−1 would be sufficient and computationally less expensive.
However, by incorporating the properties of the Hermite polynomials,
it can be deduced that the first moment of the NEPC method can be
expressed as

E
{

𝐮𝑁𝐸𝑃𝐶 (𝜃)
}

= E
{

𝐮𝑦1 (𝜃)
}

(51)

where E
{

𝐮𝑦1 (𝜃)
}

is contained within E
{

𝐔𝑦(𝜃)
}

as shown by Eq. (43).

5.4. The Neumann enriched polynomial chaos method: Second moment

To analyse the nature of the variance of the response vector, the
expected value of 𝐮𝑁𝐸𝑃𝐶 (𝜃)𝐮𝑇𝑁𝐸𝑃𝐶 (𝜃) must be examined

E
{

𝐮𝑁𝐸𝑃𝐶 (𝜃)𝐮𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1

𝑃1
∑

𝑗=1
E
{

𝐻𝑘(𝐱(𝜃))𝐻𝑗 (𝐱(𝜃))𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑗
(𝜃)

}

(52)

By utilising the orthogonal nature of the polynomial chaoses and the
multiplicative nature of the expected value operator, Eq. (52) can be
expressed as

E
{

𝐮𝑁𝐸𝑃𝐶 (𝜃)𝐮𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

=
𝑃1
∑

𝑘=1
E
{

𝐻2
𝑘 (𝐱(𝜃))

}

E
{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

(53)

The result of E
{

𝐻2
𝑘 (𝐱(𝜃))

}

produces a scalar value for all values of
𝑘, whilst E

{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

produces an 𝑁 × 𝑁 matrix ∀ 𝑘, where 𝑁
corresponds to the number of degrees of freedom associated with the
given structure. In order to assess the nature of E

{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

, we
initially consider the expected value of 𝐔𝑦(𝜃)𝐔𝑇

𝑦 (𝜃)

E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

=

[

𝐈 +
𝑃2
∑

𝑘1=1
(−1)𝑘1𝛤𝑘1 (𝜃)

]

𝐔0𝐔𝑇
0

[

𝐈 +
𝑃2
∑

𝑘2=1
(−1)𝑘2𝛤𝑘2 (𝜃)

]𝑇
(54)

6

where 𝛤𝑘(𝜃) =
(

𝐀̃−1
0

∑𝑀2
𝑗=1 𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘
is defined for notational con-

venience. By defining 𝐏0 = 𝐔0𝐔𝑇
0 , Eq. (54) can be expressed as

E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

= E
⎧

⎪

⎨

⎪

⎩

[

𝐏0 +

( 𝑃2
∑

𝑘1=1
(−1)𝑘1𝛤𝑘1 (𝜃)

)

𝐏0

][

𝐈 +
𝑃2
∑

𝑘2=1
(−1)𝑘2𝛤𝑘2 (𝜃)

]𝑇⎫
⎪

⎬

⎪

⎭

= 𝐏0 +

[ 𝑃2
∑

𝑘=1
(−1)𝑘E

{

𝛤𝑘(𝜃)
}

]

𝐏0 + 𝐏0

𝑃2
∑

𝑘=1
(−1)𝑘E

{

𝛤 𝑇
𝑘 (𝜃)

}

+
𝑃2
∑

𝑘1=1

𝑃2
∑

𝑘2=1
(−1)𝑘1+𝑘2E

{

𝛤𝑘1 (𝜃)𝐏0𝛤
𝑇
𝑘2
(𝜃)

}

(55)

Similarly to the discussion held for the mean of the response vector,
we initially consider the cases when 𝑃2 = 1 and 𝑃2 = 2. When 𝑃2 = 1,
it is apparent that E

{

𝛤1
}

= 0 from Eq. (46). By also noting that
E
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)
}

= 0 when 𝑗1 ≠ 𝑗2, it is apparent that

E
{

𝛤1(𝜃)𝐏0𝛤
𝑇
1 (𝜃)

}

= E
⎧

⎪

⎨

⎪

⎩

(

𝐀̃−1
0

𝑀2
∑

𝑗1=1
𝑦𝑗1 (𝜃)𝐁̃𝑗1

)

𝐏0

(

𝐀̃−1
0

𝑀2
∑

𝑘1=1
𝑦𝑘1 (𝜃)𝐁̃𝑘1

)𝑇⎫
⎪

⎬

⎪

⎭

= 𝐀̃−1
0

[𝑀2
∑

𝑗=1
E
{

𝑦2𝑗 (𝜃)
}

𝐁̃𝑗𝐏0𝐁̃𝑇
𝑗

]

𝐀̃−𝑇
0

(56)

Thus resulting in

E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

= 𝐏0 + 𝐀̃−1
0

[𝑀2
∑

𝑗=1
E
{

𝑦2𝑗 (𝜃)
}

𝐁̃𝑗𝐏0𝐁̃𝑇
𝑗

]

𝐀̃−𝑇
0 (57)

The E
{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

matrices ∀ 𝑘 can be obtained from the result of

Eq. (57). The matrices E
{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

form diagonal block matrices

contained within the matrix E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

. When a second order
Neumann expansion approach is utilised, the expectation of the matrix
𝐔𝑦(𝜃)𝐔𝑇

𝑦 (𝜃) takes the following form

E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

= 𝐏0 + E
{

𝛤2(𝜃)
}

𝐏0 + 𝐏0E
{

𝛤 𝑇
2 (𝜃)

}

+
2
∑

𝑘=1
E
{

𝛤𝑘(𝜃)𝐏0𝛤
𝑇
𝑘 (𝜃)

}

(58)

where

E
{

𝛤2(𝜃)
}

= 𝐀̃−1
0

𝑀2
∑

𝑗=1
E
{

𝑦2𝑗 (𝜃)
}

𝐁̃𝑗𝐀̃−1
0 𝐁̃𝑗 (59)

E
{

𝛤 𝑇
2 (𝜃)

}

=

[𝑀2
∑

𝑗=1
E
{

𝑦2𝑗 (𝜃)
}

𝐁̃𝑇
𝑗 𝐀̃

−𝑇
0 𝐁̃𝑇

𝑗

]

𝐀̃−𝑇
0 (60)

and

E
{

𝛤2(𝜃)𝐏0𝛤
𝑇
2 (𝜃)

}

= E
{ (

𝐀̃−1
0

𝑀2
∑

𝑗1=1

𝑀2
∑

𝑗2=1
𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)𝐁̃𝑗1 𝐀̃

−1
0 𝐁̃𝑗2

)

𝐏0

(

𝐀̃−1
0

𝑀2
∑

𝑘1=1

𝑀2
∑

𝑘2=1
𝑦𝑘1 (𝜃)𝑦𝑘2 (𝜃)𝐁̃𝑘1 𝐀̃

−1
0 𝐁̃𝑘2

)𝑇 }

= 𝐀̃−1
0

[ 𝑀2
∑

𝑗=1
E
{

𝑦4𝑗 (𝜃)
}

𝐁̃𝑗 𝐀̃−1
0 𝐁̃𝑗𝐏0𝐁̃𝑇

𝑗 𝐀̃
−𝑇
0 𝐁̃𝑇

𝑗 +

𝑀2
∑

𝑗=1

𝑀2
∑

𝑘=1
E
{

𝑦2𝑗 (𝜃)𝑦
2
𝑘(𝜃)

}

[

𝐁̃𝑗 𝐀̃−1
0 𝐁̃𝑗𝐏0𝐁̃𝑇

𝑘 𝐀̃
−𝑇
0 𝐁̃𝑇

𝑘+

𝐁̃𝑗 𝐀̃−1
0 𝐁̃𝑘𝐏0𝐁̃𝑇

𝑘 𝐀̃
−𝑇
0 𝐁̃𝑇

𝑗 + 𝐁̃𝑗 𝐀̃−1
0 𝐁̃𝑘𝐏0𝐁̃𝑇

𝑗 𝐀̃
−𝑇
0 𝐁̃𝑇

𝑘

]

]

𝐀̃−𝑇
0

(61)

The expression for E
{

𝛤1(𝜃)𝐏0𝛤 𝑇
1 (𝜃)

}

is given by Eq. (56). It can be
{ } { 𝑇 } { 𝑇 }
intuitively deduced that E 𝛤1(𝜃) = E 𝛤1 (𝜃) = E 𝛤1(𝜃)𝐏0𝛤2 (𝜃) =
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E
{

𝛤2(𝜃)𝐏0𝛤 𝑇
1 (𝜃)

}

= 0. Similarly to the previous case, the
E
{

𝐮𝑦𝑘 (𝜃)𝐮
𝑇
𝑦𝑘
(𝜃)

}

matrices ∀ 𝑘 can be obtained from the diagonal block

atrices contained within the matrix E
{

𝐔𝑦(𝜃)𝐔𝑇
𝑦 (𝜃)

}

. Contrary to the
mean of the response vector, it is apparent that considering a Neumann
Expansion with an odd valued order enriches the variance of the
response vector. This can be adjudged by re-examining the generic
case stated in Eq. (55). When considering the last term arising in
∑𝑃2

𝑘1=1
∑𝑃2

𝑘2=1
(−1)𝑘1+𝑘2E

{

𝛤𝑘1 (𝜃)𝐏0𝛤 𝑇
𝑘2
(𝜃)

}

, it can be deduced that

E
{

𝛤𝑃2
(𝜃)𝛤 𝑇

𝑃2
(𝜃)

}

= 𝐀̃−1
0

[ 𝑀2
∑

𝑗1=1

𝑀2
∑

𝑗2=1
…

𝑀2
∑

𝑗𝑃2 =1

𝑀2
∑

𝑘1=1

𝑀2
∑

𝑘2=1
…

𝑀2
∑

𝑘𝑃2 =1
E
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)…

𝑦𝑗𝑃2
(𝜃)𝑦𝑘1 (𝜃)𝑦𝑘2 (𝜃)… 𝑦𝑘𝑃2

(𝜃)
}

𝐁̃𝑗1
𝐀̃−1

0 𝐁̃𝑗2
…

𝐀̃−1
0 𝐁̃𝑗𝑃2

𝐁̃𝑇
𝑘𝑃2

𝐀̃−𝑇
0 … 𝐁̃𝑇

𝑘2
𝐀̃−𝑇

0 𝐁̃𝑇
𝑘1

]

𝐀̃−𝑇
0

(62)

hen 𝑦𝑗1 (𝜃) = 𝑦𝑗2 (𝜃) = … = 𝑦𝑗𝑃2 (𝜃) = 𝑦𝑘1 (𝜃) = 𝑦𝑘2 (𝜃) = 𝑦𝑘𝑃2 (𝜃) it is
vident that
{

𝑦𝑗1 (𝜃)𝑦𝑗2 (𝜃)… 𝑦𝑗𝑃2 (𝜃)𝑦𝑘1 (𝜃)𝑦𝑘2 (𝜃)… 𝑦𝑘𝑃2 (𝜃)
}

= E
{

𝑦2𝑃2 (𝜃)
}

= 𝜎2𝑃2 (2𝑃2 − 1)!!

(63)

Therefore it is apparent that ∑𝑃2
𝑘1=1

∑𝑃2
𝑘2=1

(−1)𝑘1+𝑘2E
{

𝛤𝑘1 (𝜃)𝐏0𝛤 𝑇
𝑘2
(𝜃)

}

≠
0 irrespective of 𝑃2 being an odd or an even number. In turn, it can be
deduced that the value of E

{

𝐮𝑁𝐸𝑃𝐶 (𝜃)𝐮𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

will be enriched for
every value of 𝑃2 as 𝑃2 is increased. As with the case of the PCE method,
the variance of the 𝑖th element of the response vector is defined as

𝜎2𝑢𝑁𝐸𝑃𝐶𝑖
= E

{

𝑢𝑁𝐸𝑃𝐶 (𝜃)𝑢𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

𝑖 − E
{

𝑢𝑁𝐸𝑃𝐶 (𝜃)
}2
𝑖 (64)

where E
{

𝑢𝑁𝐸𝑃𝐶 (𝜃)𝑢𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

𝑖 is the 𝑖th diagonal element of the matrix
E
{

𝐮𝑁𝐸𝑃𝐶 (𝜃)𝐮𝑇𝑁𝐸𝑃𝐶 (𝜃)
}

and E
{

𝑢𝑁𝐸𝑃𝐶 (𝜃)
}2
𝑖 is the squared value of the

𝑖th element of the vector E
{

𝐮𝑁𝐸𝑃𝐶 (𝜃)
}

. The standard deviation of the
𝑖th element of the response vector can be computed by

𝜎𝑢𝑁𝐸𝑃𝐶𝑖
=
√

𝜎2𝑢𝑁𝐸𝑃𝐶𝑖
(65)

here 𝜎𝑢𝑁𝐸𝑃𝐶𝑖
is the standard deviation of the 𝑖th element.

. Numerical examples

Thus far a potentially promising method which enriches the co-
fficient vectors that are associated with the PCE method has been
uggested. In this section the proposed method is applied to analyse
he bending of twelve Euler–Bernoulli cantilever beams which have
tochastic properties and a flow through a stochastic porous media.
he results obtained when utilising the proposed scheme are compared
ith the responses obtained when using the classical PCE method and

he benchmark DMCS method. Thus the following three methods are
mployed.

• Direct Monte Carlo Simulation [DMCS] with full set of random
variables:
𝐮(𝜃) = 𝐀−1(𝜃)𝐟0

• Classical Polynomial Chaos Expansion [PC] with random vari-
ables in partition 𝐱 only:
𝐮(𝜃) ≈

∑𝑃1
𝑘=1 𝐻𝑘(𝐱(𝜃))𝐮0𝑘

• Neumann Enriched Polynomial Chaos Expansion [NEPC] with full
set of random variables:
𝐮(𝜃) ≈

∑𝑃1
𝑘=1 𝐻𝑘(𝐱(𝜃))𝐮𝑦𝑘 (𝜃)

.1. Euler–Bernoulli cantilever beams

All the beams under consideration are 1.00 m in length (𝐿), and
ave a rectangular cross-section of width 0.03 m and height 0.003 m.
7

Fig. 1. The configuration of the stochastically parametrised cantilever beams.

Fig. 1 illustrates the configuration. Through the use of the stochas-
tic finite element method, the beams have been discretised into 100
elements. Due to the beams being clamped, the displacement and rota-
tional degrees of freedom at the clamped ends are zero. A deterministic
vertical static point load of magnitude 𝑓0 = 1.00 N is exerted at the free
tip of each beam.

The deterministic values of the Young’s modulus and the second
moment of area for each beam are 𝐸0 = 2 × 1011 Nm−2 and 𝐼0 =
1.25×10−10 m4 respectively. The chosen value for the Young’s modulus
orresponds to steel. The bending rigidity of the beams, 𝐸𝐼 , is assumed
o be a stationary Gaussian random field of the following form

𝐼(𝑥, 𝜃) = 𝐸𝐼0(1 + 𝑎(𝑥, 𝜃)) (66)

where 𝐸𝐼0 denotes the mean value of the bending rigidity. The function
𝑎(𝐱, 𝜃) represents the stationary Gaussian random field which has a

ean of zero. The notation 𝐱 corresponds to the coordinate direction
along the length of the beam. The autocovariance kernel of the random
field is given by

𝐶(𝑥1, 𝑥2) = 𝑒−(|𝑥1−𝑥2|)∕𝜇 (67)

here 𝜇 is the correlation length. Three different values for the corre-
ation length are considered: 𝜇 = {𝐿,𝐿∕25, 𝐿∕50}. Varying the value
f 𝜇 results in models which require a different number of terms
etained in the Karhunen–Loève expansion. Having a small correlation
ength requires the retention of more terms. Consequently, the size of
he linear system associated with the PC and NEPC methods will be
xtremely large due to the result of Eq. (7). In turn, each value of
orrelation length has been modelled for four different input values
f the standard deviation: 𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}. This allows for
he methods to be compared under different levels of uncertainty. This
esults in twelve different configurations.

The number of terms retained in each of the configurations’
arhunen–Loève expansions have been computed by analysing the
ecaying nature of the eigenvalues that arise in Eq. (2). The terms
hich satisfy the following inequality have been retained

𝜈𝑗
𝜈1

≥ 𝜀2 (68)

where 𝜈1 is the value of the largest eigenvalue and 𝜈𝑗 the value of the
𝑗th eigenvalue. The tolerance value 𝜀2 is to be selected appropriately.
For the given numerical example, 𝜀2 has been set to 0.10. Thus for the
twelve configuration, the following number of terms have been retained
in the Karhunen–Loève expansions (see Table 3).

For the virtue of comparing, the value of 𝑀1 (the number of random
variables associated with the polynomial chaos contribution) has been
fixed to 2 for all configurations. As a result, the value of 𝑀2 (the number
of additional random terms associated with the enriching method)
equates to 𝑀 − 2, where the value of 𝑀 corresponds to the number
of terms retained in the respective Karhunen–Loève expansions. 10,000
Monte Carlo simulation samples are considered for each configuration.
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Fig. 2. The probability density function of the vertical displacement at the tip of the beam. The response is shown for all values of the standard deviation of the bending rigidity
𝜎𝑎 = {0.05, 0.10, 0.15, 0.20} when the correlation length is set at 𝜇 = 𝐿.
Fig. 3. The probability density function of the vertical displacement at the tip of the beam. The response is shown for all values of the standard deviation of the bending rigidity
𝜎𝑎 = {0.05, 0.10, 0.15, 0.20} when the correlation length is set at 𝜇 = 𝐿∕25.
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Table 3
The number of terms retained in the Karhunen–Loève expansions whilst employing the
NEPC methods.

Standard deviation

0.05 0.10 0.15 0.20

Correlation length
𝐿 4 4 4 4
𝐿∕25 36 36 36 36
𝐿∕50 71 71 71 71

It has been verified that using 10,000 samples gives a satisfactory
convergence for the first two moments of the quantities of interest.

Figs. 2, 3 and 4 illustrate the normalised probability density function
of the deflection at the tip of the beam for all twelve configurations. The
normalisation factor corresponds to 𝑓0𝐿3

3𝐸𝐼0
where 𝑓0 is the magnitude

f the static point force which is placed at the tip of the beam.
ll the methods have initially been implemented with second order
olynomial chaoses. The PC method has incorporated 𝑀1 terms from
he Karhunen–Loève expansions, thus the enriched NEPC methods in-
orporate an additional 𝑀2 terms. If the PC method were to incorporate
he same number of random variables as the NEPC methods, the size of
he linear system which would require solving could become infeasibly
arge. When considering the cases which have a correlation length of
∕50, a 525, 600 × 525, 600 system would be required to be solved if 𝑀

erms were to be retained in the PC method. In our cases, both the PC
nd NEPC methods require a 1, 200 × 1, 200 sized system to be solved
nly once. For the NEPC methods, three different values for the order
f the Neumann series expansion have been considered. NEPC1 has
ncorporated a first order expansion, whilst NEPC2 and NEPC3 have
ncorporated a second and third order expansion respectively. These
ave been presented in order to illustrate the effect of varying the order
f the Neumann series expansion.

When analysing Fig. 2 it is apparent that all the reduced methods
roduce probability density functions which mimics the benchmark
pproach when 𝜎𝑎 = 0.05. However when 𝜎𝑎 = 0.20, a clear discrepancy
s visible between the reduced methods and the benchmark solution.
ince the enriching methods do not visibly improve upon the PC
ethod, it can be concluded that the majority of the induced error
8

een in the normalised probability density function of the deflection at
he tip of the beam can be contributed to the order of the polynomial
haoses. When the correlation length is reduced, a clear improvement
an be seen when the NEPC methods are implemented in comparison
o the PC method. This is most apparent when 𝜇𝑎 = 𝐿∕50. The NEPC1
ethod visually appears to improve the second moment, whilst the
EPC2 method visually appears to improve both the first and second
oments of the normalised deflection at the tip of the beam. This

oincides with the discussion held in Section 5.
To analyse the error arising from the mean of the normalised

esponse vector, the normalised approximate 𝐿2 relative error is con-
idered. This enables the error arising from the mean of the normalised
esponse vector to be characterised by a single value. The approximate
2 relative error of the mean of the normalised response vector is
efined as

𝜀̂𝝁
𝐿2 =

‖𝝁𝐷𝑀𝐶𝑆 − 𝝁𝐶𝑀‖𝐿2

‖𝝁𝐷𝑀𝐶𝑆‖𝐿2
(69)

where 𝝁𝐷𝑀𝐶𝑆 denotes the mean of the response vector obtained by
using the benchmark DMCS method and 𝝁𝐶𝑀 the mean of the response
vector obtained by a comparable method. The normalised approximate
𝐿2 relative error has been explored for different orders of the Neumann
expansion and for different orders of the polynomial chaoses. All twelve
cantilever beams cases have been depicted in Figs. 5, 6 and 7. Six
different values for the orders of the Neumann series expansion are
given along the 𝑥-axis. The case of when the order equates to zero
corresponds to the classical PC method. Three different values for the
order of the polynomial chaoses are explored. ‘‘OPC = 1’’ corresponds
to the first order, ‘‘OPC = 2’’ to the second and ‘‘OPC = 3’’ corresponds
to the third.

It is apparent that the effect of increasing the order of the polyno-
mial chaos diminishes as both the correlation length decreases and as
the value of the standard deviation increases. Thus if the correlation
length is sufficiently small a low-ordered polynomial chaos expansion
is sufficient in conjunction with the proposed enrichment method.
The step wise nature of the normalised approximate 𝐿2 relative error
consolidates that using an odd valued order for the Neumann series ex-
pansion is purposeless. Using an order that corresponds to the previous
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Fig. 4. The probability density function of the vertical displacement at the tip of the beam. The response is shown for all values of the standard deviation of the bending rigidity
𝜎𝑎 = {0.05, 0.10, 0.15, 0.20} when the correlation length is set at 𝜇 = 𝐿∕50.
Fig. 5. The normalised approximate 𝐿2 relative error of the mean of the response vector for all values of the standard deviation of the bending rigidity 𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}.
he normalised approximate 𝐿2 relative error of the mean of the response vector has been depicted for different orders of the polynomial chaos expansion (𝑃1 = {1, 2, 3}) and for
ifferent orders of the Neumann expansion (𝑃 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿.
2
Fig. 6. The normalised approximate 𝐿2 relative error of the mean of the response vector for all values of the standard deviation of the bending rigidity 𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}.
he normalised approximate 𝐿2 relative error of the mean of the response vector has been depicted for different orders of the polynomial chaos expansion (𝑃1 = {1, 2, 3}) and for
ifferent orders of the Neumann expansion (𝑃2 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿∕25.
Fig. 7. The normalised approximate 𝐿2 relative error of the mean of the response vector for all values of the standard deviation of the bending rigidity 𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}.
he normalised approximate 𝐿2 relative error of the mean of the response vector has been depicted for different orders of the polynomial chaos expansion (𝑃1 = {1, 2, 3}) and for
ifferent orders of the Neumann expansion (𝑃2 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿∕50.
w
o

ven value returns an equivalent value for the normalised approximate
2 relative error of the mean.

In a similar manner the normalised approximate 𝐿2 relative error
f the standard deviation of the normalised response vector is also
onsidered

𝜀̂𝝈
2 (𝜃) =

‖𝝈𝐷𝑀𝐶𝑆 (𝜃) − 𝝈𝐶𝑀 (𝜃)‖𝐿2 (70)

𝐿

‖𝝈𝐷𝑀𝐶𝑆 (𝜃)‖𝐿2

9

here 𝝈𝐷𝑀𝐶𝑆 denotes the standard deviation of the response vector
btained by using the benchmark DMCS method and 𝝈𝐶𝑀 denotes the

standard deviation of the response vector obtained by a comparable
method. The error measurement has again been explored for different
orders of the Neumann and the polynomial chaoses. The normalised
approximate 𝐿2 relative error of the standard deviation is depicted in
Figs. 8, 9 and 10. Similarly to the case of the normalised approximate
𝐿2 relative error of the mean, six different values for the order of the
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𝜎
c

Fig. 8. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector for all values of the standard deviation of the bending rigidity
𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector has been depicted for different orders of the polynomial
chaos expansion (𝑃1 = {1, 2, 3}) and for different orders of the Neumann expansion (𝑃2 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿.
Fig. 9. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector for all values of the standard deviation of the bending rigidity
𝜎𝑎 = {0.05, 0.10, 0.15, 0.20}. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector has been depicted for different orders of the polynomial
chaos expansion (𝑃1 = {1, 2, 3}) and for different orders of the Neumann expansion (𝑃2 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿∕25.
Fig. 10. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector for all values of the standard deviation of the bending rigidity
𝑎 = {0.05, 0.10, 0.15, 0.20}. The normalised approximate 𝐿2 relative error of the standard deviation of the response vector has been depicted for different orders of the polynomial
haos expansion (𝑃1 = {1, 2, 3}) and for different orders of the Neumann expansion (𝑃2 = {0, 1, 2, 3, 4, 5}) when the correlation length is set at 𝜇 = 𝐿∕50.
Fig. 11. The configuration of the stochastically parametrised flow system.

Neumann series expansion are given along the 𝑥-axis. Three different
orders for the polynomial chaoses are explored. ‘‘OPC = 1’’ again
10
corresponds to the first order, ‘‘OPC = 2’’ to the second and ‘‘OPC =
3’’ corresponds to the third.

It can be observed that increasing the order of the polynomial chaos
expansion produces a lower quantity of error. However, as the order of
the Neumann series expansion increases the reduction in the induced
error saturates. The lower the order of the polynomial chaos expansion
and the smaller the value of 𝜎𝑎 the earlier the saturation. This is most
apparent when the correlation length is set to 𝐿. In a similar manner to
the normalised approximate 𝐿2 relative error of the mean, the higher
the value of 𝜎𝑎 the smaller the difference between the induced errors
when altering the order of the polynomial chaoses. As expected, a step-
wise pattern is not apparent in the normalised approximate 𝐿2 relative
error of the standard deviation. However due to the step-wise nature
of the normalised approximate 𝐿2 relative error of the mean, care must
be taken in order to choose the optimal order for the Neumann series
expansion.

6.2. Flow through a stochastic porous media

In order to scrutinise the proposed method in a higher spatial
domain, a two-dimensional domain is examined. This is undertaken by
considering a flow through a two-dimensional porous media, where it is
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Fig. 12. Contour plots of the mean of the head (cm) obtained by using the DMCS, PC, NEPC1 and NEPC2 methods. The 𝑥 and 𝑦 axis are respectively the positions in the 𝑥
irection with 𝑥 ∈ [−0.25, 0.25] and 𝑦 in the direction with 𝑦 ∈ [−0.15, 0.15].
Fig. 13. Contour plots of the percentage error arising in the mean of the head (cm) when utilising the PC, NEPC1 and NEPC2 methods in comparison to the DMCS method. The
and 𝑦 axis are respectively the positions in the 𝑥 direction with 𝑥 ∈ [−0.25, 0.25] and 𝑦 in the direction with 𝑦 ∈ [−0.15, 0.15].
Fig. 14. Contour plots of the standard deviation of the head (cm) obtained by using the DMCS, PC, NEPC1 and NEPC2 methods. The 𝑥 and 𝑦 axis are respectively the positions
in the 𝑥 direction with 𝑥 ∈ [−0.25, 0.25] and 𝑦 in the direction with 𝑦 ∈ [−0.15, 0.15].
Fig. 15. Contour plots of the percentage error arising in the standard deviation of the head (cm) when utilising the PC, NEPC1 and NEPC2 methods in comparison to the DMCS
method. The 𝑥 and 𝑦 axis are respectively the positions in the 𝑥 direction with 𝑥 ∈ [−0.25, 0.25] and 𝑦 in the direction with 𝑦 ∈ [−0.15, 0.15].
f
t
c
c
o
T
o

ssumed that the porous media contains stochastic properties. The two-
imensional domain under consideration is a rectangle of length 𝐿 =
.50 m and height 𝐻 = 0.30 m. This is illustrated by Fig. 11. Through
he use of the stochastic finite element method, the rectangular domain
s represented by an uniform 30 × 18 mesh containing 540 square
lements. The centre of the domain is represented by the coordinate
0.00, 0.00). Our measurement of interest is head of the system. This
uantity is subsequently computed at each of the nodes of the domain.
he head, ℎ, is fixed to 0.00 cm along 𝑥 = −0.25 m, 𝑦 = [0.08, 0.15]

m. This ensures that the system reaches a steady state. A constant flux
𝑞 = 1.00 cm s−1 is applied along 𝑥 = [0.12, 0.15] m, 𝑦 = −0.15 m. The
11
lux is zero along the remaining boundary i.e. 𝑞 = 0.00 cm s−1. To
ake account of the stochasticity of the system, a Gaussian hydraulic
onductivity (k) which has a two-dimensional autocovariance kernel is
onsidered. To obtain the two-dimensional autocovariance kernel, two
ne-dimensional exponential autocovariance kernels are considered.
he first one-dimensional exponential autocovariance kernel depends
n 𝑥 and has a correlation length of 3𝐿

2 whilst the second depends on
𝑦 and has a correlation length of 3𝐻

2 . To obtain the two-dimensional
autocovariance kernel, the product of both the one-dimensional expo-
nential autocovariance kernels are taken. In both the one-dimensional
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Fig. 16. The probability density function of the head (cm) computed by the DMCS, PC, NEPC1 and NEPC2 methods at (0.00, 0.00) and (−0.15, 0.08) as well as the mean and
tandard deviation of the head along 𝑦 = 0.00 m.
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xponential autocovariance kernels, 8 terms have been retained in the
arhunen–Loève expansions. This results in the full Karhunen–Loève
xpansion containing 64 terms in addition to the deterministic matrix
0. The mean of the hydraulic conductivity is set as 𝑘̄ = 1 cm s−1. The

value of the input standard deviation is set as: 𝜎𝑎 = {0.15}. For all the
considered methods 5,000 samples have been observed. 5,000 samples
ensures the convergence of the first two moments of interest. For the
PC method 4 terms from the Karhunen–Loève expansions have been
considered. Thus the enriched NEPC method incorporates an additional
60 terms from the Karhunen–Loève expansions. Both methods have
utilised second order polynomial chaoses. If the PC method were to
incorporate 64 terms from the Karhunen–Loève expansions, a linear
system of size 1, 252, 680 × 1, 252, 680 would require solving.

Fig. 12 illustrates the mean of the head for the four methods under
xamination. To further examine the effectiveness of the approximation
ethods in capturing the mean DMCS method, the percentage error of

he mean of the head is illustrated in Fig. 13. The percentage error of
he mean is represented by

𝜀̄% = 100 ×
|mDMCS − mCOMP|

mDMCS (71)

where mDMCS corresponds to the mean of the DMCS method and
mCOMP corresponds to the mean of a comparable method. It is ap-
parent from Fig. 13 that both the PC and NEPC1 methods induce
the same quantity of error. When a second order Neumann expansion
is utilised within the Neumann Enriched Polynomial Chaos method
i.e. NEPC2, a visible reduction in the error is noticeable. In a similar
manner, the standard deviation of the head is illustrated in Fig. 14
for all four methods. Contrary to the mean of the head, a visible and
evident difference is seen between the approximation methods. To
further illustrate the differences, the percentage error of the standard
deviation, 𝜀̃%, is considered

𝜀̃% = 100 ×
|sDMCS − sCOMP|

sDMCS (72)

here sDMCS corresponds to the standard deviation of the DMCS
ethod and sCOMP corresponds to the standard deviation of a com-
arable method. The contour plots of the percentage error are depicted
n Fig. 15. By increasing the order of the Neumann expansion method
ontained within the Neumann Enriched Polynomial Chaos method the
ercentage error visibly decreases. This is in agreement with the discus-
ion held in Section 5. The probability density function of the head of
he system is illustrated for two different locations in the spatial domain
n Fig. 16. These locations possess the following coordinates: (0.00, 0.00)
nd (−0.15, 0.08). The probability density functions further enhances the
ccuracy improvement obtained following the implementation of the
eumann Enriched Polynomial Chaos method. Fig. 16 also illustrates

he mean and standard deviation of the head along all nodes of the
tructure when 𝑦 = 0.00 m.
12
. Summary and conclusion

This paper brings together two very different uncertainty propaga-
ion approaches, namely the polynomial chaos and Neumann expan-
ion. These methods have been historically viewed as incompatible
s polynomial chaos is a ‘global representation’ while the Neumann
xpansion is a ‘local representation’. A novel polynomial chaos en-
ichment method has been proposed to approximate the response of
tochastically parametrised systems. The proposed method is initiated
y partitioning the random variables associated with the stochastic
inite element method into two sets. Based on a first-order sensitivity
nalysis, relative importance factors have been introduced to rationally

partition the stochastic space into two sets. A low-ordered polynomial
chaos expansion is executed on the first set whilst the second set is
utilised to enrich the deterministic vectors associated with the polyno-
mial chaos expansion [PCE]. The enrichment is based upon a Neumann
series expansion. The enrichment method results in the following seem-
ingly minor modification to the unknown vectors associated with the
classical PCE method

𝐔𝑦(𝜃) ≈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐈 +
𝑃2
∑

𝑘=1

(

−𝐀̃−1
0

𝑀2
∑

𝑗=1
𝑦𝑗 (𝜃)𝐁̃𝑗

)𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
the contribution of the enrichment method

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐔0 (73)

where the additional contribution associated with the enrichment
method is computed by utilising a Neumann series expansion of order
𝑃2. The enrichment method ensures that a large number of random
variables can be utilised in conjunction with the PCE framework. Exact
closed-form expressions have been developed to obtain the first two
statistical moments of the response vector. The primary advantages of
the proposed method include:

• The ability to tailor computational cost and accuracy by suitably
partitioning the space of random variables, selecting the order
of the polynomial chaos and selecting the order of the Neumann
expansion.

• The traditional polynomial chaos approach appears as a special
case when the space of random variables is not partitioned.

• Should a truncated set of variables be used in a polynomial chaos
expansion; the approach provides an explicit quantification of the
impact of the ignored random variables on the response statistics.

The Neumann enriched polynomial chaos method has been applied
to analyse the bending of an Euler–Bernoulli cantilever beam and
the head of a flow through a porous media. The results have been
compared with the classical polynomial chaos expansion method and
the direct Monte Carlo method. It is apparent that utilising the enrich-
ment method can significantly reduce the error in comparison to the
PCE method with original random variables. It has been proven and
demonstrated that employing the enrichment method with a Neumann
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series of an even valued order is required to ensure a reduction in the
induced error of the first two moments of the response. Further research
is needed to determine the optimal order and the optimal number
of random variables associated with both the polynomial chaos and
Neumann series expansions. The case when the basic input variables
appear as nonlinear functions should be considered in future research.
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