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Abstract

To obtain the closed-form theoretical limits of natural frequency, beyond which negative elastic moduli

can be realized in lattice materials, the frequency-dependent expressions for elastic moduli of lattices are

needed. On the basis of a unit cell based approach, closed-form expressions for the complex elastic moduli

are derived as a function of frequency by employing the dynamic stiffness matrix of a damped beam element.

In this supplementary material, we have provided the derivation of the dynamic stiffness matrix for a single

beam element first. Thereby, the derivation of closed-form expressions of the frequency-dependent elastic

moduli of lattice materials are presented. The theoretical limits of frequency to obtain negative elastic

moduli are obtained based on their respective closed-form expressions. Here we also show results for

validation of the proposed dynamic stiffness based framework, based on which the theoretical limits are

derived.
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1. Dynamic stiffness approach

1.1. Equation of motion

Dynamic motion of the overall cellular structure corresponds to vibration of individual beams which

constitute each hexagonal unit cells. A pictorial depiction of the beam is shown in figure 1(c) of the main

manuscript. One honeycomb unit cell under dynamic environment is shown in figure 1(b) of the main

manuscript, wherein a vibrating mode of each constituent members is symbolically shown. If external

forces are applied to such vibrating honeycomb, the members will deform following a different rule. Thus

the effective elastic moduli of the entire lattice will be different from conventional static elastic moduli. Aim

of the present article is to capture the effect of vibration in the effective elastic moduli of hexagonal lattices

based on dynamic stiffness method [9, 16]. The dynamic stiffness matrix of a single beam element is derived

first (section 1); thereby the expressions of frequency dependent elastic moduli of the lattice metamaterial

are developed based on the elements of the dynamic stiffness matrix of a single beam (section 2).

The equation of motion of free vibration of a damped beam can be expressed as

EI
∂4V (x, t)

∂x4
+ ĉ1

∂5V (x, t)

∂x4∂t
+m

∂2V (x, t)

∂t2
+ ĉ2

∂V (x, t)

∂t
= 0 (1)

It is assumed that the behaviour of the beam follows the Euler-Bernoulli hypotheses. In the above equation

EI is the bending rigidity, m is mass per unit length, ĉ1 is the strain-rate-dependent viscous damping coef-

ficient, ĉ2 is the velocity-dependent viscous damping coefficient and V (x, t) is the transverse displacement.

The length of the beam is assumed to be L. Considering a harmonic motion with frequency ω we have

V (x, t) = v(x) exp [iωt] (2)

where i =
√
−1. Substituting this in the beam equation (1) one obtains

EI
d4v

dx4
+ iωĉ1

d4v

dx4
−mω2v + iωĉ2v = 0 (3)

or
d4v

dx4
− b4v = 0 (4)

where

b4 =
mω2 − iωĉ2
EI + iωĉ1

(5)
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Following the damping convention in dynamic analysis as in [18], we consider stiffness and mass proportional

damping. Therefore, we express the damping constants as

ĉ1 = ζk(EI) and ĉ2 = ζm(m) (6)

where ζk and ζm are stiffness and mass proportional damping factors. Substituting these, from Eq. (5) we

have

b4 =
mω2 (1− iζm/ω)

EI (1 + iωζk)
(7)

The constant b is in general a complex number for any physically realistic damping values. The effect of

mass proportional damping factor ζm linearly decreases with higher frequency whereas the effect of stiffness

proportional damping factor ζk linearly increases with higher frequency. To obtain the characteristic

equation, we consider

v(x) = exp [λx] (8)

Substituting this in Eq. (4) one obtains

λ4 − b4 = 0 (9)

or λ = ib,−ib, b,−b (10)

Next we use these solutions to obtain the dynamic shape functions of the beam.

1.2. Frequency dependent shape functions

For classical (static) finite element analysis of beams, cubic polynomials are used as shape functions

(see for example [20]). Here we aim to incorporate frequency dependent dynamic shape functions, as used

with the framework of the dynamic finite element method. The dynamic finite element method belongs

to the general class of spectral methods for linear dynamical systems [9]. This approach, or approaches

very similar to this, is known by various names such as the dynamic stiffness method [1–7, 10, 11, 17, 19],

spectral finite element method [9, 13] and dynamic finite element method [14, 15].

The dynamic shape functions are obtained such that the equation of dynamic equilibrium is satisfied

exactly at all points within the element. Similar to the classical finite element method, assume that the

frequency-dependent displacement within an element is interpolated from the nodal displacements as

v(x, ω) = NT (x, ω)v̂(ω) (11)

Here v̂(ω) ∈ Cn is the nodal displacement vector N(x, ω) ∈ Cn is the vector of frequency-dependent shape

functions and n = 4 is the number of the nodal degrees-of-freedom. Suppose the sj(x, ω) ∈ C, j = 1, · · · , 4
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are the basis functions which exactly satisfy Eq. (4). It can be shown that the shape function vector can

be expressed as

N(x, ω) = Γ(ω)s(x, ω) (12)

where the vector s(x, ω) = {sj(x, ω)}T , ∀ j = 1, · · · , 4 and the complex matrix Γ(ω) ∈ C4×4 depends on

the boundary conditions. The elements of s(x, ω) constitutes exp[λjx] where the values of λj are obtained

from the solution of the characteristics equation as given in Eq. (10). An element for the damped beam

under bending vibration is shown in figure 1(c) of the main manuscript. The degrees-of-freedom for each

nodal point include a vertical and a rotational degrees-of-freedom.

In view of the solutions in Eq. (10), the displacement field with the element can be expressed by

a linear combination of the basic functions e−ibx, eibx, ebx and e−bx so that in our notations s(x, ω) ={
e−ibx, eibx, ebx, e−bx

}T
. We can also express s(x, ω) in terms of trigonometric functions. Considering e±ibx =

cos(bx)± i sin(bx) and e±bx = cosh(bx)± i sinh(bx), the vector s(x, ω) can be alternatively expressed as

s(x, ω) =



sin(bx)

cos(bx)

sinh(bx)

cosh(bx)


∈ C4 (13)

For steady-state dynamic response, the displacement field within the element can be expressed as

v(x) = s(x, ω)Tv (14)

where v ∈ C4 is the vector of constants to be determined from the boundary conditions.

The relationship between the shape functions and the boundary conditions can be represented as in

Table 1, where boundary conditions in each column give rise to the corresponding shape function. Writing

Table 1: The relationship between the boundary conditions and the shape functions for the bending vibration of beams.

N1(x, ω) N2(x, ω) N3(x, ω) N4(x, ω)
y(0) 1 0 0 0

dy

dx
(0) 0 1 0 0

y(L) 0 0 1 0
dy

dx
(L) 0 0 0 1
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Eq. (14) for the above four sets of boundary conditions, one obtains

[R]
[
y1,y2,y3,y4

]
= I (15)

where

R =


s1(0) s2(0) s3(0) s4(0)

ds1
dx

(0) ds2
dx

(0) ds3
dx

(0) ds4
dx

(0)

s1(L) s2(L) s3(L) s4(L)

ds1
dx

(L) ds2
dx

(L) ds3
dx

(L) ds4
dx

(L)

 (16)

and yk is the vector of constants giving rise to the kth shape function. In view of the boundary conditions

represented in Table 1 and equation (15), the shape functions for bending vibration can be shown to be

given by Eq. (12) where

Γ(ω) =
[
y1,y2,y3,y4

]T
=
[
R−1

]T
(17)

By obtaining the matrix Γ(ω) from the above equation, the shape function vector can be obtained from Eq.

(12). After some algebraic simplifications, we have represented the frequency dependent complex shape

functions as

N1(x, ω)

N2(x, ω)

N3(x, ω)

N4(x, ω)


=


1
2
cS+Cs
cC−1

−1
2
1+sS−cC

cC−1
−1

2
cS+Cs
cC−1

1
2
cC+sS−1

cC−1

1
2
cC+sS−1
b(cC−1)

1
2
−Cs+cS
b(cC−1)

−1
2
1+sS−cC
b(cC−1)

−1
2
−Cs+cS
b(cC−1)

−1
2

S+s
cC−1

1
2

C−c
cC−1

1
2

S+s
cC−1

−1
2

C−c
cC−1

1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)

−1
2

C−c
b(cC−1)

−1
2

S−s
b(cC−1)





sin bx

cos bx

sinh bx

cosh bx


(18)

where

C = cosh(bL), c = cos(bL), S = sinh(bL) and s = sin(bL) (19)

and b is defined in (7).

1.3. Element dynamic stiffness matrix

The stiffness and mass matrices can be obtained following the conventional variational formulation [8].

The only difference is instead of classical cubic polynomials as the shape functions, frequency dependent

shape functions in (18) should be used. It is convenient to define the dynamic stiffness matrix as

D(ω) = K(ω)− ω2M(ω) (20)

so that the equation of dynamic equilibrium is

D(ω)v̂(ω) = f̂(ω) (21)
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In Eq. (20), the frequency-dependent stiffness and mass matrices can be obtained from

K(ω) = EI

∫ L

0

d2N(x, ω)

dx2
d2NT (x, ω)

dx2
dx (22)

and M(ω) = m

∫ L

0

N(x, ω)NT (x, ω)dx (23)

After some algebraic simplifications it can be shown that the dynamic stiffness matrix is given by the

following closed-form expression

D(ω) =
EIb

(cC − 1)



−b2 (cS + Cs) −sbS b2 (S + s) −b (C − c)

−sbS −Cs+ cS b (C − c) −S + s

b2 (S + s) b (C − c) −b2 (cS + Cs) sbS

−b (C − c) −S + s sbS −Cs+ cS


(24)

The elements of this matrix are frequency dependent complex quantities because b is a function of ω and

the damping factors.

2. The derivation of frequency-dependent elastic moduli

Considering only the static deformation of a unit cell, [12] obtained the equivalent elastic moduli of the

hexagonal cellular materials as

E1GA = E

(
t

l

)3
cos θ

(h
l

+ sin θ) sin2 θ
(25)

E2GA = E

(
t

l

)3 (h
l

+ sin θ)

cos3 θ
(26)

ν12GA =
cos2 θ

(h
l

+ sin θ) sin θ
(27)

ν21GA =
(h
l

+ sin θ) sin θ

cos2 θ
(28)

and G12GA = E

(
t

l

)3
(
h
l

+ sin θ
)(

h
l

)2
(1 + 2h

l
) cos θ

(29)

where (.)GA represents the expressions of elastic moduli of regular hexagonal honeycombs. The cell walls

are treated as beams of thickness t and Young’s modulus E. The quantities l and h are the lengths of

inclined cell walls having inclination angle θ and the vertical cell walls respectively. A key interest in this

section is to obtain equivalent expressions when harmonic forcing is considered. The central idea behind

the proposed derivation is to exploit the physical interpretation of the elements of the dynamic stiffness

matrix obtained in the previous section.
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Using equation (24), the analytical expressions of the frequency dependent in-plane elastic moduli will

be obtained. For the purpose of deriving the expressions, the dynamic stiffness matrix is written in the

following form for notational convenience

D(ω) =



D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44


(30)

where Dij (i, j = 1, 2, 3, 4) has the expressions corresponding to the terms of equation (24).

2.1. Derivation of Young’s modulus E1

One cell wall is considered for deriving the expression of the Young’s modulus E1 under the application

of stress in direction - 1 as shown in figure 1(a) [12]. In the free body diagram of the slant member in figure

1(a), the rotational displacements of both ends and the bending displacement of one end is considered as

zero. To satisfy the equilibrium of forces in direction -2, the force C is needed to be zero. Thus from the

dynamic stiffness matrix presented in equation (30), the bending deflection of one end of the slant member

with respect to the other end can be written as

δ =
P sin θ

D33

(31)

where P = σ1(h+ l sin θ)b̄ (geometric dimensions of a single honeycomb cell is shown in figure 1(b) of the

main manuscript. b̄ is the width of the beam i.e. thickness of the honeycomb sheet). The component of

δ in direction - 1 is δ sin θ. Thus the strain component in direction - 1 due to applied stress in the same

direction can be expressed as

ε11 =
δ sin θ

l cos θ

=
σ1(h+ l sin θ)b̄ sin2 θ

D33l cos θ

(32)

The expression of D33 is given in equation (24) and (30). Replacing the expression for D33 and I =
b̄t3

12
,

the Young’s modulus E1 can be obtained as

E1(ω) =
σ1
ε11

=
D33l cos θ

(h+ l sin θ)b̄ sin2 θ

=
Et3l cos θb3(cos(bl) sinh(bl) + cosh(bl) sin(bl))

12(h+ l sin θ) sin2 θ(1− cos(bl) cosh(bl))

(33)
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Figure 1: Deformed shapes and free body diagrams under the application of direct stresses and shear stress. The undeformed
shapes of the hexagonal cell are indicated using blue colour for each of the loading conditions.

The expression of b is provided in equation (7). E is the intrinsic elastic modulus of the honeycomb material

and t is the thickness of honeycomb wall.

2.2. Derivation of Young’s modulus E2

Similar to the derivation of E1, the bending deformation of one end of the slant beam under the

application of σ2 (as shown in figure 1(b)) can be expressed as

δ =
W cos θ

D33

(34)

where W = σ2lb̄ cos θ. The expression for strain component in direction - 2 due to application of stress in

the same direction can be obtained as

ε22 =
δ cos θ

(h+ l sin θ)

=
σ2lb̄ cos3 θ

D33(h+ l sin θ)

(35)
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Replacing the expression for D33 and I =
b̄t3

12
, the Young’s modulus E2 can be obtained as

E2(ω) =
σ2
ε22

=
D33(h+ l sin θ)

lb̄ cos3 θ

=
Et3(h+ l sin θ)b3 (cos(bl) sinh(bl) + cosh(bl) sin(bl))

12l cos3 θ(1− cos(bl) cosh(bl))

(36)

The expression of b is provided in equation (7), E is the intrinsic elastic modulus of the honeycomb material

and t is the thickness of honeycomb wall as before.

2.3. Derivation of shear modulus G12

For deriving the expression of G12, two members of the honeycomb cell are needed to be considered

(vertical member with length
h

2
and a slant member with length l) as shown in figure 1(c). The points

A, B and C will not have any relative movement due to symmetrical structure. The total shear deflection

us consists of two components, bending deflection of the member BD and its deflection due to rotation of

joint B.

It can be noted here that the elements of the dynamic stiffness matrix (refer to equation(30)) will be

different for the vertical member and the slant member due to their different lengths. Using the stiffness

components of the dynamic stiffness matrix (refer to equation (30)), the bending deformation of point D

with respect to point B in direction - 1 can be obtained as

δb =
F(

Dv
33 −

Dv
34D

v
43

Dv
44

) =
F(

Dv
33 −

(Dv
34)

2

Dv
44

) (37)

Here F = 2τ lb̄ cos θ and we make use of the symmetry of the elements of the dynamic stiffness matrix.

The superscript v in the elements of the dynamic stiffness matrix is used to indicate the stiffness element

corresponding to the vertical member.

From the free body diagram presented in figure 1(c),

M =
Fh

4
(38)

On the basis of equation (30), deflection of the end B with respect to the end C due to application of

moment M at the end B is given as

δr =
M

−Ds
43

(39)

Here the superscript s in D43 is used to indicate the stiffness element corresponding to the slant member

and the negative arise due to the direction of the rotation as given in figure 1(c) of the main manuscript.
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Thus the rotation of joint B can be expressed as

φ =
δr
l

= − Fh

4lDs
43

(40)

Total shear deformation under the application of shear stress τ can be expressed as

us =
1

2
φh+ δb

= − Fh2

8lDs
43

+
F(

Dv
33 −

(Dv
34)

2

Dv
44

) (41)

The shear strain is given by

γ =
2us

(h+ l sin θ)

=
F

(h+ l sin θ)

− h2

4lDs
43

+
2(

Dv
33 −

(Dv
34)

2

Dv
44

)


=
2τ lb̄ cos θ

(h+ l sin θ)

− h2

4lDs
43

+
2(

Dv
33 −

(Dv
34)

2

Dv
44

)


(42)

Replacing the expressions for the stiffness components from equation (24) and (30), the shear modulus can

be obtained as

G12(ω) =
τ

γ
=

(h+ l sin θ)

2lb̄ cos θ

1(
− h2

4lDs
43

+ 2(
Dv

33−
(Dv

34)
2

Dv
44

)
)

=
(h+ l sin θ)

2lb̄ cos θ

4EIb3 sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2))

h2b (1− cos(bl) cosh(bl)) (1 + cos(bh/2) cosh(bh/2))
+ 8l sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2)− sinh(bh/2) cos(bh/2))

=
Et3(h+ l sin θ)b3 sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2))

6l cos θ [h2b (1− cos(bl) cosh(bl)) (1 + cos(bh/2) cosh(bh/2))
+8l sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2)− sinh(bh/2) cos(bh/2))]

(43)

The expression of the complex variable b is provided in equation (7).

2.4. Derivation of Poisson’s ratios ν12 and ν21

The strain components in direction - 1 and direction - 2 under the application of stress σ1 are given by

(refer to figure 1(a))

ε11 =
δ sin θ

l cos θ
(44)
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ε21 =
−δ cos θ

h+ l sin θ
(45)

Thus the Poisson’s ratio for loading direction - 1 can be obtained as

ν12 = −ε21
ε11

=
l cos2 θ

(h+ l sin θ) sin θ

(46)

Similarly the Poisson’s ratio for loading direction - 2 can be obtained as

ν21 = −ε12
ε22

=
(h+ l sin θ) sin θ

l cos2 θ

(47)

It can be noted that the in-plane Poisson’s ratios (Equation 46 and 47) are not dependent on frequency

and the expressions are same as the case of static deformation provided by [12].

3. Theoretical limits of frequency for negative elastic moduli

Expressions of the frequency-dependent elastic moduli, as derived in the preceding section, can be

summarized as:

E1(ω) =
D33l cos θ

(h+ l sin θ)b̄ sin2 θ
=
Et3l cos θb3(cos(bl) sinh(bl) + cosh(bl) sin(bl))

12(h+ l sin θ) sin2 θ(1− cos(bl) cosh(bl))
(48)

E2(ω) =
D33(h+ l sin θ)

lb̄ cos3 θ
=
Et3(h+ l sin θ)b3 (cos(bl) sinh(bl) + cosh(bl) sin(bl))

12l cos3 θ(1− cos(bl) cosh(bl))
(49)

G12(ω) =
(h+ l sin θ)

2lb̄ cos θ

1(
− h2

4lDs
43

+ 2(
Dv

33−
(Dv

34)
2

Dv
44

)
)

=
Et3(h+ l sin θ)b3 sin(bl) sinh(bl) (1 + cos(bh/2) cosh(bh/2))

6l cos θ [h2b (1− cos(bl) cosh(bl)) (1 + cos(bh/2) cosh(bh/2))
+8l sin(bl) sinh(bl) (cosh(bh/2) sin(bh/2)− sinh(bh/2) cos(bh/2))]

(50)

It can be noted here that the expressions of E1 and E2 are proportional to the complex frequency-dependent

element D33 of the [D(ω)] matrix. Therefore, we study it’s behaviour in the undamped limit to understand

the if the real part of E1 and E2 can become negative. Assuming no damping in the system, the parameter

b becomes

b4 =
mω2

EI
(51)
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Substituting this in the expression of D33 and expanding the expression by a Taylor series in the frequency

parameter ω we have

D33 = 12
EI

l3
− 13

35
mlω2 − 59

161700

l5m2ω4

EI
− 551

794593800

l9m3ω6

EI2
+ · · · (52)

Note that coefficients of some higher order terms of ω are negative. We observe that D33 appears as a

multiplicative term in the expressions of E1(ω) and E2(ω) in equations (48) and (49) and the other terms

are positive. Therefore, near the vicinity of ω ≈ 0, there exists a frequency beyond where the effective

elastic moduli of honeycomb will be negative. Retaining up to terms of order ω4 in equation (52), the

critical value of ω can be obtained by setting D33 = 0 as

D33 ≈ 12
EI

l3
− 13

35
mlω2 − 59

161700

l5m2ω4

EI
= 0

or ω∗
E1,E2

≈ 5.598
1

l2

√
EI

m

(53)

Here, ω∗
E1,E2

represents the fundamental inflection frequency, where the Young’s moduli change sign from

positive to negative. For lightly damped systems, beyond this frequency value, the equivalent Young’s

moduli E1 and E2 will be negative for the first time when viewed on the frequency axis. As the frequency

increases, the Young’s moduli will become positive and negative again. The significance of the fundamental

inflection frequency derived in equation (53) is that it is the lowest frequency value beyond which the

effective Young’s modulus can become negative. Physically, negative Young’s modulus means that when

a force is applied at the inflection frequency, the direction of the steady-state dynamic response will be in

the opposite direction to the applied forcing at the same frequency.

Unlike the case of Young’s moduli, the frequency-dependent closed-form expression 50 for shear modulus

shows a compound effect of multiple elements of the [D(ω)] matrix. It is possible to obtain the expression

of a tight bound for the frequency, beyond which the shear modulus becomes negative. For the shear

modulus, the frequency dependent expression (50) can be extended in a Taylor series in ω about ω = 0 as

G12(ω) =
(h+ l sin θ)

2lb̄ cos θ

[
24

EI

h2 (2h+ l)
− 11

420

m (9h5 + 8l5)ω2

h2 (2h+ l)2

− 1

46569600

m2 (55461h9l − 191664h5l5 + 198912l9h+ 3111h10 + 14272l10)ω4

EIh2 (2h+ l)3
+ · · ·

] (54)

Considering only up to the second-order terms we can obtain the upper-bound of the frequency, beyond
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which the G12 will be negative as

24
EI

h2 (2h+ l)
− 11

420

m (9h5 + 8l5)ω2

h2 (2h+ l)2
≈ 0

or ω∗
G12

/ 30.2715

√
1 + 2(h/l)

8 + 9(h/l)5
1

l2

√
EI

m

(55)

The lower bound is obtained by considering the numerator of G12 in equation (50) and setting it to zero.

Expanding the numerator of G12 in a Taylor series in b we have

1

1440
h2l3 (2h+ l)

(
32 l4 + 15h4

)
b4 − 2h2l3 (2h+ l) ≈ 0 (56)

Solving this equation for b one obtains

b ≈ 2

√
30

4
√

160 l4 + 75h4
(57)

Using the relationship of ω for the undamped case in equation (51) results in the following relationship

ω∗
G12

'
120√

160 + 75 (h/l)4

1

l2

√
EI

m
(58)

Combining equations (55) and (58) we obtain the following fundamental inequality regarding the frequency

for negative value of G12

120√
160 + 75 (h/l)4

1

l2

√
EI

m
≤ ω∗

G12
≤ 30.2715

√
1 + 2(h/l)

8 + 9(h/l)5
1

l2

√
EI

m
(59)

Here, ω∗
G12 

represents the fundamental inflection frequency for shear modulus, where the shear modulus 

changes sign. Unlike the equivalent expression for the Young’s moduli E1 and E2 in equation (53), for the 

minimum frequency above which G12 becomes negative depends on the h/l ratio.

It can be noted that the derivation of the efficient closed-form limits (equations 53 and 59) have only 

been possible due to the proposed dynamic stiffness based approach to obtain the expressions for the elastic 

moduli in a vibrating environment.

4. Numerical validation of the dynamic stiffness based framework

For discussing the results concerning negative elastic moduli with a high degree of confidence, the 

dynamic stiffness based framework needs to be validated first. We have presented representative results 

for validation of the analytical expression for frequency dependent Young’s modulus here.

Two different validations are presented in this section. To verify the validity of the derived expression of the 

dynamic stiffness matrix we compare the results with the conventional finite element method considering

13



Figure 2: (a) Frequency-dependent responses of a pinned-pinned beam under the application of a unit moment at the right edge 
(b) Frequency dependent Young’s modulus E1 (with h/l = 1) of hexagonal lattices with θ = 30◦ and ζm = 0.05 and ζk = 0.002 
(obtained using the analytical expressions and finite element method). A validation of the finite element (denoted by FE) model 
for static case (i.e. ω → 0) is shown in the inset along with a convergence study for the number of unit cells. The validation is 
presented with respect to the static analytical expression provided by [12] (denoted by GA).

a single beam element first. In figure 2(a) the responses of a pinned-pinned beam under the application of 

unit moment at the right edge are shown, wherein the rotational responses (radian) at the left and right 

edges are compared. The conventional finite element results are obtained by discretizing the beam into 100 

elements and taking first 20 modes in the response calculations. The dynamic stiffness results are obtained 

using the closed-form expression obtained from only one element. The results match very well, confirming 

the validity and efficiency of applying the dynamic stiffness method.

After establishing that a single beam element using the dynamic stiffness matrix is capable to capture the 

dynamic behavior, we have validated the derived closed-form formulae for frequency-dependent elastic 

moduli with respect to the finite element approach. We have written a bespoke finite element code for the 

honeycomb lattice structure, where the stiffness matrix of each of the beam elements is used as the dynamic 

stiffness matrix. The finite element approach here involves transforming the element dynamic stiffness 

matrices for all beam elements into the global coordinate system, assembling them and applying the 

boundary conditions. The finite element model itself is validated with literature [12] in case of the static 

deformations (i.e. ω → 0) as shown in the inset of figure 2(b). The geometry, node numbers and nodal 

connectivity of the static case remains the same for the dynamic case. Therefore, the current validation

14



along with the dynamic validation for a single beam ensures the validation for the dynamic responses of the 

entire lattice. Figure 2(b) shows representative results obtained from the proposed closed-form expressions 

for the frequency dependent Young’s modulus along with the results generated using finite element 

simulations. Numerical results obtained from the finite element approach for every frequency value is 

compared with the closed-form analytical expressions derived in the paper. Minor difference in the numerical 

values of the two results corresponding to a wide range of frequency corroborates the validity of the proposed 

expressions.
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