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Time-Domain Response of Damped Stochastic
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Abstract: Characterizing the time-domain response of a random multiple-degree-of-freedom dynamical system is challenging and often
requires Monte Carlo simulation (MCS). Differential equations must therefore be solved for each sample, which is time-consuming. This is
why polynomial chaos expansion (PCE) has been proposed as an alternative to MCS. However, it turns out that PCE is not adapted to simulate
a random dynamical system for long-time integration. Recent studies have shown similar issues for the frequency response function of a
random linear system around the deterministic eigenfrequencies. A Padé approximant approach has been successfully applied; similar
interesting results were also observed with a random mode approach. Therefore, the latter two methods were applied to a random linear
dynamical system excited by a dynamic load to estimate the first two statistical moments and probability density function at a given instant
of time. Whereas the random modes method has been very efficient and accurate to evaluate the statistics of the response, the Padé
approximant approach has given very poor results when the coefficients were determined in the time domain. However, if the differential
equations were solved in the frequency domain, the Padé approximants, which were also calculated in the frequency domain, provided
results in excellent agreement with the MCS results. DOI: 10.1061/(ASCE)EM.1943-7889.0001705. © 2019 American Society of Civil
Engineers.

Author keywords: Random dynamical systems; Polynomial chaos expansion; Transient response; Random modes; Extended Padé
approximants.

Introduction

Over recent decades, numerical methods to solve nonlinear multi-
physics multiscale models have been successfully developed. How-
ever the focus of these complex formulations has mainly concerned
deterministic problems.

The challenge has been to account for the uncertainties to de-
scribe more accurately real systems. Neumann expansion (Yamazaki
et al. 1988) and polynomial chaos expansion (PCE) (Ghanem and
Spanos 1991) can be considered as the first methods used to study
random systems in an engineering context, and PC is now one of
the most popular tools to propagate uncertainties through numerical
models. Ghanem and Spanos (1991) proposed modeling the ran-
dom parts of a quantity with a polynomial chaos (PC) expansion,
which had been developed by Wiener (1938). The original poly-
nomial chaos has been extended to several families of random var-
iables (Xiu and Karniadakis 2002; Witteveen and Bijl 2006).

The objective of this work is to study random linear dynamical
systems in the time domain. Polynomial chaos expansion has been
already used to describe the time-domain response of nonlinear
random systems. It has been observed that accurate long-time in-
tegration would require many terms in the expansion (Gerritsma
et al. 2010; Le Maître et al. 2010) and is not effective in determin-
ing limit cycles of random oscillators (Beran et al. 2006; Le
Meitour et al. 2010). Some methods have been proposed to improve
the method, such as introducing a transformation in the time do-
main (Le Maître et al. 2010; Mai and Sudret 2017), identifying
a random nonlinear autoregressive exogenous model (Mai et al.
2016), and updating the PC basis with a Gram-Schmidt orthogon-
alization. This method aims to find a basis to describe the random
response that leads to a low number of terms in the expansion.

A similar issue arises to evaluate the steady-state response
around the mean natural frequencies of a random dynamical sys-
tem. Methods based on Padé approximants (XPA) and random
modes (RM) have been successfully applied to tackle this issue
(Jacquelin et al. 2017). Therefore, it is interesting to explore the
ability of these techniques to estimate the transient response of
random linear dynamical systems.

First a brief presentation of the PCE, Padé approximants, and
random modes is given. The methods are then illustrated on an
example. Finally conclusions are drawn.

Polynomial Chaos Expansion in the Time Domain

A linear uncertain system is studied. The uncertainty is modeled
with r random variables, fξigi¼1; : : : ;r, gathered in vector Ξ. The
response, xðt;ΞÞ ∈ IRN , satisfies the following equation:

MðΞÞẍðt;ΞÞ þCðΞÞẋðt;ΞÞ þKðΞÞxðt;ΞÞ ¼ FðtÞ ð1Þ

where FðtÞ = force, and
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MðΞÞ ¼ M0 þ
Xr
i¼1

ξiMi;

KðΞÞ ¼ K0 þ
Xr

i¼1

ξiKi;

CðΞÞ ¼ C0 þ
Xr
i¼1

ξiCi ð2Þ

Random variables fξigi¼1; : : : ;r are assumed to be independent
and zero mean. The system is deterministic when all the random
variables are equal to zero, i.e., defined with (M0, K0, and C0).

In the following, only the stiffness matrix is assumed to be ran-
dom, but the results can be easily obtained with random mass and
damping matrices.

The solution of Eq. (1) is random and can be represented in
terms of the PC basis fΨJðΞÞ; J ∈ INg (Ghanem and Spanos 1991)
as follows:

xðt;ΞÞ ¼
X
J∈Nr

YJðtÞΨJðΞÞ ð3Þ

where J = multi-index J ¼ ðJ1; : : : ; JrÞ, where jJj ¼ P
r
i¼1 Ji is

the order of polynomial ΨJ . The PC bases are calculated from r
orthogonal polynomial sets fPJjðξjÞgJj∈IN for j ¼ 1; : : : ; r, where
Jj is the order of PJjðξjÞ (Xiu 2010)

ΨJðΞÞ ¼
Yr
j¼1

PJjðξjÞ ð4Þ

The choice of the jth family fPJjg is related to the probability
distribution of ξj (e.g., Legendre polynomial if ξj has a uniform
distribution); if the random variables follow a different statistical
law, different families of PC are used. In the following, the poly-
nomials are normalized with respect to their probability distribu-
tion [Eq. (8)].

For a numerical study, Eq. (3) is truncated at order m, with Pþ
1 ¼ ðmþ rÞ!=ðm!r!Þ terms. Consequently the approximate solu-
tion xP is an expansion over Im, a set of multi-index J such that
Im ¼ fJ ∈ Nr=jJj ≤ mg

xPðt;ΞÞ ¼
X
J∈Im

YJðtÞΨJðΞÞ ¼
XP
j¼0

YjðtÞΨjðΞÞΨjðΞÞ ð5Þ

Exponent P is no longer written explicitly to simplify the nota-
tion, and the more tractable single index notation is used.

Substituting x from Eq. (5) into Eq. (1) and considering the
orthogonality between the polynomials, Eq. (1) becomes

~MŸðtÞ þ ~C ẎðtÞ þ ~KYðtÞ ¼ ~FðtÞ ð6Þ
with

Ak ∈ RðPþ1Þ×ðPþ1Þ with ð7Þ

½A0�ij ¼
Z

· · ·
Z

ΨiðΞÞΨjðΞÞpðΞÞdξ1; : : : ; dξr ¼ δij ð8Þ

½Ak>0�ij ¼
Z

· · ·
Z

ξkΨiðΞÞΨjðΞÞpðΞÞdξ1; : : : ; dξr ð9Þ

~M ¼
Xr

k¼0

Ak ⊗ Mk ∈ RnðPþ1Þ×nðPþ1Þ ð10Þ

~C ¼
Xr

k¼0

Ak ⊗ Ck ∈ RnðPþ1Þ×nðPþ1Þ ð11Þ

~K ¼
Xr

k¼0

Ak ⊗ Kk ∈ RnðPþ1Þ×nðPþ1Þ ð12Þ

Y ¼ ½Y⊤
0 Y⊤

1 ; : : : ;Y
⊤
P �⊤ ∈ RnðPþ1Þ ð13Þ

~F ¼ ½F⊤ 0 0; : : : ; 0 �⊤ ∈ RnðPþ1Þ ð14Þ

where pðΞÞ = joint probability density function (PDF); δij =
Kronecker delta; ⊗ = Kronecker product; ½·�⊤ = transpose of ½·�;
and ½·�ij = element of ½·�.

The frequency response function of such a system has been
studied by several researchers (Adhikari 2011; Chatterjee et al.
2016; Fricker et al. 2011; Goller et al. 2011; Jacquelin et al. 2015;
Sarrouy et al. 2016; Yaghoubi et al. 2017). It was shown by
Jacquelin et al. (2015) that PCE provides excellent results except
about the deterministic eigenfrequencies. Two methods based on
PCE were proposed and proved their efficiency: XPA and RM.

As mentioned previously, it has been highlighted in the litera-
ture that the PCE in the time domain loses its accuracy when the
time increases or when many terms would be required in the
expansion; this will be also verified in the following example.
Therefore, the Padé approximant approach and the random modes
were applied to estimate the response and test their efficiency in the
time domain.

Padé Approximants and Random Modes

Extended Padé Approximants: Rational Function
Expansion

Originally the Padé approximant (PA) technique consists in deter-
mining a rational function approximation from a known Taylor
expansion of a function; it is supposed to converge much faster than
the Taylor expansion (Baker and Graves-Morris 1996) when the
function has poles.

The extended Padé approximants are defined by replacing
the monomials by PC in both the numerator and denominator
(Chantrasmi et al. 2009; Emmel et al. 2003; Guillaume et al. 2000;
Matos 1996)

½Nk=Dk�XPC
k
ðt;ΞÞ ¼

Pnk
j¼0 N

XPA
k;j ðtÞΨjðΞÞPdk

j¼0 D
XPA
k;j ðtÞΨjðΞÞ

ð15Þ

where k ¼ kth degree of freedom (DOF); and DXPA
k;0 is equal

to unity.
Both NXPA

k;i and DXPA
k;i are derived by comparing Eqs. (5)–(15)

XP
i¼0

YikðtÞΨjðΞÞ ¼
Pnk

j¼0 N
XPA
k;j ðtÞΨjðΞÞ

1þPdk
j¼1 D

XPA
k;j ðtÞΨjðΞÞ

ð16Þ

Projecting Eq. (16) on a sufficient number of polynomial chaos
gives the algebraic system verified by the unknown coefficients
(Jacquelin et al. 2017).

Random Modes

The response of a linear system can be determined with mode
superposition as follows:

Xðt;ΞÞ ¼
XN
n¼1

~qnðt;ΞÞ ~ϕnðΞÞ ð17Þ

© ASCE 06019005-2 J. Eng. Mech.
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where f ~ωk; ~ϕkg = random modes; and ~qn = random modal
coordinate.

The random modes can be estimate from the deterministic
modes, fωk;ϕkg, and a PCE (Dessombz et al. 1999; Jacquelin
et al. 2017)

~ω2
k ¼ ω2

k

0
@XP

p¼0

akpΨpðΞÞ
1
A ð18Þ

~ϕk ¼
XN
n¼1

~λknϕn ¼
XN
n¼1

0
@XP

p¼0

λk
npΨpðΞÞ

1
Aϕn ð19Þ

where fakp; fλk
npgn¼1; : : : ;Ngp¼0; : : : ;P

are identified according to a

procedure proposed by Dessombz et al. (1999).

Fig. 1. Two-degree-of-freedom system with random stiffnesses.
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Fig. 2. Time history of x1 mean for MCS (solid line) versus (a) PCE (degree 15 and P ¼ 135) (dotted line); (b) XPA ([1/2] and P ¼ 14) (dotted line);
and (c) random modes solution (dotted line).

Table 1. Error in some statistics: Time domain

Method Mean (%)
Standard

deviation (%)

PCE (15) 18.6 19.4
Padé [1/2] 330 5 × 104

RM 0.23 0.31

© ASCE 06019005-3 J. Eng. Mech.
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Example

Two-DOF Random System

Stiffnesses k1 and k2 of the 2-DOF system shown in Fig. 1 are
random variables with

k1 ¼ k̄ð1þ δKξ1Þ ð20Þ

k2 ¼ k̄ð1þ δKξ2Þ ð21Þ

where random variables ξ1 and ξ2 are independent; k̄ ¼
15,000 N=m; and δK ¼ 5%. The other characteristics are m ¼
1 kg and c ¼ 1 kg · s−1. The two deterministic eigenvalues
(i.e., for ξ1 ¼ ξ2 ¼ 0) are 12.05 and 31.54 Hz, and the modal
damping ratios are 0.25% and 0.66%.

Mass 1 is excited by force F1ðtÞ ¼ F0 sinðωetÞ if t ∈ ½0; 2π=ωe�
and F1ðtÞ ¼ 0 otherwise; F2ðtÞ is equal to zero; F0 ¼ 1 N;
ωe ¼ 2.5 rad=s, but two other values were also investigated.

The uncertain stiffness matrix is K ¼ K0 þ ξ1K1 þ ξ2K2.
Both random variables ξ1 and ξ2 follow a normal distribution

truncated at �5 standard deviations so that the stiffnesses are
positive.

Statistics in the Time Domain

The history of the first two statistical moments (mean and standard
deviation) were evaluated in several ways. The reference quantities
are obtained with a Monte Carlo simulation where the responses
are calculated for each sample of the stiffness matrix; a Latin hyper-
cube sampling method with 10,000 samples was used to get the
samples.

There are two ways to calculate the response. The most usual
method consists in integrating motion Eq. (1); however, it is also
possible to solve it in the frequency domain by applying a Fourier
transform, then dividing the two signals, and finally returning to the
time domain with an inverse Fourier transform. The latter method
may be much faster than the direct integration, although appropriate
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Fig. 3. Time history of x1 standard deviation for MCS (solid line) versus (a) PCE (degree 15 and P ¼ 135) (dotted line); (b) XPA ([1/2] and P ¼ 14)
(dotted line); and (c) random modes solution (dotted line).
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signal processing must be applied (Doyle 1997) as well as specific
procedures to account for nonzero initial conditions (Siqueira
Meirelles and Arruda 2005).

First, the results have been calculated by integrating motion
Eq. (1) with a β − γ Newmark method (β ¼ 1=4 and γ ¼ 1=2: con-
stant average acceleration) over the interval [0, 20] s with a time
step equal to 0.01 s. The reference results obtained with the Monte
Carlo simulation are represented by a solid line in all the following
figures. Similarly, the PCE (XPA and RM, respectively) results are
represented by a dotted line. Relative error, errS, is calculated to
compare the reference results, MCS, and the results obtained from
method S (where S is obtained with PCE, XPA, or RM)

errS ¼
kS −MCSk2
kMCSk2

ð22Þ

All the errors are listed in Table 1.
The PCE had an order equal to 15 (which means 136 terms in

the expansion). The error is quite high (greater than 18%) for the
first two statistical moments [Figs. 2(a) and 3(a)]. The XPA results

are presented in Figs. 2(b) and 3(b) for N1 ¼ 2 and D1 ¼ 2. The
figures and errors show that the method is not acceptable. Higher
degrees for both the numerator and the denominators were unsuc-
cessfully used. On the contrary, the random modes determined with
PC of order = 1 were very efficient to estimate the statistics of the
response; in Figs. 2(c) and 3(c), it is not possible to distinguish the
random mode results from the MCS results.

The PDF of the response at t ¼ 6s is shown in Fig. 4, and the
quality of the approximation is assessed by calculating the
Kullback-Leibler (KL) divergence (Kullback and Leibler 1951;
Basseville 2013), DKL. It was found that DKL is greater than 20
for both the PCE and the XPA, whereas DKL ¼ 3 × 10−3 for the
random modes. The results show that the PDF obtained with the
random modes are in good agreement with the MCS, whereas
the PDFs estimated with the PCE and the XPA are in poor agree-
ment with the MCS. Accordingly, the only efficient method is the
random modes method.

It seems that integrating the motion differential equation
[Eq. (6)] produces a cumulative error from all the previous times
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Fig. 4. PDF of x1 at t ¼ 6 s for MCS (solid line) versus (a) PCE (degree 15 and P ¼ 135) (dotted line); (b) XPA ([1/2] and P ¼ 14) (dotted line); and
(c) random modes solution (dotted line).
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on all the coefficients of the PCE. This error spoils the sequence of
the coefficients at a given instant. However the extended Padé ap-
proximant technique has proved its efficiency for estimating the
PDF of the steady-state response (Jacquelin et al. 2017), and hence
an investigation of the XPA method based on PC coefficients
obtained in the frequency domain is proposed.

Statistics in Frequency Domain

The Padé approximant technique is therefore applied in frequency
domain together with a Monte Carlo simulation (MCS) to calculate
a sample of responses in the frequency domain. An inverse Fourier
transform transfers all the responses from the frequency domain to
the time domain.

In the frequency domain, a PCE of the Fourier transform of the
response, X , is carried out

Xðω;ΞÞ ¼
XP
j¼0

YjðωÞΨjðΞÞ ð23Þ

and substituted into the Fourier transform of the motion equation,
which in turn is projected on each of the PC; this Galerkin
projection provides coefficients YjðωÞ (Jacquelin et al. 2015).
Coefficients YjðtÞ are obtained by applying an inverse Fourier
transform to YjðωÞ.

Further, fYjðωÞgfj¼0; : : : ;Pg can be used to calculate the XPA of

Xðω;ΞÞ, ½M=N�X ðω;ΞÞ, in the frequency domain. Therefore the
inverse Fourier transform of the XPA is an estimate of xðt;ΞÞ.

For completeness, the modal equations were also solved in the
frequency domain for all the random modes. An inverse Fourier
transform gives the random mode solution in the time domain.

The first two statistical moments were estimated, and the errors
with respect to the MCS simulations are listed in Table 2. The re-
sults show that the XPA gives very accurate estimates of the mean
and standard deviation of the response, whereas the accuracy of the
PCE and random modes method is not modified by solving the
equations in the frequency domain. Similarly the KL divergence
at t ¼ 6 s is now reduced to 5 × 10−3. This is confirmed by the
history of the first two statistics and the PDF at t ¼ 6 s, which
are plotted in Fig. 5. It is not possible to distinguish the MCS curves
and XPC curves.

Jacquelin et al. (2015) showed that in case of a harmonic
excitation, the PCE model is not efficient for a frequency close
to the deterministic eigenfrequencies, and hence the results for
two other frequency are also given in Table 2. It was found that
ωe ¼ 75.7 rad=s (12 Hz) is close to the first eigenfrequency,
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Fig. 5. Statistics of x1 obtained through time-frequency transformations for MCS (solid line) versus XPA ([1/2] and P ¼ 14) (dotted line): (a) history
of mean; (b) history of standard deviation; and (c) PDF of x1 at t ¼ 6 s.

Table 2. Error in some statistics: Frequency domain

ωe (rad=s) Method Mean (%) Standard deviation (%)

2.5 PCE (15) 17.57 19.73
Padé [1/2] 2 × 10−2 3 × 10−2

RM 0.26 0.23
75.7 PCE (15) 53.57 19.86

Padé [1/2] 6 × 10−2 3 × 10−2
RM 0.80 0.21

125.7 PCE (15) 53.99 19.89
Padé [1/2] 8 × 10−2 2 × 10−2

RM 0.81 0.20
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and ωe ¼ 125.7 rad=s (20 Hz) is a frequency between the two
eigenfrequencies. It can be seen that the quality of the results
has not deteriorated.

Conclusion

Linear random multiple-DOF systems were addressed in this study.
It was shown that the random modes were very efficient to estimate
the statistics of the transient response. Conversely, the Padé approx-
imant method based on polynomial chaos did not give satisfactory
results.

It has been shown in Jacquelin et al. (2017) that XPA is efficient
in the frequency domain. Hence, XPA was calculated in the fre-
quency domain and then transformed into the time domain by
an inverse Fourier transform. The results were then in excellent
agreement with the ones obtained with Monte Carlo simulations.
The proposed methods are alternatives to the time domain gener-
alized polynomial chaos presented by Gerritsma et al. (2010).

One issue not addressed in this paper is the presence of close
modes, which can create problems in the estimation of the PDFs of
the random modes. The example had well-separated modes and
hence the random modes approach worked well, but this is not
guaranteed with close modes. Of course, the frequency domain ap-
proach using the XPA does not require any modal transformation
and hence will work equally well for systems with close modes.
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