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Generalized closed-form analytical formulae for the elastic moduli (in-plane Young's moduli and

Poisson's ratios) of nano-heterostructures are developed based on the concept of linkage between the

molecular mechanics parameters and structural mechanics parameters of the interatomic bonds. The

molecular mechanics based approach for obtaining the equivalent elastic properties of atomic bonds

is well-documented in scienti�c literature [1�3]. Therefore, the main contribution of this article lies

in proposing computationally e�cient and generalized analytical formulae for the elastic properties of

nano-heterostructures.

1. Mechanical equivalence of atomic bonds

For atomic level behaviour of nano-scale materials, the total interatomic potential energy can be

expressed as the sum of various individual energy terms related to bonding and non-bonding interactions

[1]. Total strain energy (E) is expressed as the sum of energy contributions from bending of bonds (Eb),

bond stretching (Es), torsion of bonds (Et) and energies associated with non-bonded terms (Enb) such

as the van der Waals attraction, the core repulsions and the coulombic energy (refer to �gure 2 of the

main manuscript).

E = Es + Eb + Et + Enb (1)

However, among all the energy components, e�ect of bending and stretching are predominant in case of

small deformation [2, 3]. For the multiplanar hexagonal nano-structures (such as stanene and MoS2),

the strain energy caused by bending consists of two components, in-plane component (EbI) and out-of-

plane component (EbO). The predominant deformation mechanisms for a multiplanar nanostructure are
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depicted in �gure 1 � 2. It can be noted that the out-of-plane component becomes zero for monoplanar

nanostructures such as graphane and hBN. The total inter-atomic potential energy (E) can be expressed

as

E = Es + EbI + EbO

=
1

2
kr(∆l)

2 +

(
1

2
kθ(∆θ)

2 +
1

2
kθ(∆α)2

) (2)

where ∆l, ∆θ and ∆α denote the change in bond length, in-plane and out-of-plane angle respectively, as

shown in �gure 1. The quantities kr and kθ are the force constants associated with bond stretching and

bond bending respectively. The �rst term in Equation 2 corresponds to strain energy due to stretching

(Es), while the terms within bracket represent the strain energies due to in-plane (EbI) and out-of-

plane (EbO) angle variations, respectively. The force constants of the atomic bonds (kr and kθ) can be

expressed in the form of structural equivalence [4]. As per the standard theory of classical structural

mechanics (refer to �gure 2), strain energy of a uniform circular beam with cross-sectional area A, length

l, Young's modulus E, and second moment of area I, under the application of a pure axial force N

(refer to �gure 2(b)) can be expressed as

Ua =
1

2

∫ L

0

N2

EA
dl =

1

2

N2l

EA
=

1

2

EA

l
(∆l)2 (3)

The strain energies due to pure bending moment M (refer to �gure 2(c)) can be written as

Ub =
1

2

∫ L

0

M2

EI
dl =

1

2

EI

l
(2∆φ)2 (4)

Comparing Equation 3 with the expression for strain energy due to stretching (Es) (refer Equation 2),

it can be concluded that Kr =
EA

l
. For bending, it is reasonable to assume that 2∆φ is equivalent

to ∆θ and ∆α for in-plane and out-of-plane angle variations respectively (refer to �gure 2(b)). Thus

comparing Equation 4 with the expressions for the strain energies due to in-plane (EbI) and out-of-plane

(EbO) angle variations, the following relation can be obtained: kθ =
EI

l
. On the basis of the established

mechanical equivalence between molecular mechanics parameters (kr and kθ) and structural mechanics

parameters (EA and EI), the e�ective elastic moduli of nano-heterostructures are obtained in the

following subsection. Analytical formulae for elastic moduli of single-layer hexagonal nanostructures

have been reported in literature [2, 5�8]; however, contribution of the present article is to develop

closed-form analytical formulae for multi-layer nano-heterostructures. Equivalent elastic properties of

the nano-heterostructures are derived based on a multi-stage bottom-up idealization scheme as depicted

2



Figure 1: (a) Top view and side view of a multiplanar hexagonal nanostructure (b) Strain energy due to bond stretching
(c) Strain energy due to in-plane angle variation (d) Strain energy due to out-of-plane angle variation

in �gure 1M of the original manuscript. In the �rst stage, the e�ective elastic moduli of each individual

layer are determined based on a mechanics based approach using the mechanical equivalence of bond

properties. Thus the multi-layer heterostructure can be idealized as a layered plate-like structural

element with respective e�ective elastic properties and geometric dimensions (such as thickness) of each

layer. Each of the layers are considered to be bonded perfectly with adjacent layers. The equivalent

elastic properties of the entire heterostructure is determined based on force equilibrium and deformation

compatibility conditions at the �nal stage.

2. Young's modulus E1 for nano-heterostructures

One generalized hexagonal unit cell is considered to derive the expression for Young's moduli of

the entire hexagonal periodic nano-structure as shown in �gure 2(a). Because of structural symmetry,

horizontal deformation of the unit cell can be obtained by analysing the member AB only. The total
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Figure 2: (a) Top view of a unit cell consisting of multiple idealized beam elements (refer to �gure 1(a)) (b) A structural
beam element subjected to pure tension (c) A structural beam element subjected to pure bending

horizontal deformation of the member AB (horizontal de�ection of one end of the member with respect

to the other end) under the application of stress σ1 (refer to �gure 3) has three components: axial

deformation (δaHi), bending deformation due to in-plane loading (δbHIi) and bending deformation due

to out-of-plane loading (δbHOi).

δH11i = δaHi + δbHIi + δbHOi

=
Hili cos2 ψi cos2 αi

AiEi
+
Hil

3
i sin2 ψi

12EiIi
+
Hil

3
i cos2 ψi sin

2 αi
12EiIi

(5)

where Ai =
πd2i
4

, Ii =
πd4i
64

and Hi = σ1tili(1 + sinψi) cosαi. The quantities li and di represent the

length and diameter of the member AB respectively. ti is the thickness of single layer of such periodic

structural form. The subscript i (i = 1, 2, 3...n; n is the total number of layers) is used here to denote

the structural attributes, material properties and force components corresponding to ith layer of the

heterostructure. The three parts of Equation 5 are derived by considering the respective deformation

components in direction-1. Figure 3(a) and �gure 3(b) show the member AB using top-view and side-

view respectively, wherein the horizontal load H acts at the node A in the 1-2 plane. Inclination angle

of the member AB in the 1-2 plane and 1-3 plane are ψi and αi respectively, as evident from the top

view and side view shown in �gure 3. Using the relationship between molecular mechanics parameters

(kr and kθ) and structural mechanics parameters (EA and EI), form Equation 5, the expression for
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strain in direction-1 (due to loading in direction-1) can be written as

ε11i =
δH11i

li cosψi cosαi

=
σ1tili(1 + sinψi)

li cosψi

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

) (6)

On the basis of the basic de�nition of Young's modulus (E =
σ

ε
), the closed-form expression for

Young's modulus in direction-1 for a single-layer multiplanar nanostructure (stacked in the ith layer of

Figure 3: (a) Free body diagram of member AB for in-plane deformation under the application of horizontal force (b)
Free body diagram of member AB for out-of-plane deformation under the application of horizontal force (c) Free body
diagram of member AB for in-plane deformation under the application of vertical force (d) Free body diagram of member
AB for out-of-plane deformation under the application of vertical force
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Figure 4: (a) Side view of the idealized heterostructure in 1 � 3 plane along with applied stress in direction - 1 (b) Side
view of the idealized heterostructure in 2 � 3 plane along with applied stress in direction - 2 (c) Side view of the idealized
heterostructure in 1 � 3 plane along with applied shear stress

the heterostructure) can be obtained as

E1i =
cosψi

ti(1 + sinψi)

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

) (7)

The subscript i in the above expression indicates the molecular mechanics and structural (/geometrical)

properties corresponding to the ith layer.

Figure 4(a) shows the side view of an idealized three-layer heterostructure with the stress applied

in direction - 1. It can be noted that we have show a three-layer heterostructure as an example; the

derived formulae are applicable for heterostructures with any number of layers. From the condition

of force equilibrium, the total force applied in direction - 1 should be equal to the summation of the

force component shared by each of the constituting layers in the same direction. Thus considering a

heterostructure with n number of layers

σ1tB =
n∑
i=1

σ1itiB (8)

where t =
∑n

i=1 ti; ti represents the thickness of i
th layer (i = 1, 2, 3...n). From the de�nition of Young's

modulus, the above expression can be written as

E1ε1t =
n∑
i=1

E1iε1iti (9)
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where E1 and ε1 are the e�ective Young's modulus in direction - 1 and the strain in direction - 1

respectively for the entire heterostructure. E1i and ε1i represent the e�ective Young's modulus in

direction - 1 and the strain in direction - 1 of ith layer respectively. As each of the layers are considered

to have equal e�ective deformation in direction - 1, the deformation compatibility condition yields:

ε1 = ε1i,∈ [1, n]. Thus Equation 9 and 7 give the expression of Young's modulus in direction - 1 for the

entire heterostructure as

E1 =
1

t

n∑
i=1

E1iti

=
1

t

n∑
i=1

cosψi

(1 + sinψi)

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

) (10)

In the above expression ψi = 90◦ − θi
2
, where θi is the bond angle of the nanostructure stacked at ith

layer, as shown in �gure 1(a). In case of a layer with monoplanar nanostructure, the out-of-plane angle

αi becomes zero.

3. Young's modulus E2 for nano-heterostructures

Total vertical deformation of the unit cell (refer to �gure 2(a)) under the application of σ2 (refer

to �gure 3) is consisted of the deformation of member AB (δV 1i) and member BE (δV 2i) in direction-

2. The deformed shapes and free body diagrams of the members under the application of vertical

stresses are shown in �gure 3(c � d). De�ection of joint A in direction-2 with respect to joint B has

three components: axial deformation (δaV 1i), bending deformation due to in-plane loading (δbV 1Ii) and

bending deformation due to out-of-plane loading (δbV 1Oi).

δV 1i = δaV 1i + δbV 1Ii + δbV 1Oi

=
Vili sin

2 ψi cos2 αi
AiEi

+
Vil

3
i cos2 ψi
12EiIi

+
Vil

3
i sin2 ψi sin

2 αi
12EiIi

(11)

where Vi = σ2tili cosψi cosαi. As the member BE is parallel to the 2-3 plane, de�ection of joint B with

respect to the joint E has two components: axial deformation (δaV 2i) and bending deformation due to

out-of-plane loading (δbV 2Oi). It can be noted that the force acting on the member BE is 2V as there

are similar unit cells adjacent to the one being analysed.

δV 2i = δaV 2i + δbV 2Oi

=
2Vili cos2 αi

AiEi
+

2Vil
3
i sin2 αi

12EiIi

(12)
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Replacing the expressions of Vi, Ai, Ii, AiEi and EiIi, the total deformation in direction-2 can be

obtained from Equation 11 and 12 as

δV 22i = δV 1i + δV 2i

= σ2tili cosψi cosαi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) (13)

From Equation 13, the strain in direction-2 (due to loading in direction-2) can be expresses as

ε22i =
δV 22i

(li + li sinψi) cosαi

=
σ2ti cosψi
1 + sinψi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) (14)

On the basis of the basic de�nition of Young's modulus (E =
σ

ε
), the closed-form expression for

Young's modulus in direction-2 for a single-layer multiplanar nanostructure (stacked in the ith layer of

the heterostructure) can be obtained as

E2i =
1 + sinψi

ti cosψi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) (15)

The subscript i in the above expression indicates the molecular mechanics and structural (/geometrical)

properties corresponding to the ith layer.

Figure 4(b) shows the side view of an idealized three-layer heterostructure with the stress applied in

direction - 2. From the condition of force equilibrium, the total force applied in direction - 2 should be

equal to the summation of the force component shared by each of the constituting layers in the same

direction. Thus considering a heterostructure with n number of layers

σ2tL =
n∑
i=1

σ2itiL (16)

where t =
∑n

i=1 ti; ti represents the thickness of i
th layer (i = 1, 2, 3...n). From the de�nition of Young's

modulus, the above expression can be written as

E2ε2t =
n∑
i=1

E2iε2iti (17)

where E2 and ε2 are the e�ective Young's modulus in direction - 2 and the strain in direction - 2

respectively for the entire heterostructure. E2i and ε2i represent the e�ective Young's modulus in

direction - 2 and the strain in direction - 2 of ith layer respectively. As each of the layers are considered

to have equal e�ective deformation in direction - 2, the deformation compatibility condition yields:
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ε2 = ε2i,∈ [1, n]. Thus Equation 17 and 15 give the expression of Young's modulus in direction - 2 for

the entire heterostructure as

E2 =
1

t

n∑
i=1

E2iti

=
1

t

n∑
i=1

1 + sinψi

cosψi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) (18)

In the above expression ψi = 90◦ − θi
2
, where θi is the bond angle of the nanostructure stacked at ith

layer, as shown in �gure 1(a). In case of a layer with monoplanar nanostructure, the out-of-plane angle

αi becomes zero.

4. In-plane Poisson's ratio ν12 for nano-heterostructures

In-plane Poisson's ratio for the loading direction-1 (ν12i) can be obtained as

ν12i = −ε12i
ε11i

(19)

where ε12i and ε11i are the strains in direction-2 and direction-1 respectively due to loading in direction-1.

The expression for ε11i is given in Equation 6. Derivation for the expression of ε12i is provided next. The

deformation in direction-2 due to loading in direction-1 can be obtained by considering one hexagonal

unit cell as shown in �gure 2(a). Because of structural symmetry, deformation in direction-2 of the

unit cell due to loading in direction-1 can be obtained by analysing the member AB only. The total

deformation in direction-2 of the member AB (de�ection in direction-2 of one end of the member with

respect to the other end) under the application of stress σ1 has two components (refer to �gure 3(a-

b)): bending deformation due to in-plane loading (δbV I1i) and bending deformation due to out-of-plane

loading (δbV O1i).

δH12i = δbV I1i + δbV O1i

= −Hil
3
i sinψi cosψi

12EiIi
+
Hil

3
i sinψi cosψi sin

2 αi
12EiIi

= −Hil
3
i sinψi cosψi cos2 αi

12EiIi

(20)

Using the relationship between molecular mechanics parameter kθ and structural mechanics parameter

EI, form Equation 20, the expression for strain in direction-2 (due to loading in direction-1) can be
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written as

ε12i =
δH12i

(li + li sinψi) cosαi

= −Hili sinψi cosψi cosαi
12kθi (1 + sinψi)

(21)

On the basis of the basic de�nition of ν12i as shown in Equation 19, the closed-form expression of

in-plane Poisson's ratio for the loading direction-1 in case of a single-layer multiplanar nanostructure

(stacked in ith layer of the heterostructure) can be obtained as

ν12i =
sinψi cos2 ψi cos2 αil

2
i

12kθi (1 + sinψi)

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

) (22)

The subscript i in the above expression indicates the molecular mechanics and structural (/geometrical)

properties corresponding to the ith layer.

From Equation 9, using the basic de�nition of ν12 for the entire heterostructure and also the indi-

vidual layers we get

E1
ε2
ν12

t =
n∑
i=1

E1i
ε2i
ν12i

ti (23)

As each of the layers are considered to have equal e�ective deformation, the deformation compatibility

condition yields: ε2 = ε2i,∈ [1, n]. Thus, from Equation 23 and Equation 10, we have

ν12 =
E1t

n∑
i=1

E1iti
ν12i

=

n∑
i=1

E1iti

n∑
i=1

E1iti
ν12i

(24)

Based on Equation 22 and Equation 10, the above equation give the expression of in-plane Poisson's

ratio of a nano-heterostructure for loading direction - 1 as

ν12 =

n∑
i=1

cosψi

(1 + sinψi)

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

)
n∑
i=1

12kθi
sinψi cosψi cos2 αil2i

(25)

In the above expression ψi = 90◦ − θi
2
, where θi is the bond angle of the nanostructure stacked at ith
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layer, as shown in �gure 1(a). In case of a layer with monoplanar nanostructure, the out-of-plane angle

αi becomes zero.

5. In-plane Poisson's ratio ν21 for nano-heterostructures

In-plane Poisson's ratio for the loading direction-2 (ν21i) can be obtained as

ν21i = −ε21i
ε22i

(26)

where ε21i and ε22i are the strains in direction-1 and direction-2 respectively due to loading in direction-

2. The expression for ε22i is given in Equation 14. Derivation for the expression of ε21i is provided

next. The deformation in direction-1 due to loading in direction-2 can be obtained by considering one

hexagonal unit cell as shown in �gure 2(a). Because of structural symmetry, deformation in direction-1

of the unit cell due to loading in direction-2 can be obtained by analysing the member AB only. The

total deformation in direction-1 of the member AB (de�ection in direction-1 of one end of the member

with respect to the other end) under the application of stress σ2 has two components (refer to �gure 3(c

- d)): bending deformation due to in-plane loading (δbHI2i) and bending deformation due to out-of-plane

loading (δbHO2i).

δH21i = δbHI2i + δbHO2i

= −Vil
3
i sinψi cosψi

12EiIi
+
Vil

3
i sinψi cosψi sin

2 αi
12EiIi

= −Vil
3
i sinψi cosψi cos2 αi

12EiIi

(27)

Using the relationship between molecular mechanics parameter kθ and structural mechanics parameter

EI, form Equation 27, the expression for strain in direction-1 (due to loading in direction-2) can be

written as

ε21i =
δH21i

li cosψi cosαi

= −Vili sinψi cosαi
12kθi

(28)

On the basis of the basic de�nition of ν21i as shown in Equation 26, the closed-form expression of

in-plane Poisson's ratio for the loading direction-2 in case of a single-layer multiplanar nanostructure

(stacked in ith layer of the heterostructure) can be obtained as

ν21i =
sinψi (1 + sinψi) cos2 αil

2
i

12kθi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) (29)
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The subscript i in the above expression indicates the molecular mechanics and structural (/geometrical)

properties corresponding to the ith layer.

From Equation 17, using the basic de�nition of ν21 for the entire heterostructure and also the

individual layers we get

E2
ε1
ν21

t =
n∑
i=1

E2i
ε1i
ν21i

ti (30)

As each of the layers are considered to have equal e�ective deformation, the deformation compatibility

condition yields: ε1 = ε1i,∈ [1, n]. Thus, from Equation 30 and 18, we have

ν21 =
E2t

n∑
i=1

E2iti
ν21i

=

n∑
i=1

E2iti

n∑
i=1

E2iti
ν21i

(31)

Based on equation 29 and 18, the above equation give the expression of in-plane Poisson's ratio of a

nano-heterostructure for loading direction - 2 as

ν21 =

n∑
i=1

1 + sinψi

cosψi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

))
n∑
i=1

12kθi
sinψi cosψi cos2 αil2i

(32)

In the above expression ψi = 90◦ − θi
2
, where θi is the bond angle of the nanostructure stacked at ith

layer, as shown in �gure 1(a). In case of a layer with monoplanar nanostructure, the out-of-plane angle

αi becomes zero.

Thus the in-plane Young's moduli and Poisson's ratios of multi-layer nano-heterostructures as well

as single-layer hexagonal nanostructures can be predicted using the closed-form formulae derived in

this article from molecular mechanics parameters (kr and kθ), bond length (l), bond angle (θ) and

out-of-plane angle (α), which are well-documented in the molecular mechanics literature.
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6. Remark on single-layer nanostructures

The closed-form analytical formulae derived for the elastic moduli of multi-layer nano-heterostructures

reduce to the expressions for single-layer multiplanar nanostructures in case of n = 1.

E1 =
cosψ

t(1 + sinψ)

(
l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

) (33)

E2 =
1 + sinψ

t cosψ

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (34)

ν12 =
sinψ cos2 ψ cos2 αl2

12kθ (1 + sinψ)

(
l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

) (35)

ν21 =
sinψ (1 + sinψ) cos2 αl2

12kθ

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (36)

The above expressions for single-layer nanostructures perfectly obey the Reciprocal theorem implying

that only (any) three of the four elastic moduli E1, E2, ν12 and ν21 are independent.

E1ν21 = E2ν12 =

sinψ cosψ cos2 αl2
(

l2

12kθ

(
sin2 ψ + cos2 ψ sin2 α

)
+

cos2 ψ cos2 α

kr

)−1

12kθt

(
l2

12kθ

(
cos2 ψ + sin2 ψ sin2 α + 2 sin2 α

)
+

cos2 α

kr

(
sin2 ψ + 2

)) (37)

In case of monoplanar nanostructures (such as graphene and hBN), the out-of-plane angle α becomes

zero and subsequently the elastic moduli for single-layer nanostructures simpli�es to the following forms

E1 =
cosψ

t(1 + sinψ)

(
l2

12kθ
sin2 ψ +

cos2 ψ

kr

) (38)

E2 =
1 + sinψ

t cosψ

(
l2

12kθ
cos2 ψ +

(
sin2 ψ + 2

)
kr

) (39)

ν12 =
sinψ cos2 ψl2

12kθ (1 + sinψ)

(
l2

12kθ
sin2 ψ +

cos2 ψ

kr

) (40)
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ν21 =
sinψ (1 + sinψ) l2

12kθ

(
l2

12kθ
cos2 ψ +

(
sin2 ψ + 2

)
kr

) (41)

It can be noticed that for regular single-layer monoplanar nanostructures (ψ = 30◦) such as graphene,

E1 = E2 and ν12 = ν21. The expressions obtained for Young's moduli in case of ψ = 30◦ exactly matches

with the formulae provided by Shokrieh and Ra�ee [2] for graphene.

7. E�ect of inter-layer sti�ness contribution

We have investigated the e�ect of Lennard-Jones potentials in heterostructures by comparing their

relative contribution to sti�ness with that of the constituting layers (such as graphene or MoS2). The

elastic moduli of a heterostructure are directly dependent on the sti�ness components of the individual

constituting layers and inter-layer parameters. The Lennard-Jones potential is a mathematical model

that approximates the interaction between a pair of neutral atoms or molecules. This potential can be

expressed as [9]

Vij = ε

((
rm

rm + r

)12

− 2

(
rm

rm + r

)6
)

(42)

where rm = 2
1
6σ and σ =

(
B

A

) 1
6

. The quantity ε is given by
(
A2

4B

)
. A and B are the attractive and

repulsive constants in the Lennard-Jones potential. r denotes the atomic displacement along the length

between two atoms. The parameters of Lennard-Jones potentials for graphene-MoS2 heterostructures

are shown in Table 1. The equivalent axial force related to the Lennard-Jones potential acting between

a pair of atoms (i,j) can be obtained as

Fij =
∂Vij
∂r

(43)

It can be noted that Equation 43 gives a non-linear relation between force and deformation. Thus

corresponding relationship between sti�ness and deformation can be computed by dividing the force

values by respective deformation. The deformation (∆) and line of action of the force Fij for a typical

three-layer heterostructure is shown in the inset of �gure 5.

Typical non-linear variation of sti�ness with deformation for the possible combination of atoms

in graphene-MoS2 heterostructures is presented in �gure 5. It is found that the e�ect of sti�ness

contributed by the consideration of Lennard-Jones potentials is negligible compared to sti�ness of the
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Table 1: Parameters of Lennard-Jones potentials for graphene-MoS2 heterostructures

Interaction Type ε (meV) σ (Å)
C-C 2.96 [10] 3.40 [10]

C-M 3.325 [11] 2.82 [11]

C-S 7.355 [11] 3.22 [11]

S-S 1.19 [12] 3.59 [12]

M-S 2.49 [12] 3.16 [12]

M-M 2.43 [12] 2.72 [12]

Figure 5: Variation of sti�ness component due to Lennard-Jones potentials with deformation (pertaining to graphene-
MoS2 heterostructure). The deformation (∆) and line of action of the force Fij for a typical three-layer heterostructure
is shown in the inset.

constituting layers of a heterostructure. In case of the graphene-MoS2 heterostructure, the non-linear

sti�ness contribution due to Lennard-Jones potentials are found to be in the order of ∼ 10−10, while the

sti�ness of a single layer of graphene and MoS2 (Young's modulus multiplied by respective single layer

thickness) are in the order of ∼ 10−7 (refer to Table 1 of the main paper). Thus the incorporation of the
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Table 2: Results for E1 incorporating the e�ect of Lennard-Jones potentials (Here E1m and E1c represent the results
obtained using equation 10 and equation 47 respectively)

Con�guration E1m
E1c Error (%)

p = 1 p = 0.9 p = 0.8 p = 0.7 p = 1 p = 0.9 p = 0.8 p = 0.7

G/G 1.0419 1.0431 1.0430 1.0428 1.0427 0.1175 0.1058 0.0940 0.0823

M/M 0.1778 0.1785 0.1784 0.1784 0.1783 0.3870 0.3484 0.3098 0.2712

G/M 0.4893 0.4901 0.4901 0.4900 0.4899 0.1803 0.1623 0.1443 0.1263

M/G 0.4893 0.4901 0.4901 0.4900 0.4899 0.1803 0.1623 0.1443 0.1263

G/M/G 0.6357 0.6370 0.6368 0.6367 0.6366 0.2039 0.1836 0.1632 0.1428

M/G/M 0.3678 0.3689 0.3687 0.3686 0.3685 0.2922 0.2631 0.2339 0.2047

Table 3: Results for E2 incorporating the e�ect of Lennard-Jones potentials (Here E2m and E2c represent the results
obtained using equation 18 and equation 48 respectively)

Con�guration E2m
E2c Error (%)

p = 1 p = 0.9 p = 0.8 p = 0.7 p = 1 p = 0.9 p = 0.8 p = 0.7

G/G 1.0419 1.0431 1.0430 1.0428 1.0427 0.1175 0.1058 0.0940 0.0823

M/M 0.3549 0.3556 0.3555 0.3555 0.3554 0.1942 0.1749 0.1555 0.1361

G/M 0.6025 0.6034 0.6033 0.6032 0.6031 0.1464 0.1318 0.1172 0.1025

M/G 0.6025 0.6034 0.6033 0.6032 0.6031 0.1464 0.1318 0.1172 0.1025

G/M/G 0.7189 0.7202 0.7201 0.7200 0.7198 0.1804 0.1624 0.1443 0.1263

M/G/M 0.5059 0.5070 0.5069 0.5068 0.5067 0.2126 0.1914 0.1701 0.1489

sti�ness contribution due to Lennard-Jones potentials in the analytical formulation of heterostructures

will marginally a�ect the �nal results. This is evident from the comparative results presented for

graphene-MoS2 heterostructure in Table 1 of the main paper, wherein a good agreement can be noticed

between the analytical approach and molecular dynamics simulation. For this reason, we have not

included the e�ect of Lennard-Jones potentials in the analytical formulation presented in the main paper.

However, The contribution of sti�ness due to Lennard-Jones potentials can be readily included in the

proposed expression for elastic moduli. Representative e�ects of such additional sti�ness contribution

and corresponding error values for the two Young's moduli are presented in the following paragraph.

The modi�ed expression of Young's modulus E1 due to the consideration of additional sti�ness

contribution arising from the inter-layer interaction (rs) can be derived by including the component
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of force shared by the inter-layer regions. In a heterostructure with n layers, there would be (n − 1)

numbers of inter-layer regions. Considering the equivalent in-plane sti�ness of each inter-layer region

as rs, the modi�ed condition of force equilibrium can be expressed as

σ1tB =
n∑
i=1

σ1itiB + (n− 1)σstsB (44)

Here σstsB is the in-plane force component shared by each of the inter-layer regions, wherein the

equivalent stress and thickness of the inter-layer regions are denoted by σs and ts, respectively. From

the de�nition of Young's modulus, the above expression can be written as

E1ε1t =
n∑
i=1

E1iε1iti + (n− 1)Esεsts (45)

where Es and εs are the e�ective Young's modulus and the strain in direction - 1 respectively for the

inter-layer regions. The deformation compatibility condition yields: ε1 = ε1i = εs,∈ [1, n]. Thus the

above equation can be expressed as

E1t =
n∑
i=1

E1iti + (n− 1)rs (46)

where rs(= Esεs) is the in-plane sti�ness contribution of the inter-layer regions arising due to Lennard-

Jones potentials. The inter-layer regions of a heterostructure, as shown in �gure 7 of the main manuscript

using spring elements, can be idealized as an equivalent plate-like structure having an in-plane sti�ness

rs. The springs in the �gure 7 are typical representation of the sti�ness component arising due to the

e�ect described in Equation 43. Here it can be noted that the line of action of the sti�ness components

due to Lennard-Jones potentials is same as the line joining between two atoms of the adjacent layers.

The contribution of sti�ness along the in-plane direction would be a cosine component as shown in the

inset of �gure 5. Thus the e�ective in-plane sti�ness of the inter-layer regions would always be lesser

than the values reported in �gure 5. The reduction in sti�ness is accounted by introducing a fraction

(p) for obtaining numerical results later in this section.

The modi�ed expression of Young's modulus in direction - 1 for the entire heterostructure can be
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derived from equation 7 and 46

E1c =
1

t

n∑
i=1

E1iti +
(n− 1)rs

t

=
1

t

 n∑
i=1

cosψi

(1 + sinψi)

(
l2i

12kθi

(
sin2 ψi + cos2 ψi sin

2 αi
)

+
cos2 ψi cos2 αi

kri

) + (n− 1)rs


(47)

Similarly, the modi�ed expression for Young's modulus E2 incorporating the interlayer sti�ness contri-

bution can be derived as

E2c =
1

t

n∑
i=1

E2iti +
(n− 1)rs

t

=
1

t

 n∑
i=1

1 + sinψi

cosψi

(
l2i

12kθi

(
cos2 ψi + sin2 ψi sin

2 αi + 2 sin2 αi
)

+
cos2 αi
kri

(
sin2 ψi + 2

)) + (n− 1)rs


(48)

where n is the number of layers and rs is the sti�ness contribution arising due to Lennard-Jones poten-

tials.

From �gure 5 it can be discerned that the value of rs for a graphne-MoS2 heterostructure should

be 8.335×10−10 N/nm, or less, as discussed in the preceding paragraph (depending on the stacking

sequence of the heterostructure and deformation value). Thus we present numerical results for variation

of the Young's moduli of graphne-MoS2 heterostructures as a fraction (p) of the maximum sti�ness (i.e.

rs = 8.335 × 10−10p). It can be noted that the maximum error in the values of Young's moduli, as

calculated without the e�ect of Lennard-Jones potentials (Equation 10 and 18), will occur for p = 1.

The expressions accounting the e�ect of Lennard-Jones potentials (Equation 47 and 48) reduce to the

expression's of Young's moduli provided in the main paper (Equation 10 and 18) for p = 0. Table 2

and 3 show the e�ect of considering inter-layer sti�ness rs on the Young's moduli, wherein it is evident

that even the maximum possible value of error is quite negligible. Thus the formulae proposed for

heterostructures without considering the e�ect of inter-layer sti�ness can be used with su�cient level

of accuracy.
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Figure 6: E�ect of uncertainty on the Young's moduli (E1 and E2) of graphene-MoS2 heterostructures

8. E�ect of uncertainty on the elastic moduli

The proposed analytical closed-form formulae for the elastic moduli can be a quite e�cient tool to

account for uncertainty in the input parameters (following a Monte Carlo simulation based approach

[13, 14]). The inevitable random variations in the input parameters can be considered analogous to

the e�ect of epistemic uncertainty [15], which is quite relevant to the nanoscale analyses due to lack of

precise knowledge regarding the nano-structures and related molecular mechanics parameters in many

cases. Moreover, aleatoric uncertainty [15] may also be present in nanostructures due di�erent forms

of stochasticity in structural geometry. The e�ect of source uncertainty can be accounted in the elastic

moduli as

E(s) = Θ {ψ(s), α(s), l(s), t(s), kθ(s), kr(s)} (49)

Here E represents the elastic moduli such as Young's moduli and Poisson's ratios. Θ is a symbolic
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Figure 7: E�ect of uncertainty on the Poisson's ratios (ν12 and ν21) of graphene-MoS2 heterostructures

operator representing the Monte Carlo simulation considering the combined e�ect of all the stochastic

input parameters, while s denotes the degree of stochasticity.

We have performed a Monte Carlo simulation based uncertainty analysis using the e�cient analytical

formulae to quantify the probabilistic characteristics of the elastic moduli of graphene-MoS2 heterostruc-

tures (considering 10,000 simulations in each case). The probabilistic descriptions of the elastic moduli

for three di�erent levels of stochasticity (s) are presented in �gure 6 and 7. It can be noticed that the

response bounds increase with the increasing degree of stochasticity for all the heterostructures. Such

probabilistic characterization can provide a comprehensive idea about the e�ect of source uncertainty

on the elastic moduli of heterostructures.
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