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Abstract

In this document we provide the detailed derivation of beam sti�ness matrix based on two di�erent
approaches (conventional element sti�ness matrix and exact element sti�ness matrix), followed by
the derivation of e�ective elastic moduli of the lattices in terms of the beam-level element sti�ness
matrix. We also present supplementary numerical results for the two Young's moduli, shear
modulus and Poisson's ratios considering auxetic and non-auxetic con�gurations.
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S1. Element sti�ness matrices

Sti�ness matrix of an equivalent beam element is derived here following two di�erent ap-
proaches: conventional element sti�ness matrix approach and exact element sti�ness matrix ap-
proach.

S1.1. Conventional element sti�ness matrix

The governing equation of transverse de�ection V (x) of a beam can be expressed as

EI
d4V (x)

dx4
+ kV (x) = f(x) (S1)

We assume here that the beams under consideration follow the Euler-Bernoulli hypotheses and the
elastic in�ll is modelled as an equivalent elastic contribution of the �ller material throughout the
beam length [1]. In the above equation, EI denotes the bending rigidity and k is the equivalent
elastic �ller modulus, while length of the beam is L. Here we assume that the reaction force arising
from the �ller material is proportional to the transverse deformation of the constituent beams.
However, other relationships between the reaction force and the transverse deformation could also
be considered following the current framework.

An element of the beam is shown in �gure 1(D) of the main paper, which has four degrees
of freedom and there are four shape functions. The degrees-of-freedom for each node include a
vertical and a rotational component. The conventional shape function matrix considering bending
deformation [2] can be represented in terms of cubic polynomials as shown below. The continuous
shape functions give an idea about how di�erent displacement functions will vary in between the
discrete values at the nodes over the elements.

N(x) = [N1(x), N2(x), N3(x), N4(x)]
T (S2)

where

N1(x) = 1− 3
x2

L2
+ 2

x3

L3
, N2(x) = x− 2

x2

L
+

x3

L2
,

N3(x) = 3
x2

L2
− 2

x3

L3
, N4(x) = −x2

L
+

x3

L2

(S3)

Subsequently, the sti�ness matrix of a beam with equivalent elastic contribution of the �ller
material can be obtained using the usual variational formulation [3] as

Ke = EI

∫ L

0

d2N(x)

dx2

d2NT (x)

dx2
dx+ k

∫ L

0

N(x)NT (x)dx

=
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2

+
kL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (S4)

For the special case when the there is no elastic �ller material (i.e. k = 0), the sti�ness matrix
derived above approaches to the classical sti�ness matrix of a beam [2, 3].

S1.2. Exact element sti�ness matrix

The cubic polynomials, used as the shape functions above, are not the exact solutions of the
governing di�erential equation (S1). They are exact only when k = 0. The main idea in this
section is to employ shape functions which satisfy the governing di�erential equation exactly. To
obtain the characteristic equation, we consider the response of the form

V (x) = exp [λx] (S5)
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Substituting this in the governing equation (S1) one obtains

EIλ4 + k = 0 or λ4 = − k

EI
(S6)

Solving the above equation, four solutions for λ can be expressed as

λ1,2,3,4 =

(
1√
2
+ i

1√
2

)
4

√
k

EI
,

(
1√
2
− i

1√
2

)
4

√
k

EI
, (S7)

−
(

1√
2
+ i

1√
2

)
4

√
k

EI
,−

(
1√
2
− i

1√
2

)
4

√
k

EI
, (S8)

These can be concisely expressed as

λ1,2,3,4 = (±1± i) b (S9)

where

b =
4

√
k

4EI
(S10)

Next we use these solutions to obtain the shape functions of the beam.

Transcendental shape functions

The transcendental shape functions are obtained in a way that the equation of dynamic equi-
librium is exactly satis�ed at all points within the beam element. Similar to the classical �nite
element method, we assume that the transverse displacement within an element is interpolated
from the nodal displacements as

Ve(x) = NT (x)V̂e (S11)

Here V̂e is the nodal displacement vector N(x) is the vector of shape functions and n = 4 is the
number of the nodal degrees-of-freedom. Suppose the sj(x), j = 1, · · · , 4 are the basis functions
which exactly satisfy equation (S1). We express the shape function vector as a linear combination
of basis vectors so that

N(x) = Γs(x) (S12)

where the matrix Γ depends on the boundary conditions. The elements of s(x) are constituted of
exp[λjx] where the values of λj are obtained from the solution of the characteristics equation as
given in equation (S9).

Based on the solutions in equation (S9), the displacement �eld within the beam element can
be expressed using a linear combination of the basic functions involved in eλjx. Ignoring the signs,
we have

e(1+i)bx = ebxeibx = {cosh(bx) + sinh(bx)} {cos(bx) + i sin(bx)} (S13)

= i sin(bx) sinh(bx)︸ ︷︷ ︸
s1(x)

+i sin(bx) cosh(bx)︸ ︷︷ ︸
s2(x)

+cos(bx) sinh(bx)︸ ︷︷ ︸
s3(x)

+cos(bx) cosh(bx)︸ ︷︷ ︸
s4(x)

(S14)

The transcendental functions sj(x), j = 1, · · · , 4 de�ned above are the exact basis functions which
can be used to represent any displacement �eld within the element. The vector s(x) therefore, is
expressed as

s(x) =


sin(bx) sinh(bx)
sin(bx) cosh(bx)
cos(bx) sinh(bx)
cos(bx) cosh(bx)

 (S15)

The displacement �eld within the element can be expressed as

Ve(x) = s(x)TVe (S16)
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where Ve is the vector of constants, which can be determined from boundary conditions.
The relationship between the shape functions and the boundary conditions can be represented

as in Table S1, where boundary conditions in each column give rise to the corresponding shape
function. Writing equation (S16) for the above four sets of boundary conditions, one obtains
Writing equation (S16) for the above four sets of boundary conditions, one obtains

Table S1: The relationship between the boundary conditions and the shape functions for transverse bending
de�ection of beams.

N1(x, ω) N2(x, ω) N3(x, ω) N4(x, ω)
V (0) 1 0 0 0

dV (x)

dx
(0) 0 1 0 0

V (L) 0 0 1 0
dV (x)

dx
(L) 0 0 0 1

[R]
[
V1

e,V
2
e,V

3
e,V

4
e

]
= I (S17)

where Vk
e is the vector of constants that gives rise to the kth shape function and I is a 4 × 4

identity matrix. The matrix R can be obtained as

R =


s1(0) s2(0) s3(0) s4(0)

ds1(x)

dx
(0)

ds2(x)

dx
(0)

ds3(x)

dx
(0)

ds4(x)

dx
(0)

s1(L) s2(L) s3(L) s4(L)
ds1(x)

dx
(L)

ds2(x)

dx
(L)

ds3(x)

dx
(L)

ds4(x)

dx
(L)



=


0 0 0 1
0 b b 0
sS sC cS cC

cbS + sCb cbC + sSb −sSb+ cbC −sCb+ cbS


(S18)

Here following notations are used to simplify the expressions

C = cosh(bL), c = cos(bL), S = sinh(bL) and s = sin(bL) (S19)

Based on the boundary conditions represented in Table S1 and equation (S17), the shape functions
can be expressed by equation (S12) where

Γ =
[
V1

e,V
2
e,V

3
e,V

4
e

]T
=

[
R−1

]T
(S20)

By obtaining the matrix Γ from the above equation, the shape function vector can be obtained
from equation (S12). After some algebraic simpli�cations, we can represent the transcendental
shape functions as

N1(x, ω)
N2(x, ω)
N3(x, ω)
N4(x, ω)

 =
1

Ab


−b (C2 − c2) b (SC + sc) −b (SC + sc) bA
−SC + sc C2 − 1 −1 + c2 0

2 sSb −b (cS + sC) b (cS + sC) 0
−sC + cS sS −sS 0



sin(bx) sinh(bx)
sin(bx) cosh(bx)
cos(bx) sinh(bx)
cos(bx) cosh(bx)


(S21)

Here the constant A is given by

A = sinh2(bL)− sin2(bL) = S2 − s2 (S22)

and b is de�ned in equation (S10).
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Transcendental element sti�ness matrix

The sti�ness matrix can be developed following the conventional variational formulation [3].
The main di�erence is instead of the classical cubic polynomials as the shape functions, transcen-
dental shape functions in (S21) should be used. It is convenient to have the overall sti�ness matrix
as

De = EIK1e + kK2e (S23)

where

K1e =

∫ L

0

d2N(x, ω)

dx2

d2NT (x, ω)

dx2
dx (S24)

and K2e =

∫ L

0

N(x, ω)NT (x, ω)dx (S25)

Using the expression of b from (S10), we have k = 4b4EI. Substituting this in equation (S23) we
have the transcendental sti�ness matrix

Ke = EI
(
K1e + 4b4K2e

)
(S26)

Using the expressions of the shape functions from the previous subsection, after few algebraic sim-
pli�cations the sti�ness matrix of an individual beam element with equivalent elastic contribution
of the �ller material can be given by the following closed-form expression

De =
2EIb

(S2 − s2)


2 b2 (SC + sc) b (C2 − c2) −2 b2 (cS + sC) 2 sSb
b (C2 − c2) SC − sc −2 sSb sC − cS

−2 b2 (cS + sC) −2 sSb 2 b2 (SC + sc) −b (C2 − c2)
2 sSb sC − cS −b (C2 − c2) SC − sc

 (S27)

The elements of this matrix are transcendental functions of (bL).

S2. E�ective elastic moduli of in-�lled lattices in terms of beam sti�ness matrix

The e�ective elastic moduli of hexagonal honeycomb-like cellular materials without any in�ll
was obtained in published literature [4] as

E1GA
= E

(
t

l

)3
cos θ

(h
l
+ sin θ) sin2 θ

(S28)

E2GA
= E

(
t

l

)3 (h
l
+ sin θ)

cos3 θ
(S29)

ν12GA
=

cos2 θ

(h
l
+ sin θ) sin θ

(S30)

ν21GA
=

(h
l
+ sin θ) sin θ

cos2 θ
(S31)

and G12GA
= E

(
t

l

)3
(h/l + sin θ)(

h
l

)2
(1 + 2h

l
) cos θ

(S32)

Our aim in this section is to obtain similar closed-form expressions when the lattices is �lled with
an elastic material. In the preceding section, we have derived the element sti�ness matrices for a
single beam with the equivalent e�ect of space-�lling based on two di�erent methods (exact element
sti�ness and conventional sti�ness). From these sti�ness matrices, analytical expressions of the
in-plane elastic moduli are obtained in this section. For the purpose of deriving such expressions
for the space-�lled lattices, the element sti�ness matrix is re-written in the following general form
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Fig. S1: Mechanics of �lled honeycombs. For analysing the space-�lled honeycombs we consider the idealized
unit cells as shown in �gure 1(CII). Note that the connecting members of an idealized unit cell consists of a beam
(cell wall) and an equivalent elastic contribution of the in�ll material. (A) Deformed shape of idealized honeycombs
under the application of stress in direction - 1. In the present analysis, we consider direction-1 in the direction
perpendicular to the axis of the vertical member. Direction- 2 is perpendicular to direction - 1. Material of the cell
walls and the equivalent elastic contribution of the in�ll are indicated using two di�erent colours in �gures 2(A, C,
E). However, for better understanding of the mechanics, we only schematically show the outlines of the deformed
beams in �gures 2(B, D, E). It should be kept in mind that the con�guration of these schematic beam elements are
same as shown in �gure 2(F). (B) Free body diagram of a slant member, the deformation of which predominantly
contributes to the in-plane Young's moduli of the lattice structure. (C) Deformed shape of idealized honeycombs
under the application of stress in direction - 2. (D) Free body diagram of a slant member that predominantly
contributes to Young's modulus in direction - 2. (E) Deformed shape of idealized honeycombs under the application
of in-plane shear stress. (F) Free body diagram of the vertical and slant members that contribute to the in-plane
shear modulus. Note here that the deformation mechanics of the idealized beam members in the free-body diagrams
(B, D and F) are governed by the compound e�ect of the sti�ness contributions of the cell wall as well as the
equivalent elastic contribution of the in�ll.

De = [Aij]4×4 (S33)
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where i, j = 1, 2, 3, 4. The terms of the above matrix have the expressions corresponding to the
terms of equation (S27) (for exact element sti�ness matrix) and equation (S4) (for conventional
sti�ness matrix).

S2.1. Derivation of Young's modulus E1

One cell wall is considered for deriving the expression of Young's modulus E1 under the appli-
cation of stress in direction - 1 as shown in �gure S1(A-B) [4]. In the free body diagram of the slant
member in �gure S1(B), the rotational displacements of both ends and the bending displacement
of one end is considered as zero. To satisfy the equilibrium of forces in direction 2, the force C is
needed to be zero. Thus from the general sti�ness matrix presented in equation (S33), the bending
de�ection of one end of the slant member with respect to the other end can be written as

δ =
P sin θ

A33

(S34)

where P = σ1(h + l sin θ)b̄ (geometric dimensions of a single honeycomb cell is shown in �gure
1(B-C) of the main paper. b̄ is the width of the beam i.e. thickness of the honeycomb sheet). The
component of δ in direction 1 is δ sin θ. Thus the strain component in direction - 1 due to applied
stress in the same direction can be expressed as

ϵ11 =
δ sin θ

l cos θ

=
σ1(h+ l sin θ)b̄ sin2 θ

A33l cos θ

(S35)

Using this, the Young's modulus E1 can be explicitly expresses in terms of the A33 element of the
sti�ness matrix as

E1 =
σ1

ϵ11
=

A33l cos θ

(h+ l sin θ)b̄ sin2 θ
(S36)

S2.2. Derivation of Young's modulus E2

Similar to the derivation of E1, the bending deformation of one end of the slant beam under
the application of σ2 (as shown in �gure S1(C-D)) can be expressed as

δ =
W cos θ

A33

(S37)

where W = σ2lb̄ cos θ. The expression for strain component in direction 2 due to application of
stress in the same direction can be obtained as

ϵ22 =
δ cos θ

(h+ l sin θ)

=
σ2lb̄ cos

3 θ

A33(h+ l sin θ)

(S38)

Using this, like the previous subsection, the Young's modulus E2 can also be explicitly expresses
in terms of the A33 element of the sti�ness matrix as

E2 =
σ2

ϵ22
=

A33(h+ l sin θ)

lb̄ cos3 θ
=

A33

b̄

(h
l
+ sin θ)

cos3 θ
(S39)
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S2.3. Derivation of Poisson's ratios ν12 and ν21
Poisson's ratio is de�ned as the negative ratio of strains normal to, and parallel to, the loading

direction. Poisson's ratio ν12 can be obtained under loading in direction 1 as

ϵ12 = −ϵ21
ϵ11

(S40)

where ϵ11 and ϵ21 represent the strains in direction 1 and direction 2 respectively, under the loading
in direction 1. The strain ϵ11 can be obtained from the �rst part of Equation (S35), while ϵ21 can
be written as

ϵ21 =
−δ cos θ

(h+ l sin θ)
(S41)

Expression for Poisson's ratio due to loading in direction 1 can be expressed as

ν12 =
cos2 θ

(η + sin θ) sin θ
(S42)

Similarly the expression for Poisson's ratio due to loading in direction - 2 can be expressed as

ν21 =
(η + sin θ) sin θ

cos2 θ
(S43)

S2.4. Derivation of shear modulus G12

For deriving the expression of G12, two members of the honeycomb cell are needed to be consid-

ered (vertical member with length
h

2
and a slant member with length l) as shown in �gure S1(E-F).

The points A, B and C will not have any relative movement due to the symmetrical structure.
The total shear de�ection us consists of two components, bending de�ection of the member BD
and its de�ection due to rotation of joint B.

It can be noted here that the elements of the general sti�ness matrix (refer to equation(S33))
will be di�erent for the vertical member and the slant member due to their di�erent lengths. Using
the sti�ness components of the general sti�ness matrix, the bending deformation of point D with
respect to point B in direction 1 can be obtained as

δb =
F(

Av
33 −

Av
34A

v
43

Av
44

) (S44)

where F = 2τ lb̄ cos θ. The superscript v in the elements of the sti�ness matrix is used to indicate
the sti�ness element corresponding to the vertical member.

From the free body diagram presented in �gure S1(F),

M =
Fh

4
(S45)

On the basis of equation (S33), de�ection of the end B with respect to the end C due to application
of moment M at the end B is given as

δr =
M

As
43

(S46)

where the superscript s in A43 is used to indicate the sti�ness element corresponding to the slant
member. Thus the rotation of joint B can be expressed as

ϕ =
δr
l

=
Fh

4lAs
43

(S47)
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Total shear deformation under the application of shear stress τ can be expressed as

us =
1

2
ϕh+ δb

=
Fh2

8lAs
43

+
F(

Av
33 −

Av
34A

v
43

Av
44

) (S48)

The shear strain is given by

γ =
2us

(h+ l sin θ)

=
F

(h+ l sin θ)

 h2

4lAs
43

+
2(

Av
33 −

Av
34A

v
43

Av
44

)


=
2τ lb̄ cos θ

(h+ l sin θ)

 h2

4lAs
43

+
2(

Av
33 −

Av
34A

v
43

Av
44

)


(S49)

Due to the symmetry of the element sti�ness matrix Av
34 = Av

43. Using this, we can further simplify
to obtain

G12 =
τ

γ
=

(h
l
+ sin θ)

b̄ cos θ

1(
h2

2lAs
43
+

4Av
44

Av
44A

v
33 − (Av

34)
2

) (S50)

Equations S36, S39 and S50 are the closed-form expressions of two Young's moduli and shear
modulus in terms of elements of the general sti�ness matrix of a beam. We will utilise these
expressions to obtain the elastic moduli in terms of the geometric and intrinsic material parameters
for the case of conventional sti�ness matrix and the transcendental sti�ness matrix. Equations S42
and S43 represent the Poisson's ratios, where we notice that these quantities are not dependent
on the elements of the beam sti�ness matrix.

S3. Supplementary numerical results

In this section we present additional numerical results for the �ve elastic moduli to investigate
the e�ects of geometric and intrinsic material parameters considering auxetic and non-auxetic
con�gurations. Figure S2 shows variation of Young's moduli with α along with in�ll sti�ness and
γ. Note that the non-dimensional ratio of Young's modulus presented here are not dependent on
η and cell angle θ. Thus the numerical results are applicable for any values of η and di�erent
auxetic and non-auxetic con�gurations. Figure S3 shows variation of in-plane shear modulus with
α and η along with in�ll sti�ness and γ. Note that the non-dimensional ratio of shear modulus
presented here are not dependent on cell angle θ. Thus the numerical results are applicable
for di�erent auxetic and non-auxetic con�gurations. The contour plots reveal that while the
trends of variation remains similar, the values of elastic moduli varies signi�cantly with geometric
and intrinsic material parameters. Further, the elastic moduli can be modulated and enhanced
signi�cantly as a function of the in�ll sti�ness even with low-density �ller materials.

As noted in the preceding section, the in-plane Poisson's ratios are not dependent on the
components of the beam sti�ness matrix, and thus the in�ll material. Variations of Poisson's
ratios are shown in �gure S4 considering auxetic and non-auxetic con�gurations. The feasibility
of manufacturing the auxetic structures is taken into account while presenting the results as (refer
to �gure 1(C) of the main paper)

h/l ≥ 2 sin θ (S51)

9



Fig. S2: The interaction e�ect of �ller sti�ness and height ratios on the Young's moduli. Normalised
Young's moduli Ei/EiGA

(where i = 1, 2) are plotted as a function of the �ller sti�ness ratio κ = k/E and the
height ratio γ = b̄/l. Three values of the thickness ratio α = 0.01, 0.05 and 0.1 are considered. Note that although
the expressions of E1 and E2 are di�erent, the ratios E1/E1GA and E2/E2GA are the same. Thus we present only
one plot that represents the results of both the Young's moduli. The actual value of the two Young's moduli, which
are di�erent, can be obtained by multiplying the presented numerical values by the corresponding Young's modulus
of un�lled lattices. The subscript GA is used to indicate the elastic moduli obtained based on the case of un�lled
honeycomb lattices [4]. Note that Ei/EiGA

is not dependent on η, meaning these results are applicable to any value
of η. (A) Thickness ratio α = 0.01 (B) Thickness ratio α = 0.05 (C) Thickness ratio α = 0.1.

Fig. S3: The interaction e�ect of �ller sti�ness and height ratios on the in-plane shear modulus.
Normalised shear modulus G12/G12GA

is plotted as a function of the �ller sti�ness ratio κ = k/E and the height ratio
γ = b̄/l. Three values of the thickness ratio α = 0.01, 0.05 and 0.1, and two values of η = h/l = 1, 2 are considered.
The subscript GA is used to indicate the elastic moduli obtained based on the case of un�lled honeycomb lattices
[4]. (A, D) Microstructural con�guration: α = 0.01 with η = 1 and η = 2. (B, E) Microstructural con�guration:
α = 0.05 with η = 1 and η = 2. (C, F) Microstructural con�guration: α = 0.1 with η = 1 and η = 2.

Note that the same inequality is also applicable to the results presented in �gures S2 and S3 for
the Young's moduli and shear modulus.
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Fig. S4: The interaction e�ect of cell wall angle and height ratios on the in-plane Poisson's ratios.
The Poisson's ratios are not dependent upon the normalized �ller sti�ness ratio κ = k/E. (A, C) Poisson's ratios,
ν12 and ν21 for auxetic lattices. (B, D) Poisson's ratios, ν12 and ν21 for non-auxetic lattices.
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