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A B S T R A C T

Traditionally lattice materials are made of a network of beams in two and three dimensions with majority
of the lattice volume being void space. Recently researchers have started exploring ways to exploit this void
space for multi-physical property modulation of lattices such as global mechanical behaviour including different
elastic moduli, wave propagation, vibration, impact and acoustic features. The elastic moduli are of crucial
importance to ensure the structural viability of various multi-functional devices and systems where a space-
filled lattice material could potentially be used. Here we develop closed-form analytical expressions for the
effective elastic moduli of space-filled lattices based on an exact stiffness matrix approach coupled with the
unit cell method, wherein transcendental shape functions are used to obtain exact solutions of the underlying
differential equation. This can be viewed as an accurate multi-material based generalisation of the classical
formulae for elastic moduli of honeycombs. Numerical results show that the effective in-plane elastic moduli
can increase by orders of magnitude with a relatively lower infill stiffness (∼10%). This gives an exceptional
opportunity to engineer multi-material lattices with optimal specific stiffness along with characterising the
mechanical properties of a multitude of lattice-like artificial and naturally occurring structural forms with
space filling.
1. Introduction

Two and three dimensional lattice-like periodic microstructures pro-
vide an unprecedented opportunity to artificially engineer the global
(i.e. effective) mechanical properties of materials based on multi-
functional bespoke demands of modern structural systems by identi-
fying (or designing) the intrinsic material and micro-scale structural
topology. Mechanical properties of lattice-like honeycomb structures
have received tremendous attention from the scientific community over
the last few decades. Traditionally such lattices are made of a network
of beams in two and three dimensions with majority of the volume
of the lattice structure being void space. Recently researchers have
started exploring ways to exploit this void space for multi-functional
property modulation of lattices. For example, if we could have a
filled multi-material lattice structure, the global mechanical behaviour
including different elastic moduli, wave propagation, vibration, impact
and acoustic features can be simultaneously modulated in a substan-
tially expanded design space with additional parameters related to the
stiffness, mass and damping of the filler, leading to exciting multi-
functional properties. It may be noted that the elastic moduli are always
of crucial importance to ensure the structural viability of various multi-
functional devices and systems where a space-filled lattice material
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could potentially be used. In this article, we aim to develop efficient
analytical expressions for the effective in-plane elastic moduli of such
space-filled lattices. An explicit theoretical characterisation of the elas-
tic properties along with necessary physical insights underpinning the
configuration space of multi-material and geometric parameters will
accelerate potential exploitation of filled lattices in various engineered
multi-functional materials and structures across different length-scales
with advantage of an expanded design space.

In microstructured lattice materials the tailorable effective macro-
scale mechanical properties (such as equivalent elastic moduli, de-
formation, stability, energy absorption, vibration, energy harvesting,
impact and wave propagation characteristics with programmable fea-
tures) are defined by the microstructural geometric configuration along
with the intrinsic material properties of constituent members. Naturally
occurring monolithic materials cannot exhibit one or more of the
fascinating multi-functional properties like negative Poisson’s ratio,
extremely lightweight characteristics, negative stiffness, pentamode
material characteristics (meta-fluid) and a weighted combination of
various such unusual (or usual) properties, which can effectively be
obtained by intelligent and intuitive microstructural designs [1–7]. For
example, the conventional positive effective Poisson’s ratio (which is
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Fig. 1. Microstructural details of space-filled honeycombs. (A) Typical representation of a hexagonal filled honeycomb structure. Two materials (materials of the honeycomb
cell walls and the filler) involved in the periodic lattice are indicated using different colours. (B) Three dimensional view of the space-filled multi-material lattice structure. (C)
Unit cell of the periodic structure along with microstructural geometry. Here we show both the actual unit cell and the idealised unit cell. The figure C(I) shows the actual unit
cell with filler material. The idealised unit cell, which is used in the current analysis, is shown in figure C(II). In this idealised unit cell, effect of the filler material is replaced by
an equivalent elastic contribution. (D) Typical representation of a general beam element of length 𝐿 where each node has two degrees of freedom. The idealisation of the effect
of filler material on the cell walls (i.e. the beam) is shown using the equivalent elastic contribution along the length of the beam. (E–G) The concept of modulating Poisson’s ratio
based on intuitive design of microstructural geometry (primarily, cell angle 𝜃). Three typical microstructures are shown here that can exhibit positive (E), negative (F) and zero
(G) Poisson’s ratios. (H) Presence of hexagonal lattice structures across the length-scales (nano to macro) in natural and artificial systems. This shows the significance of analysing
such lattices for new material development as well as characterisation of existing materials and structural systems.
usually exhibited by normal materials) in hexagonal lattice microstruc-
tures can be converted to negative, or zero by intuitively designing
the hexagonal unit cell [8,9], as depicted in Fig. 1(E–G). Besides
static properties [10], various unusual yet critically useful effective
properties can be realised in engineered microstructures under dynamic
condition, such as negative bulk modulus [11], negative mass den-
sity [12], negative Young’s modulus [13], negative shear modulus [14],
band structure modulation [15] and elastic cloaks [16]. Computational
homogenisation has been widely adopted to report the effective lattice-
level properties of metamaterials [17–23]. Recent developments in this
filed include active and on-demand programming of effective elastic
properties by exploiting stimuli-sensitive intrinsic materials [24,25].
2

These novel class of artificially engineered metamaterials with tai-
lorable and programmable macroscale properties have extraordinary
potential for applications in advanced and futuristic multi-functional
engineering systems.

Normally two material properties (or more, in case of multi-material
lattices) are involved at two widely apart length-scales in lattice meta-
materials. One is the intrinsic material(s) (more than one such material
may be involved in multi-material microstructural topologies) which
is actually the material of the constituting elements (such as the con-
necting beam or cell wall members shown in Fig. 1(D)) at micro-scale.
Materials at this relatively lower length scale (often referred as the
microscale) are either monolithic materials or different alloys and com-
pounds. The chemical composition, atomic and molecular structure of



Composites Communications 42 (2023) 101656T. Mukhopadhyay et al.
these intrinsic materials decide the mechanical properties at this length
scale. The second set of material properties (at a relatively much higher
length scale) correspond to the effective macro-scale homogenised
behaviour of the entire lattice. Such macro-scale properties depend on
the intrinsic lower-scale (micro) material properties and the lower scale
microstructural topology (microstructural geometry) of the lattice. The
compound effect of these two factors leads to a tremendous opportunity
of achieving unprecedented effective mechanical and multi-physical
properties that are not exhibited by conventional engineering materials.
Though aperiodic, quasi-periodic and random microstructural topolo-
gies have been proposed, periodic lattice-like forms are predominant in
the literature of metamaterials [26,27]. A unit cell (analogous to repre-
sentative volume element) based approach is adopted to model periodic
microstructures with appropriate boundary conditions leading to a set
of effective elastic moduli at macro-scale such that the lattice can be
considered as an equivalent continuum [28–33]. Edge effects [34] can
be neglected in the such a unit cell based approach of evaluating the
effective elastic properties with the assumption of a substantially high
number of cells. It is a valid assumption in the design of lattice materials
and widely followed in the literature for obtaining equivalent global
properties such as effective elastic moduli [29].

The fundamental mechanics for lattices (derived based on the
unit cells with periodic boundary condition) being normally scale-
independent, the scientific developments concerning the mechanics of
deformation are applicable (directly or indirectly) to a broad range of
periodic structural forms across nano to micro and macro scales. 2D
lattices of hexagonal form are found across nano to micro and macro
scales in various natural and artificial systems abundantly [27,35–37],
as depicted in Fig. 1(H). Moreover, hexagonal lattices can effectively be
altered to rectangular, rhombic and auxetic configurations by taking
the geometric parameters appropriately. Such widespread relevance
and applicability of hexagonal lattices have motivated our current focus
on this form of microstructure while adopting a lattice geometry to
explain the concept of space-filling (including analytical derivation
and numerical results). Though we would focus here on hexagonal
lattices, the basic concepts and approach of analytical derivation are
generic and they would be readily applicable (or extendable, albeit with
different forms of final closed-form expressions) to various other 2D and
3D lattice geometries.

Most research activities for the development of mechanical meta-
materials concentrate on the microstructural topologies for modulation
of mechanical and multi-physical properties, rather than the intrinsic
materials at the lower length-scale. Thus, one single material that
is suitable for manufacturing and has adequate physical properties
according to the intended application, is traditionally chosen as the
constituent intrinsic material [38]. However, the recent tremendous
advancements in manufacturing microstructures with multi-material
configurations based on additive manufacturing [39–41] have created a
strong rationale for developing a new class of metamaterial, where two
or more intrinsic materials at the lower scale could be adopted to form
the unit cell. Such multi-material lattices would expand the scope of
multi-functional design significantly. Majority of the research related
to multi-functional metamaterials adopt inverse design approach to
identify the volume fractions of two or more intrinsic materials based
on numerical algorithms [42,43]. Multi-material lattice microstructures
have shown exceptional promise for achieving unusual multi-physical
properties like zero and negative thermal expansion coefficient along
with modulation of other mechanical properties [44,45]. The current
focus of space-filled lattices is a special kind of multi-material periodic
topology, where the intention is to exploit the void space in tradi-
tional lattices for enriching multifunctional properties. In principle,
multimaterial topologies could have two different configurations for
developing metamaterials. In the first microstructural configuration,
the periodic unit cell have multiple intrinsic materials and the unit
cell is tessellated in the 2D (or 3D) space to form a lattice. In the
3

second configuration, the lattice is formed using two or more unit cells
with different intrinsic material properties. The conventional unit cell
approach cannot be adopted for analysing the second form of multi-
material lattice as it may not lead to a truly periodic microstructure.
The periodicity can remain unaltered (and subsequently a unit cell
based approach is applicable) in the first form of multi-material lattice,
which is the central focus of the current investigation.

We aim to investigate the effect of space-filling on the elastic
moduli of honeycomb lattices with the notion of possible exploitation
of the void space for multi-functional property augmentation. Elastic
moduli of space-filled lattice structures are of quite practical relevance,
such as foam-filled honeycombs applied in various sandwich panels.
Moreover, the biological systems which adopt a hexagonal lattice-
like structure at micro-scale are often found to be filled with fluids,
fibres or other bulk materials. In these systems, the inner space-filling
or foam-like core (with much lesser effective elastic moduli than the
celle walls) behaves like an equivalent elastic contribution throughout
the length of honeycomb cell walls, as depicted in Fig. 1(C–D). We
would develop analytical expressions for the effective in-plane elastic
moduli of space-filled lattices based on an exact element stiffness matrix
approach coupled with the unit cell method, wherein transcendental
shape functions would be used to satisfy the equilibrium at all points
of the structural domain. For establishing the analytical model, the
mechanical equivalence of space-filled lattices as equivalent network
of beams under the presence of the equivalent elastic contribution of
the filler material will be utilised. The results would be compared to the
effective elastic moduli obtained from the traditional stiffness matrices
of beam elements with the equivalent elastic contribution of filler
material. Further, separate finite element simulations would be carried
out to validate the analytical expressions for space-filled lattices.

In the following sections we systematically present the derivation
for elastic moduli of space-filled lattices based on the stiffness ma-
trix of a beam element with the equivalent elastic contribution of
filler material. Two different methods are followed for deriving the
stiffness matrix of individual beam elements based on transcendental
shape functions and conventional shape functions. Subsequent sections
present numerical quantification to demonstrate the effect of space
filling on the elastic moduli, followed by perspective and concluding
remarks.

2. Mechanics of space-filled lattices

Deformation of the overall lattice microstructure depends on the
mechanical behaviour of individual beams which make up the tessellat-
ing hexagonal unit cells (refer to Fig. 1(A–D)). Due to the elastic filling,
each beam can be assumed to be acted upon by an equivalent elastic
contribution of the filler material. A pictorial depiction of the beam
along with the degrees of freedom at each node is provided in Fig. 1(D).
Here our workflow is first to obtain the stiffness matrix of such a beam
element (with equivalent contribution of filler) following two different
approaches. Once this local beam-level property is obtained, a unit
cell-based homogenisation will be employed to characterise the global
elastic properties of the entire space-filled lattice. In this context it can
be noted that the determination of the equivalent filler modulus (as
presented by 𝑘 in the subsequent derivations) is an important aspect.
Two cases may arise concerning the forward and inverse problems
of space-filled lattices. (a) For designing novel space-filled bi-material
lattices (inverse problem), the elastic properties of both the stiffer
honeycomb cell walls and less-stiff filler material (i.e. the two intrinsic
materials) can be evaluated based on conventional mechanical testing
of bulk samples of the respective materials. (b) In case of characterising
the effective elastic properties of naturally occurring and artificial
lattice structures with space-filling (forward problem), the individual
elastic properties of the cell wall and filler material should be known a
priori. For various mechanical systems such as foam-filled honeycombs,
it is quite straightforward to evaluate the elastic properties of the two

constituent intrinsic materials. However, it would involve advanced



Composites Communications 42 (2023) 101656T. Mukhopadhyay et al.

d
[

w
b
m

𝐃

experimental techniques to characterise the intrinsic material proper-
ties at lower length scales such as space-filled micro-lattices in various
biological systems.

2.1. Element stiffness matrices

The governing equation of transverse deflection 𝑉 (𝑥) of a beam can
be expressed as

𝐸𝐼
𝑑4𝑉 (𝑥)
𝑑𝑥4

+ 𝑘𝑉 (𝑥) = 𝑓 (𝑥) (1)

Refer to the supplementary material (section S1.1) for further details on
the above differential equation. Based on Eq. (1), stiffness matrix of an
equivalent beam element with the contribution from elastic filler ma-
terial is derived here following two different approaches: conventional
element stiffness matrix approach and exact element stiffness matrix
approach (the accuracy of these two approaches would be discussed
at a later stage of this manuscript). We assume that the beams under
consideration follow the Euler–Bernoulli hypotheses and the elastic
infill is modelled as an equivalent elastic contribution of the filler
material throughout the beam length [46]. The conventional element
stiffness matrix of a beam with equivalent elastic contribution of the
filler material can be obtained as (refer to the supplementary material
section S1.1 for detailed derivation)

𝐊𝑒 = 𝐸𝐼 ∫

𝐿

0

𝑑2𝐍(𝑥)
𝑑𝑥2

𝑑2𝐍𝑇 (𝑥)
𝑑𝑥2

d𝑥 + 𝑘∫

𝐿

0
𝐍(𝑥)𝐍𝑇 (𝑥)d𝑥

= 𝐸𝐼
𝐿3

⎡

⎢

⎢

⎢

⎢

⎣

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿2

6𝐿 2𝐿2 −6𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑘𝐿
420

⎡

⎢

⎢

⎢

⎢

⎣

156 22𝐿 54 −13𝐿
22𝐿 4𝐿2 13𝐿 −3𝐿2

54 13𝐿 156 −22𝐿
−13𝐿 −3𝐿2 −22𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(2)

Here 𝐿 is the length of the beam element (i.e. cell wall of the honey-
comb). 𝐸 represents intrinsic Young’s modulus of the cell wall members
and 𝑘 is the equivalent filler modulus. 𝐼 represents the second moment
of area for in-plane bending of the cell walls. For the special case
when there is no elastic filler material (i.e. 𝑘 = 0), the stiffness matrix
erived above approaches to the classical stiffness matrix of a beam
47,48].

The exact element stiffness matrix of an individual beam element
ith equivalent elastic contribution of the filler material can be given
y the following closed-form expression (refer to the supplementary
aterial section S1.2 for detailed derivation)

𝑒 =
2𝐸𝐼𝑏

(𝑆2 − 𝑠2)

×

⎡

⎢

⎢

⎢

⎢

⎣

2 𝑏2 (𝑆𝐶 + 𝑠𝑐) 𝑏
(

𝐶2 − 𝑐2
)

−2 𝑏2 (𝑐𝑆 + 𝑠𝐶) 2 𝑠𝑆𝑏
𝑏
(

𝐶2 − 𝑐2
)

𝑆𝐶 − 𝑠𝑐 −2 𝑠𝑆𝑏 𝑠𝐶 − 𝑐𝑆
−2 𝑏2 (𝑐𝑆 + 𝑠𝐶) −2 𝑠𝑆𝑏 2 𝑏2 (𝑆𝐶 + 𝑠𝑐) −𝑏

(

𝐶2 − 𝑐2
)

2 𝑠𝑆𝑏 𝑠𝐶 − 𝑐𝑆 −𝑏
(

𝐶2 − 𝑐2
)

𝑆𝐶 − 𝑠𝑐

⎤

⎥

⎥

⎥

⎥

⎦

(3)

Elements of 𝐃𝑒 are transcendental functions of (𝑏𝐿), where 𝐶 =
cosh(𝑏𝐿), 𝑐 = cos(𝑏𝐿), 𝑆 = sinh(𝑏𝐿), 𝑠 = sin(𝑏𝐿) and 𝑏 = 4

√

𝑘
4𝐸𝐼 (refer

to the supplementary material for further details).
The conventional stiffness matrix given in Eq. (2) appears to look

different from the exact transcendental stiffness matrix in Eq. (3). To
understand the nature of this visible difference, each element of the
transcendental stiffness matrix is expanded in a Taylor series about
𝑘 = 0. Substituting the expression of 𝑏 in Eq. (3) and differentiating all
the elements with respect to 𝑘, after simplifications we have the series
expansion form
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𝐃𝑒 =
𝐸𝐼
𝐿3

⎡

⎢

⎢

⎢

⎢

⎣

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿2

6𝐿 2𝐿2 −6𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝐿
420

⎡

⎢

⎢

⎢

⎢

⎣

156 22𝐿 54 −13𝐿
22𝐿 4𝐿2 13𝐿 −3𝐿2

54 13𝐿 156 −22𝐿
−13𝐿 −3𝐿2 −22𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑘

+ 𝐿5

69854400𝐸𝐼

⎡

⎢

⎢

⎢

⎢

⎣

−25488 −5352𝐿 −23022 5043𝐿
−5352𝐿 −1136𝐿2 −5043𝐿 1097𝐿2

−23022 −5043𝐿 −25488 5352𝐿
5043𝐿 1097𝐿2 5352𝐿 −1136𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑘2

+ 𝐿9

762810048000𝐸𝐼2

×

⎡

⎢

⎢

⎢

⎢

⎣

28960 113504𝐿 522090 −112631𝐿
113504𝐿 24384𝐿2 112631𝐿 −24273𝐿2

522090 112631𝐿 528960 −113504𝐿
−112631𝐿 −24273𝐿2 −113504𝐿 24384𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

𝑘3

+ 𝑂(𝑘4) +⋯

(4)

It is interesting to note that the first two terms of this expansion
are exactly the same as the conventional stiffness matrix in Eq. (2).
The higher-order terms ‘included’ in the transcendental stiffness matrix
account for the effect of elastic filler in an exact manner. Use of the
conventional stiffness matrix would, therefore, be inaccurate for higher
values of filler stiffness 𝑘 unless the length of an element is made
smaller. This fact gives rise to the significant advantage of using the
transcendental stiffness matrix in the context of cellular lattice struc-
tures. We can use only one ‘element’ to represent the exact mechanical
behaviour of the constituent parts of a unit cell. As no discretisation
is necessary, it is possible to avoid finite element based numerical
calculations for a unit cell. This, in turn, helps us to obtain efficient
and exact closed-form expression of the equivalent elastic moduli of
the entire lattice, as explained in the next section.

2.2. Effective elastic moduli of space-filled lattices

The effective elastic moduli of hexagonal honeycomb-like cellular
materials without any infill was obtained in published literature [29],
as presented in the supplementary material (refer to equations S28–
S32) for ready reference. Our aim in this section is to obtain similar
closed-form expressions when the lattices is filled with an elastic ma-
terial. In the preceding section, we have derived the element stiffness
matrices for a single beam with the equivalent effect of space-filling
based on two different methods (exact element stiffness and conven-
tional stiffness). From these stiffness matrices, analytical expressions of
the in-plane elastic moduli are obtained in this section (refer to figure
S1 in the supplementary material for the unit cell deformation mechan-
ics and detailed derivation of the elastic moduli). For the purpose of
deriving such expressions concerning space-filled lattices, the element
stiffness matrix is re-written in the following general form

𝐃𝑒 = [𝐴𝑖𝑗 ]4×4 (5)

where 𝑖, 𝑗 = 1, 2, 3, 4. Terms of the above matrix have the expressions
corresponding to Eq. (3) (for exact element stiffness matrix) and Eq. (2)
(for conventional stiffness matrix).

2.2.1. Young’s modulus 𝐸1
Effective Young’s modulus 𝐸1 of the space-filled lattice can be

explicitly expressed in terms of the 𝐴33 element of the stiffness ma-
trix as (refer to the supplementary material section S2.1 for detailed
derivation)

𝐸1 =
𝐴33𝑙 cos 𝜃 (6)
(ℎ + 𝑙 sin 𝜃)�̄� sin2 𝜃
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If the conventional element stiffness matrix is used, the expression
of 𝐴33, in view of Eq. (5), can be obtained from Eq. (2) as

33 =
12𝐸𝐼
𝑙3

+ 13𝑘𝑙
35

(7)

n the other hand, if the transcendental stiffness matrix is used, the
xpression of 𝐴33 can be obtained from Eq. (3) as

33 =
2𝐸𝐼𝑏

(𝑆2 − 𝑠2)
2 𝑏2 (𝑆𝐶 + 𝑠𝑐) =

4𝐸𝐼𝑏3 (𝑆𝐶 + 𝑠𝑐)
(𝑆2 − 𝑠2)

(8)

Replacing the expression for 𝐴33 and 𝐼 = �̄�𝑡3

12
, the Young’s modulus

𝐸1 while using the conventional stiffness matrix can be obtained as

𝐸1 =
𝐴33𝑙 cos 𝜃

(ℎ + 𝑙 sin 𝜃)�̄� sin2 𝜃
=

𝐴33

�̄�
cos 𝜃

( ℎ𝑙 + sin 𝜃) sin2 𝜃

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐸
( 𝑡
𝑙

)3
+ 𝑘

( 13
35

)

(

𝑙
�̄�

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
contribution of filler stiffness

⎞

⎟

⎟

⎟

⎟

⎟

⎠

cos 𝜃
( ℎ𝑙 + sin 𝜃) sin2 𝜃

(9)

ere 𝐸 is the intrinsic elastic modulus of the honeycomb material and
is the thickness of honeycomb cell wall. In the absence of the elastic

iller, we have 𝑘 = 0. In that case, the above expression reduces to the
xactly same expression given by Gibson and Ashby [29].

Replacing the expression for 𝐴33 using the transcendental stiffness
atrix and 𝐼 = �̄�𝑡3

12
, the Young’s modulus 𝐸1 can be obtained as

1 =
𝜎1
𝜖11

=
𝐴33

�̄�
cos 𝜃

( ℎ𝑙 + sin 𝜃) sin2 𝜃

=
𝐸(𝑏𝑡)3 (sinh(𝑏𝑙) cosh(𝑏𝑙) + sin(𝑏𝑙) cos(𝑏𝑙))

3
(

sinh2(𝑏𝑙) − sin2(𝑏𝑙)
)

cos 𝜃
( ℎ𝑙 + sin 𝜃) sin2 𝜃

(10)

It is useful to establish a direct relationship between two expressions
of 𝐸1 given by Eqs. (9) and (10). Substituting the value of 𝑏 and
xpanding 𝐴33 (Eq. (8)) in Taylor series about 𝑘 = 0 we have

𝐴33 =
4𝐸𝐼𝑏3 (𝑆𝐶 + 𝑠𝑐)

(𝑆2 − 𝑠2)

= 12 𝐸𝐼
𝑙3

+ 13
35

𝑙𝑘 − 59
161700

𝑙5𝑘2

𝐸𝐼
+ 551

794593800
𝑙9𝑘3

𝐸𝐼2
+ 𝑂(𝑘4) +⋯

(11)

Substituting this expansion in Eq. (10) and reorganising different terms,
we have the Young’s modulus 𝐸1 in a series form

𝐸1 =
(

𝐸
( 𝑡
𝑙

)3
+ 𝑘

( 13
35

)

(

𝑙
�̄�

)

− 𝑘 59
13475

( 𝑡
𝑙

)3
(

𝑙
�̄�

)2
( 𝑘
𝐸

)

+𝑘 1102
11036025

( 𝑡
𝑙

)6
(

𝑙
�̄�

)3
( 𝑘
𝐸

)2
+ 𝑂

( 𝑘
𝐸

)3
+⋯

)

cos 𝜃
( ℎ𝑙 + sin 𝜃) sin2 𝜃

(12)

The first two terms of this series is exactly the same as obtained in
equation (9) using the conventional stiffness matrix. The higher-order
terms in the above expression depend on the non-dimensional ratios 𝑡

𝑙 ,
𝑙
�̄� and 𝑘

𝐸 . In particular, if the value of the filler stiffness 𝑘 becomes com-
paratively higher with respect to the elastic modulus of the honeycomb
material 𝐸, the higher-order terms could be significant. Therefore, Eq.
(10) naturally takes into account all possible values the filler stiffness,
while Eq. (9) can be viewed as a two-term approximation. Finally, it can
be noted that the classical result of Gibson and Ashby [29] without the
filler stiffness is the one-term approximation of the series in Eq. (12).

In order to obtain physical insights from the expressions, it useful
5

to view the results in terms of non-dimensional parameters describing
the system. We introduce geometric non-dimensional ratios 𝛼, 𝜂 and 𝛾
as

𝛼 = 𝑡
𝑙
, 𝜂 = ℎ

𝑙
and 𝛾 = �̄�

𝑙
(13)

For the stiffness of the filler material, the following non-dimensional
ratio has been introduced

𝜅 = 𝑘
𝐸

(14)

Using these, for the case of employing the conventional stiffness matrix
in Eq. (2), the equivalent modulus 𝐸1 is obtained by rewriting (9) as

𝐸1 = 𝐸
(

𝛼3 + 13
35

𝜅
𝛾

)

cos 𝜃
(𝜂 + sin 𝜃) sin2 𝜃

(15)

hen the transcendental stiffness matrix is used, the necessary coeffi-
ients are obtained from Eq. (3). Considering the expression of constant
, we have

= 4

√

𝑘
4𝐸𝐼

= 4

√

𝜅𝐸
4𝐸�̄�𝑡3∕12

= 1
𝑙

4

√

3𝜅
𝛾𝛼3

=
𝛽
𝑙

(16)

where the non-dimensional coefficient

𝛽 = 4

√

3𝜅
𝛾𝛼3

(17)

Using this, the equivalent modulus 𝐸1 is obtained in terms of non-
dimensional variables by rewriting Eq. (10) as

𝐸1 =
𝐸𝛼3 cos 𝜃

(𝜂 + sin 𝜃) sin2 𝜃
(𝑆𝐶 + 𝑠𝑐)
3(𝑆2 − 𝑠2)

(18)

n the above expressions 𝐶 = cosh 𝛽, 𝑐 = cos 𝛽, 𝑆 = sinh 𝛽 and 𝑠 = sin 𝛽.

.2.2. Young’s modulus 𝐸2
The effective Young’s modulus 𝐸2 can be explicitly expressed in

erms of the 𝐴33 element of the stiffness matrix as (refer to the sup-
lementary material section S2.2 for detailed derivation)

2 =
𝐴33

�̄�

( ℎ𝑙 + sin 𝜃)

cos3 𝜃
(19)

Similar to the expression of 𝐸1 discussed in the previous subsection, the
term 𝐴33

�̄� appears in the expression of 𝐸2 also. Consequently the final
expressions of 𝐸2 can be obtained in a similar manner by substituting
the expression 𝐴33 from the conventional and transcendental stiffness
matrix. Therefore, with the conventional stiffness matrix we have

𝐸2 =
(

𝐸
( 𝑡
𝑙

)3
+ 𝑘

( 13
35

)

(

𝑙
�̄�

)) ( ℎ𝑙 + sin 𝜃)

cos3 𝜃
(20)

Replacing the expression for 𝐴33 using the corresponding element from
he transcendental stiffness matrix, the Young’s modulus 𝐸2 can be
btained as

2 =
𝐸(𝑏𝑡)3 (sinh(𝑏𝑙) cosh(𝑏𝑙) + sin(𝑏𝑙) cos(𝑏𝑙))

3
(

sinh2(𝑏𝑙) − sin2(𝑏𝑙)
)

( ℎ𝑙 + sin 𝜃)

cos3 𝜃
(21)

It may be noted that the above general expressions approach to
the classical result of Gibson and Ashby [29] when the filler stiffness
𝑘 → 0. In general, the comparative perspectives of 𝐸2 obtained based
on conventional and transcendental stiffness matrices are similar to the
case of 𝐸1. Substituting the expansion of 𝐴33 from Eq. (11) in Eq. (19)
and reorganising different terms, we have the Young’s modulus 𝐸2 in
a series form

𝐸2 =
(

𝐸
( 𝑡
𝑙

)3
+ 𝑘

( 13
35

)

(

𝑙
�̄�

)

− 𝑘 59
13475

( 𝑡
𝑙

)3
(

𝑙
�̄�

)2
( 𝑘
𝐸

)

+𝑘 1102
11036025

( 𝑡
𝑙

)6
(

𝑙
�̄�

)3
( 𝑘
𝐸

)2
+ 𝑂

( 𝑘
𝐸

)3
+⋯

)

( ℎ𝑙 + sin 𝜃)

cos3 𝜃
(22)

The first two terms of this series is exactly the same as obtained in Eq.
(20) using the conventional stiffness matrix. The higher-order terms in
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the above expression depend on the non-dimensional ratios 𝑡
𝑙 ,

𝑙
�̄� and 𝑘

𝐸 .
n particular, if the value of the filler stiffness 𝑘 becomes comparatively
igher with respect to the elastic modulus of the honeycomb material
, the higher-order terms could be significant. Therefore, Eq. (21)
aturally takes into account all possible values the filler stiffness, while
q. (20) can be viewed as a two-term approximation. Finally, it can be
oted that the classical result of Gibson and Ashby [29] without the
iller stiffness is the one-term approximation of the series in Eq. (22).

Following a similar non-dimensional scheme as 𝐸1, the expressions
or 𝐸2 can be written considering conventional and transcendental
tiffness matrix respectively as

2 = 𝐸
(

𝛼3 + 13
35

𝜅
𝛾

)

(𝜂 + sin 𝜃)
cos3 𝜃

(23)

2 =
𝐸𝛼3(𝜂 + sin 𝜃)

cos3 𝜃
(𝑆𝐶 + 𝑠𝑐)
3(𝑆2 − 𝑠2)

(24)

In the above expressions 𝐶 = cosh 𝛽, 𝑐 = cos 𝛽, 𝑆 = sinh 𝛽 and 𝑠 = sin 𝛽.

2.2.3. Poisson’s ratios 𝜈12 and 𝜈21
We have presented the detailed derivations of the effective Poisson’s

ratios of the honeycomb lattices in the supplementary material (refer to
section S2.3). Expression for Poisson’s ratio due to loading in direction
1 can be obtained as

𝜈12 =
cos2 𝜃

(𝜂 + sin 𝜃) sin 𝜃
(25)

Similarly the expression for Poisson’s ratio due to loading in direction
- 2 can be obtained as

𝜈21 =
(𝜂 + sin 𝜃) sin 𝜃

cos2 𝜃
(26)

Note here that 𝜂 = ℎ
𝑙 is a non-dimensional geometric parameter.

From the above expressions, it is evident that Poisson’s ratios 𝜈12 and
21 are independent the stiffness of the filler material and same as
he expressions given by Gibson and Ashby [29]. In this context it is
nteresting to note that the proposed expressions of the elastic moduli
onform the reciprocal theorem as

1𝜈21 = 𝐸2𝜈12 =
𝐴33

�̄�
1

sin 𝜃 cos 𝜃
(27)

he above equation satisfying the fundamental theories of materials
cience provides confidence on the presented expressions of effective
lastic moduli in this article.

.2.4. Shear modulus 𝐺12
The effective shear modulus of the space-filled honeycomb lattices

n terms of the general beam stiffness matrix elements can be ex-
ressed as (refer to the supplementary material section S2.4 for detailed
erivation)

12 =
( ℎ𝑙 + sin 𝜃)

�̄� cos 𝜃
1

⎛

⎜

⎜

⎝

ℎ2
2𝑙𝐴𝑠

43
+

4𝐴𝑣
44

𝐴𝑣
44𝐴

𝑣
33 −

(

𝐴𝑣
34
)2

⎞

⎟

⎟

⎠

(28)

We will utilise this expression to obtain shear modulus in terms of the
geometric and intrinsic material parameters for the case of conven-
tional and transcendental stiffness matrices.

It can be noted that four elements from two different stiffness
matrices are necessary here. The conventional stiffness matrix given in
Eq. (2) is considered first. The coefficient of the element stiffness matrix
of the slant member is 𝐴𝑠

43. We also need other elements of the stiffness
matrix of the vertical member (indicated using superscript 𝑣) with half
the length. Therefore, the four coefficients are given by

𝐴𝑠
43 = −6𝐸𝐼

𝑙2
− 11

210
𝑘𝑙2, 𝐴𝑣

33 =
12𝐸𝐼
(ℎ∕2)3

+ 𝑘13
35

(ℎ∕2),

𝐴𝑣 = − 6𝐸𝐼 − 𝑘 11 (ℎ∕2)2, 𝐴𝑣 = 4𝐸𝐼 + 𝑘 1 (ℎ∕2)3
(29)
6

34 (ℎ∕2)2 210 44 (ℎ∕2) 105
Table 1
Closed-form expressions of effective in-plane elastic moduli for space-filled lattices
obtained on the basis of conventional element stiffness matrix (CESM) and exact
element stiffness matrix (EESM), as presented in Eqs. (2) and (3) respectively. Note
that these expressions can be reduced to the formulation for hexagonal lattices without
any infill as a special case (refer to the supplementary material section S2) [29].

Moduli Method Closed-form expression

𝐸1 CESM 𝐸1 = 𝐸
(

𝛼3 + 13
35

𝜅
𝛾

)

cos 𝜃
(𝜂 + sin 𝜃) sin2 𝜃

EESM 𝐸1 =
𝐸𝛼3 cos 𝜃

(𝜂 + sin 𝜃) sin2 𝜃
(𝑆𝐶 + 𝑠𝑐)
3
(

𝑆2 − 𝑠2
)

𝐸2 CESM 𝐸2 = 𝐸
(

𝛼3 + 13
35

𝜅
𝛾

)

𝜂 + sin 𝜃
cos3 𝜃

EESM 𝐸2 =
𝐸𝛼3 (𝜂 + sin 𝜃)

cos3 𝜃
(𝑆𝐶 + 𝑠𝑐)
3
(

𝑆2 − 𝑠2
)

𝐺12 CESM 𝐺12 =
𝐸𝛼3

𝜂2
(𝜂+sin 𝜃)
cos 𝜃

⎛

⎜

⎜

⎝

105 𝛾
105 𝛾 + 11 𝜅

𝛼3
+

96 𝜂5𝛾 𝜅 + 53760 𝛼3𝜂 𝛾2
𝜂8𝜅2

𝛼3
+ 1632 𝜂4𝛾 𝜅 + 26880 𝛼3𝛾2

⎞

⎟

⎟

⎠

EESM 𝐺12 =
𝐸𝛼3

𝜂2
(𝜂+sin 𝜃)
cos 𝜃

(

3𝐶2+3 𝑐2−6
𝐶2𝛽2−𝛽2𝑐2

− 24(−𝑆𝑣𝐶𝑣+𝑠𝑣𝑐𝑣 )((𝐶𝑣 )2+(𝑐𝑣 )2−2)
((𝑐𝑣 )4+(2 (𝐶𝑣 )2−2)(𝑐𝑣 )2−(𝐶𝑣 )4+2 (𝑆𝑣 )2 (𝐶𝑣 )2)𝛽3𝜂2

)

𝜈12 =
1
𝜈21

CESM 𝜈12 =
cos2 𝜃

(𝜂 + sin 𝜃) sin 𝜃

EESM 𝜈12 =
cos2 𝜃

(𝜂 + sin 𝜃) sin 𝜃

Closed-form expression of 𝐺12 can be obtained by substituting these
expressions in Eq. (28)

𝐺12 =
𝐸𝛼3

𝜂2
(𝜂+sin 𝜃)
cos 𝜃

⎛

⎜

⎜

⎝

105 𝛾
105 𝛾 + 11 𝜅

𝛼3
+

96 𝜂5𝛾 𝜅 + 53760 𝛼3𝜂 𝛾2
𝜂8𝜅2
𝛼3

+ 1632 𝜂4𝛾 𝜅 + 26880 𝛼3𝛾2

⎞

⎟

⎟

⎠

(30)

where 𝛼 = 𝑡
𝑙 , 𝜂 = ℎ

𝑙 , 𝛾 = �̄�
𝑙 and 𝜅 = 𝑘

𝐸 are non-dimensional geometric
and material parameters.

When the transcendental stiffness matrix is used, the necessary
coefficients are obtained from Eq. (3). Considering the appropriate
lengths, we have

𝐴𝑣
33 =

4𝐸𝐼𝑏3

(𝑆𝑣2 − 𝑠𝑣2 )
(𝑆𝑣𝐶𝑣 + 𝑠𝑣𝑐𝑣) , 𝐴𝑠

43 = − 2𝐸𝐼𝑏2

(𝑆2 − 𝑠2)
(

𝐶2 − 𝑐2
)

,

𝐴𝑣
34 = − 2𝐸𝐼𝑏2

(𝑆𝑣2 − 𝑠𝑣2 )

(

𝐶𝑣2 − 𝑐𝑣
2
)

, 𝐴𝑣
44 =

2𝐸𝐼𝑏
(𝑆𝑣2 − 𝑠𝑣2 )

(𝑆𝑣𝐶𝑣 − 𝑠𝑣𝑐𝑣)
(31)

where 𝐶𝑣 = cosh
(

𝑏ℎ
2

)

𝑐𝑣 = cos
(

𝑏ℎ
2

)

𝑆𝑣 = sinh
(

𝑏ℎ
2

)

and 𝑠𝑣 =

in
(

𝑏ℎ
2

)

. The parameter 𝑏 = 4
√

𝑘
4𝐸𝐼 can be obtained as before. Using

the coefficients from Eq. (31), the expression of 𝐺12 can be obtained
after some algebraic simplifications as

𝐺12 =
𝐸𝛼3

𝜂2
(𝜂+sin 𝜃)
cos 𝜃

(

3𝐶2+3 𝑐2−6
𝐶2𝛽2−𝛽2𝑐2 −

24(−𝑆𝑣𝐶𝑣+𝑠𝑣𝑐𝑣)
(

(𝐶𝑣)2+(𝑐𝑣)2−2
)

(

(𝑐𝑣)4+
(

2 (𝐶𝑣)2−2
)

(𝑐𝑣)2−(𝐶𝑣)4+2 (𝑆𝑣)2(𝐶𝑣)2
)

𝛽3𝜂2

) (32)

In the above expressions 𝐶 = cosh 𝛽, 𝑐 = cos 𝛽, 𝑆 = sinh 𝛽, 𝑠 = sin 𝛽 and
𝐶𝑣 = cosh(𝛽𝜂∕2) 𝑐𝑣 = cos(𝛽𝜂∕2) 𝑆𝑣 = sinh(𝛽𝜂∕2) and 𝑠𝑣 = sin(𝛽𝜂∕2).

Based on the analytical derivation presented in this section, for
convenience of the readers, the closed-from expressions obtained using
conventional element stiffness matrix and exact element stiffness matrix
for space-filled hexagonal lattices are summarised in Table 1 (refer to
Eqs. (15) and (18), (23) and (24), (25) and (26), and (30) and (32)). It
may be noted in this context that the entire constitutive matrix of a 2D
material with honeycomb-like microstructure could be obtained based

on the five in-plane elastic moduli reported in this article.
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Fig. 2. Finite element analysis of filled honeycombs and validation. (A, B) The infill spaces are shown in (A), which are designed to fit inside the void spaces of the lattice
frame shown in (B). (C) Finite element model of filled honeycomb. Lattice structure embedded in the infill has been modelled for analysis. (D) Finite element meshing of the
filled honeycomb model. (E) Validation results for Young’s moduli ratios (𝐸1 = 𝐸1∕𝐸1GA , 𝐸1 = 𝐸1∕𝐸1GA ) considering loading along direction 1 and 2 (note that the non-dimensional
results are same for both the Young’s moduli). (F) Validation results for shear modulus ratio (𝐺12 = 𝐺12∕𝐺12GA ) considering loading in the 12 plane. It is to be noted, for validation
we have used moduli ratios of the filled honeycomb model with that of the conventional honeycomb model without infill (indicated by the subscript GA).
3. Finite element analysis

The proposed analytical formulae for space-filled lattices (refer to
Table 1) are validated with separate finite element simulations. We
have developed a finite element model in ANSYS for the filled hon-
eycomb structure with a 12 × 15 lattice. The number of unit cells is
decided based on a convergence study. We have used a cell wall angle
of 30◦ and have considered the height to length ratio of the unit cell,
𝜂 = 1. For the model, the length, 𝑙 is considered as 10 mm, infill
thickness, �̄� as 1 mm and the thickness by length ratio of the beam
element, 𝛼 as 0.02. After modelling, proper bonded connections of the
infill material have been established with the corresponding lattice
members. Fine meshing has been adopted that creates approximately
231115 tetrahedral elements over an average total surface of 44.061
mm2 spanning over the infill bodies and the overall lattice as a whole
(refer to subfigures (A) and (B) of Fig. 2). More elements have been
considered at the joints considering contact sizing of the connections.
The structural model and finite element meshing are shown in subfig-
ures (C) and (D) of Fig. 2. Keeping the geometrical properties same
and the intrinsic Young’s modulus of the lattice as 200 GPa, we have
varied the Young’s modulus of the infill material in orders of 10. It can
be noted that the mathematical section provides equations with non
dimensional parameters. Using finite element, we have verified that
changing the scale of the model uniformly does not bring variation to
the results, showing good consistency and stability in our formulation.
It is to be noted that we have not used a large deflection solver,
however programme controlled non-linear analysis method is followed.
To check the Young’s modulus of the filled honeycomb model along
direction 1, we fix the degree of freedoms along direction 1 for the
nodes along the extreme left edge whose normal is parallel to direction
1 and apply the loading uniformly over the nodes at the extreme right
edge in direction 1. For calculation of the Young’s modulus of the filled
honeycomb model along direction 2, we fix the degree of freedoms
along direction 2 for the nodes along the extreme bottom edge whose
7

normal is parallel to direction 2 and apply the loading uniformly over
the nodes at the extreme top edge in direction 2. For the shear modulus
of the filled honeycomb model in the 12 plane, we fix the degree of
freedoms both along direction 1 and 2 for the nodes along the extreme
bottom edge whose normal is parallel to direction 2 and apply the
loading uniformly over the nodes at the extreme top edge in direction
1. The rotational degrees of freedom at the edges are not constrained in
any of the three cases. Different components of strains as per the basic
definitions of elastic moduli are calculated based on the deformation
of the lattice under respective applied loads. The corresponding stress
values are calculated from the applied edge loads. Subsequently, the
elastic moduli are evaluated based on the stress and strain values under
small deformation.

In this validation section, we have compared the Young’s and
shear moduli of the filled honeycomb that we get from finite element
analysis with that of the analytical formulation results. It is shown in
subfigures (E) and (F) of Fig. 2 that upto an order of 106 of the infill’s
Young’s modulus, our results match quite well. Outside this range, the
mechanics of deformation involves other modes that are beyond the
scope of current the analytical model. We further note that the results
are more accurate with respect to finite element simulations when we
use the exact element stiffness matrix formulation (EESM) compared to
the conventional element stiffness matrix formulation (CESM). This is
expected as explained in the preceding section, particularly when the
filler stiffness becomes higher.

4. Results and discussion

In the previous section, we have noted that the in-plane Poisson’s
ratios remain unaffected by the inclusion of filler material. For the
sake of completeness variations of Poisson’s ratios are shown in the
supplementary material considering auxetic and non-auxetic configura-
tions (refer to figure S4). The feasibility of manufacturing the auxetic
structures (ℎ∕𝑙 ≥ 2 sin 𝜃) is taken into account while presenting the
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Fig. 3. Normalised effective elastic moduli of space-filled lattices obtained using conventional stiffness matrix and transcendental stiffness matrix. (A) Normalised Young’s
modulus 𝐸𝑖∕𝐸𝑖GA , where 𝑖 = 1, 2. Note that although the expressions of 𝐸1 and 𝐸2 are different, the ratios 𝐸1∕𝐸1GA and 𝐸2∕𝐸2GA are the same. Thus we present only one plot that
represents the results of both the Young’s moduli. The actual value of the two Young’s moduli, which are different, can be obtained by multiplying the presented numerical values
by the corresponding Young’s modulus of unfilled lattices. (B) Normalised shear modulus 𝐺12∕𝐺12GA . For generality, here the results are plotted as functions of 𝜅 = 𝑘∕𝐸 for a value
of 𝜂 = ℎ∕𝑙 = 1, 𝛼 = 𝑡∕𝑙 = 0.1 and 𝛾 = �̄�∕𝑙 = 1. The subscript GA is used to indicate the elastic moduli obtained based on the case of unfilled honeycomb lattices [29].
results. We concentrate on the two Young’s moduli and the shear
modulus for presenting numerical results in the following paragraphs.
To accentuate the effect of filler material, the results are presented in
non-dimensional forms. Though such numerical results are applicable
to different cell angles with auxetic and non-auxetic configurations,
one should keep in mind the geometric feasibility for manufacturing
as discussed above.

From the expressions of 𝐸1, 𝐸2 and 𝐺12 obtained in terms of
non-dimensional geometrical and material parameters following the
conventional and transcendental stiffness matrix (refer to Table 1), it
can be verified that when the filler material is not present (by taking
the limit 𝜅 → 0), the expressions reduce to the classical expressions
provided in literature by Gibson and Ashby [29]. Along with the
detailed finite element validation presented in the preceding section,
this renders an exact analytical validation of the proposed derivations
as a special case. Further confidence on the developed formulation can
be obtained by comparing the numerical results from the conventional
and transcendental stiffness matrices. In the preceding section, it is
shown that the elastic moduli obtained using transcendental stiffness
matrices are more accurate, while the formulation based on conven-
tional stiffness matrix is valid only for relatively lesser stiffness of
the filler material. Thus, the elastic moduli obtained using the two
approaches are expected to match only for a low stiffness of the filler
material. This aspect will be more evident from the numerical results
presented later in this section.

In order to compare both the approaches, in Fig. 3, Young’s moduli
(𝐸1 and 𝐸2) and shear modulus (𝐺12) are shown as functions of 𝜅 =
𝑘∕𝐸. The values in the 𝑌 -axis are normalised with respect to the
equivalent classical results without any filler [29] (the equations of
five in-plane elastic moduli are presented in supplementary material
section S2), as indicated by subscripts GA. Although the expressions
of 𝐸1 and 𝐸2 are different, the ratios 𝐸1∕𝐸1GA and 𝐸2∕𝐸2GA are the
same. Therefore, only 𝐸𝑖 (where 𝑖 = 1, 2) is considered in Fig. 3. The
parameters used in Fig. 3 are 𝜂 = ℎ∕𝑙 = 1, 𝛼 = 𝑡∕𝑙 = 0.1 and 𝛾 = �̄�∕𝑙 = 1.
As explained before, it can be observed that the results obtained using
the conventional stiffness matrix is accurate only for very small values
of 𝜅. This demonstrates the advantage of using the proposed approach
with the transcendental stiffness matrix. The closed-form expressions
in Eqs. (18), (24) and (32) are exact and therefore valid for higher
values of the filler stiffness. In Fig. 3, significant increase in the effective
moduli is observed. Such enhancement can have a potential impact on
engineering applications. This motivates us to study how the effective
moduli increase as different parameters in the model change.
8

In Fig. 4(A–B), contours of normalised Young’s moduli 𝐸𝑖∕𝐸𝑖GA are
plotted as a function of the filler stiffness ratio 𝜅 and the height ratio 𝛾.
Two values of the thickness ratio, namely, 𝛼 = 0.1 and 0.2 are shown,
wherein it can be noticed that when the cell walls are thinner, the
infill has more influence on the equivalent Young’s modulus (note that
𝐸𝑖∕𝐸𝑖GA for 𝑖 = 1, 2 are independent of 𝜂). For an infill stiffness of only
10%, it is possible to increase the equivalent Young’s modulus by an
order of magnitude. This is encouraging as lightweight elastic foams
can be used as an infill to substantially increase Young’s modulus.
Closed-form formulae derived in this paper can be used to design such
composite 2D lattices efficiently.

Contours of normalised shear modulus 𝐺12∕𝐺12GA are plotted as
a function of the filler stiffness ratio 𝜅 and the height ratio 𝛾 in
Fig. 4(C–D). Two values of 𝜂, namely 𝜂 = ℎ∕𝑙 = 1, 2 are considered.
The normalised shear modulus increase with 𝜂. The pattern of change
with respect to the other parameters remain similar to the case of
𝐸1 and 𝐸2. Again we note that orders of magnitude of increase in
the shear modulus is possible with the inclusion of the filler material.
Further numerical results for the Young’s moduli and shear modulus
to investigate the effects of 𝛼 and 𝜂 are presented in the supplemen-
tary material (refer to figures S2 and S3). In general, the numerical
outcomes demonstrate that the developed analytical framework for the
elastic moduli could be utilised for efficiently designing space-filled lat-
tices to simultaneously possess different values of the elastic moduli by
identifying the appropriate microstructures. Such explicit modulation
of stiffness corresponding to longitudinal, transverse and shear modes
would facilitate the development of engineered microstructures with
programmable direction-dependent dynamic properties. The closed-
form formulae would also act as a ready reference to characterise
the structural viability of different mechanical and biological systems
(naturally occurring and artificial) and multi-functional devices where
filled-honeycombs are present.

5. Conclusions and perspective

An analytical framework leading to closed-form formulae for the
effective in-plane elastic moduli of space-filled hexagonal lattices is
proposed. In general, the elastic properties of lattice-like honeycomb
structures have received tremendous attention from the scientific com-
munity over the last few decades. Traditionally such lattices are made
of a network of beams in two and three dimensions with majority
of the volume of the lattice structures being void space. Recently
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Fig. 4. The interaction effect of filler stiffness and height ratios on the in-plane elastic moduli. Normalised Young’s moduli 𝐸𝑖∕𝐸𝑖GA (where 𝑖 = 1, 2) and normalised shear
modulus 𝐺12∕𝐺12GA are plotted as a function of the filler stiffness ratio 𝜅 = 𝑘∕𝐸 and the height ratio 𝛾 = �̄�∕𝑙. Two values of the thickness ratio 𝛼 = 0.1 and 0.2 are considered. The
subscript GA is used to indicate the elastic moduli obtained based on the case of unfilled honeycomb lattices [29]. Note that although the expressions of 𝐸1 and 𝐸2 are different,
the ratios 𝐸1∕𝐸1GA and 𝐸2∕𝐸2GA are the same and these two non-dimensional quantities are independent of 𝜂. Thus we present only one plot that represents the results of both the
Young’s moduli. The actual value of the two Young’s moduli, which are different, can be obtained by multiplying the presented numerical values by the corresponding Young’s
modulus of unfilled lattices (refer to the supplementary material section S2 where closed form expressions are provided for the effective Young’s modulus of unfilled lattices). (A)
Young’s modulus with 𝛼 = 0.1 (B) Young’s modulus with 𝛼 = 0.2 (C) Shear modulus with microstructural configuration: 𝜂 = 1, 𝛼 = 0.1 (D) Shear modulus with microstructural
configuration: 𝜂 = 2, 𝛼 = 0.1.
researchers have started exploring ways to utilise this void space for
multi-functional property modulation of lattices. For example, if we
could have a filled multi-material lattice structure, the global mechani-
cal behaviour including different elastic moduli, wave propagation, vi-
bration, impact and acoustic features can be simultaneously modulated
in a substantially expanded design space with additional parameters re-
lated to the stiffness, mass and damping of the filler, leading to exciting
multi-functional properties. However, the effective elastic moduli are
always of crucial importance to ensure the structural viability of var-
ious multi-functional devices and systems where a space-filled lattice
material could potentially be used. Here we have developed analytical
expressions for the effective in-plane elastic moduli of such space-filled
lattices based on an exact element stiffness matrix approach coupled
with the unit cell method, wherein the transcendental shape functions
are used to satisfy the equilibrium at all points of the structural domain.
The transcendental functions are obtained from the exact solution of the
underlying differential equations with appropriate displacement bound-
ary conditions. For establishing the analytical model we have pro-
posed a mechanical equivalence of space-filled lattices with equivalent
9

networks of beam elements. The numerical results are compared with
the elastic moduli obtained from traditional stiffness matrices, wherein
a good agreement is found for relatively lesser value of the filler
stiffness. The proposed expressions of the elastic moduli converge to
the classical closed-form expressions provided in the scientific literature
when the stiffness of the filler material tends to zero, leading to an exact
analytical validation as a special case. Further, separate finite element
simulations are carried out to validate the closed form expressions of
space-filled lattices. From the derived analytical expressions, it becomes
evident that the two Poisson’s ratios are not affected by the presence
of filler material, while two Young’s moduli and the shear modulus
can be modulated significantly depending on the filler stiffness. The
physics-based analytical formulae reveal that elastic properties of the
space-filled lattice depend on the thickness of the lattice sheet unlike
the case of conventional honeycombs without any filler material.

From the perspective of engineered material microstructures, the
present investigation introduces a new dimension in terms of the prop-
erties of filler material for simultaneously modulating multi-physical
mechanical behaviour of lattice materials. The scope of explicit
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modulation of stiffness corresponding to longitudinal, transverse and
shear modes, besides rendering the possibility of designing application
-specific multi-objective static deformation behaviour, would facilitate
the development of engineered microstructures with programmable
direction-dependent dynamic and wave propagation properties. The
numerical results show that the inclusion of filler material with even
a relatively lower stiffness value (normalised filler stiffness ∼0.1) can
lead to an increase in the effective elastic moduli up to few orders of
magnitude. This effect can potentially be exploited in the design of
novel space-filled composite lattices for having higher global stiffness
and simultaneously modulating different in-plane normal and shear
components. The efficient analytical framework will also act as a
ready reference to characterise the structural viability of different
mechanical and biological systems (naturally occurring and artificial)
and multi-functional devices where filled honeycombs are present.

The proposed analytical formulae will have an impact both in the
forward (for readily characterising different components of the stiffness
of a filled lattice designed for other multi-functional applications or
already in existence) and inverse analyses (for identifying the lattice
microstructure in a significantly expanded design space to achieve
multi-objective goals related to possessing an adequate level of multiple
elastic moduli with the possibility of significantly enhancing them) of
lattice-like systems across the length-scales. Even though here we have
concentrated on the analysis of hexagonal lattices, the disseminated
concepts (including the general methodology of derivation and numer-
ical results) can be extended to other forms of beam-based lattices
and metamaterials with two and three dimensional structural forms.
Such closed-form analytical expressions provide a computationally ef-
ficient paradigm to investigate the system in intricate details and with
adequate level of physical insights, leading to the scope of material
innovation without the practical hindrance of computational or ex-
perimental expenses and time. This will be particularly appealing for
innovating next-generation of application-specific multi-functional ma-
terial micro-structures where thousands of realisations are required to
be analysed due to the involvement of inverse identification algorithms
based on multi-objective optimisation.
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