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This paper presents a concise state-of-the-art review along with an exhaustive comparative investigation
on surrogate models for critical comparative assessment of uncertainty in natural frequencies of compos-
ite plates on the basis of computational efficiency and accuracy. Both individual and combined variations
of input parameters have been considered to account for the effect of low and high dimensional input
parameter spaces in the surrogate based uncertainty quantification algorithms including the rate of con-
vergence. Probabilistic characterization of the first three stochastic natural frequencies is carried out by
using a finite element model that includes the effects of transverse shear deformation based on Mindlin’s
theory in conjunction with a layer-wise random variable approach. The results obtained by different
metamodels have been compared with the results of traditional Monte Carlo simulation (MCS) method
for high fidelity uncertainty quantification. The crucial issue regarding influence of sampling techniques
on the performance of metamodel based uncertainty quantification has been addressed as an integral
part of this article.
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1. Introduction

The exhaustive utilization of computational power has favoured
the development of very high-fidelity finite element models to deal
with industrial problems. In spite of advances in capacity and
speed of computer, the enormous computational cost of running
complex, intricate scientific and engineering simulations makes it
impractical to rely exclusively on simulation codes for the purpose
of uncertainty quantification. Hence these high-fidelity models
come with the drawback that they can be very-time consuming
so that only a few runs of the model can be affordable. Thus these
models are practically unusable in computationally intensive
methods like traditional Monte Carlo simulation (MCS) based
stochastic analysis that requires thousands of realizations to be
carried out. In general, such complicated models can be considered
as a system (often referred to I/O system), for which the output
quantity of interest (O) is evaluated corresponding to a particular
set of values for the input parameters (I). In case of analyses that
require large number of model evaluation, it is a common practise
to employ a computationally efficient surrogate or metamodel
based approach, in which outputs are only evaluated for a limited
set of algorithmically chosen input points and then an equivalent
mathematical model is constructed to emulate the underlying
mapping of the I/O system. The need of integrating the surrogate
models and probabilistic approaches has significant demand for
assessing the response characteristics of composite structures by
accounting the uncertainties in the models as well as the random
input parameters (e.g., geometrical parameters, fibre parameters
and material properties) [1]. Application of laminated composites
in various industries have witnessed tremendous growth in last
few decades due to the benefit of light-weightiness without com-
promising its strength and stiffness requirement as shown in
Fig. 1. Due to the dependency on a large number of parameters
in complex production and fabrication processes of laminated
composite plate, the system properties can be random in nature
resulting in uncertainty in the response of the laminated compos-
ite plate. Therefore, to well define the original problems and enable
a better understanding and characterization of the actual
Fig. 1. Overview of stochastic dynamics for comp
behaviour of the laminated composite structures, it is of prime
importance that the inherent randomness in system parameters
is incorporated in the analysis. While adopting a surrogate based
approach for uncertainty quantification, an obvious question that
a designer may have: which technique is superior to the other
and on what basis should the various surrogate modelling tech-
niques be selected. Some studies demonstrate the application of
one metamodeling technique or the other, typically for a specific
application exist; however, the present study reveals the compre-
hensive comparative studies of the various techniques in conjunc-
tion to composites to test the relative merits of different methods.
Although the earlier studies investigated on the insights of the var-
ious approaches, the tests were restricted to a very small group of
methods and test problems and in many cases only one problem
due to the expense associated with testing. Moreover, when using
multiple test problems, it is often difficult to make comparisons
between problems when they belong to different classes of prob-
lems. In the present study, multiple factors contribute to the suc-
cess of a given metamodeling technique, ranging from the
stochasticity and dimensionality of the problem to the associated
data sampling technique and the internal parameter settings of
the various modelling techniques. Overall, the knowledge of the
performance of different metamodeling techniques with respect
to different modelling criteria is of utmost importance to designers
while choosing an appropriate technique for a particular applica-
tion. A concise literature review on application of different surro-
gate modelling techniques is presented in the trailing paragraphs.

A preferable strategy for the analyses requiring repetitive model
evaluation is to utilize approximation models which are often
referred to as metamodels (‘‘model of the model” [2]) that effec-
tively replace the expensive simulation model [3] in a computa-
tionally efficient manner. Metamodelling techniques have been
widely used for design evaluation and optimization in many engi-
neering applications; a comprehensive review of metamodelling
applications in mechanical and aerospace systems can be found
in the paper by Simpson et al. [4] and will therefore not be
repeated here. For the interested reader, a review of metamod-
elling applications in optimization can be found in the articles by
osite structures in different application areas.
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Barthelemy and Haftka [5] and Sobieszczanski-Sobieski and Haftka
[6]. A variety of surrogate modelling techniques exist wherein
response surface methodology [7–9] and artificial neural network
(ANN) methods [10,11] are found as the two well-known
approaches for constructing simple and fast approximations of
complex computer codes. An interpolation method known as Krig-
ing is widely utilised for the design and analysis of computer
experiments [12–14]. The other promising statistical techniques,
such as multivariate adaptive regression splines (MARS) [15,16]
and radial basis function (RBF) approximations [17,18], moving
least square (MLS) [19,20], support vector regression (SVR)
[21,22] and polynomial neural network (PNN) [23,24] have also
drawn significant attention of many researchers. Previously, Simp-
son et al. [25] compared kriging methods against polynomial
regression models for the multidisciplinary design optimization
of an aerospike nozzle involving three design variables while
Giunta et al. [26] compared kriging models and polynomial regres-
sion models for a test problem. In contrast, Varadarajan et al. [27]
compared ANN methods with polynomial regression models for an
engine design problem involving nonlinear thermodynamic beha-
viour. Yang et al. [28] compared four approximation methods such
as, enhanced multivariate adaptive regression splines (MARS),
stepwise regression, ANN, and the moving least square method
for the construction of safety related functions in automotive crash
analysis for a relatively small sample sizes.

In the literature, there are several successful applications of sur-
rogate modelling techniques in the optimization of traditional
composite laminates with straight fibers. Such as Radial Basis
Functions [29], second order polynomials [30] and Neural Net-
works [31] are found to be effective in reducing the time to find
the maximum buckling load of a composite stiffened panel. Liu
et al. [32] used a cubic response surface combined with a two-
level optimization technique to maximize the buckling load of a
composite wing. Lee and Lin [33,34] used trigonometric functions
as the base functions to build a metamodel for the stacking
sequence optimization of a composite propeller. Kalnins et al.
[35] compared the performance of Radial Basis Functions, multi-
variate adaptive regression splines and polynomials for optimiza-
tion of the post-buckling characteristics of damaged composite
stiffened structure. In another attempt, Lanzi and Giavotto [36]
compared the performance of Radial Basis Functions, Neural Net-
works, and Kriging metamodels in a multi-objective optimization
problem for maximum post-buckling load and minimum weight
of a composite stiffened panel. These methods are found to yield
similar results and none of them is identified as being significantly
superior. While there is a considerable amount of existing research
on the use of metamodels for constant stiffness composite design,
only a few attempts look at their application in variable stiffness
design. Among those worthy to mention are the following, the
optimization of a variable stiffness laminate in vibration [37], the
buckling load of a variable stiffness composite cylinder [38], and
the simultaneous optimization of the buckling load and in-plane
stiffness of a variable stiffness laminate ignoring the presence of
defects, i.e. gaps and overlaps [39]. Of late, Arian Nik et al.
[40,41] used the defect layer method and a Kriging metamodel to
simultaneously maximize the buckling load and in-plane stiffness
of a variable stiffness laminate with embedded defects. The above
mentioned works are demonstrated as the potential method indi-
cating that the surrogate model can be utilised as a beneficial tool
for reduction of computational burden in optimization process.
Based on literature review, it is found that in the following areas
metamodeling can play a significant role: a) Model approximation.
Approximation of computation-intensive processes across the
entire design space, or global approximation, is used to reduce
computation costs, b) Design space exploration. The design space
is explored to enhance the engineers’ understanding of the design
problem by working on a cheap-to-run metamodel, c) Problem for-
mulation. Based on an enhanced understanding of a design opti-
mization problem, the number and search range of design
variables may be reduced; certain ineffective constraints may be
removed; a single objective optimization problem may be changed
to a multi-objective optimization problem or vice versa. Meta-
model can assist the formulation of an optimization problem that
is easier to solve or more accurate than otherwise, d) Optimization
support. Industry has various optimization needs, e.g., global opti-
mization, multi-objective optimization, multidisciplinary design
optimization, probabilistic optimization, and so on. Each type of
optimization has its own challenges. Metamodeling can be applied
and integrated to solve various types of optimization problems
that involve computation-intensive functions. The literature
review presented above reveals that there is no recommendation
found regarding selection of surrogate model for analyses of com-
posites and other applications. Furthermore, the performance of
surrogate model is described as problem dependent and the best
surrogate model is unknown at the outset.

For surrogate model formation, few algorithmically chosen
design points are evaluated using the expensive model/ experi-
ments. Finally on the basis of the information gathered through
these design points over the design space, a fully functional meta-
model is constructed. The ‘‘Classic” experimental designs are orig-
inated from the theory of Design of Experiments when physical
experiments are conducted. These methods focus on planning
experiments so that the random error in physical experiments
has minimum influence in the approval or disapproval of a hypoth-
esis. Widely used ‘‘classic” experimental designs include factorial
or fractional factorial design [9,42,43], central composite design
(CCD) [9], Box-Behnken [9], optimal design [44,45] and Plackett-
Burman designs [9]. Mukhopadhyay et al. [46] presented a com-
parative assessment of different design of experiment methods in
conjunction to a system identification problem using multi-
objective optimization and suggested that D-optimal design and
CCD perform better compared to other considered design of exper-
iment methods. These classic methods tend to spread the sample
points around boundaries of the design space and leave a few at
the centre of the design space. As computer experiments involve
mostly systematic error rather than random error as in physical
experiments, Sacks et al. [47] stated that in the presence of system-
atic rather than random error, a good experimental design tends to
fill the design space rather than to concentrate on the boundary.
They also stated that ‘‘classic” designs, e.g. CCD and D-optimal
designs can be inefficient or even inappropriate for deterministic
computer codes. Jin et al. [48] confirmed that a consensus among
researchers was that experimental designs for deterministic com-
puter analyses should be space filling. Koehler and Owen [49]
described several Bayesian and Frequentist ‘‘Space Filling” designs,
including maximum entropy design [50], mean squared-error
designs, minimax and maximin designs [51], Latin Hypercube
designs, orthogonal arrays, and scrambled nets. Four types of space
filling sampling methods are relatively more often used in the lit-
erature. These are orthogonal arrays [52–54], Latin Hypercube
designs [55–59], Hammersley sequences [60,61] and uniform
designs [62]. Hammersley sequences and uniform designs belong
to a more general group called low discrepancy sequences [63]
wherein Hammersley sampling is found to provide better unifor-
mity than Latin Hypercube designs. A comparison of these sam-
pling methods is in less structured but offer more flexibility. If
any knowledge of the space is available, these methods may be tai-
lored to achieve higher efficiency. They may also play a more active
role for iterative sampling-metamodeling processes. Mainly due to
the difficulty of knowing the ‘‘appropriate” sampling size a priori,
sequential and adaptive sampling has gained popularity in recent
years. Lin [64] proposed a sequential exploratory experiment
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design (SEED) method to sequentially generate new sample points.
Jin et al. [65] applied simulated annealing to quickly generate opti-
mal sampling points. Sasena et al. [66] used the Bayesian method
to adaptively identify sample points that gave more information.
Wang [67] proposed an inheritable Latin Hypercube design for
adaptive metamodeling. Samples are repetitively generated fitting
a Kriging model in a reduced space [68]. Jin et al. [69] compared a
few different sequential sampling schemes and found that sequen-
tial sampling allows engineers to control the sampling process and
it is generally more efficient than one-stage sampling. One can cus-
tom design the flexible sequential sampling schemes for specific
design problems.

Metamodeling evolves from classical Design of Experiments
(DOE) theory, in which polynomial functions are used as response
surfaces, or metamodels. Response surfaces are typically second-
order polynomial models and therefore, they have limited capabil-
ity to model accurately nonlinear functions of arbitrary shape.
Obviously, higher-order response surfaces can be used to model
a nonlinear design space. However, instabilities may arise, or it
may be difficult to take enough sample points in order to estimate
all of the coefficients in the polynomial equation particularly in
high dimensions. Hence, many researchers advocate the use of a
sequential response surface modelling approach using move limits
or a trust region approach. Besides the commonly used polynomial
functions, Sacks et al. [70,71] proposed the use of a stochastic
model, called Kriging [72], to treat the deterministic computer
response as a realization of a random function with respect to
the actual system response. Neural networks have also been
applied in generating the response surfaces for system approxima-
tion [73]. Other types of models include radial basis functions
(RBF) [74,75], multivariate adaptive regression splines (MARS)
[76], least interpolating polynomials [77] and inductive learning
[78]. A combination of polynomial functions and artificial neural
networks has also been archived [79]. There is no conclusion about
which model is definitely superior to the others. However, insights
have been gained through a number of studies [80,81]. In recent
years, Kriging models and related Guassian processes are inten-
sively studied [82–87]. In general the Kriging models are more
accurate for nonlinear problems but difficult to obtain and use
because a global optimization process is applied to identify the
maximum likelihood estimators. Kriging is also flexible in either
interpolating the sample points or filtering noisy data. On the con-
trary, a polynomial model is easy to construct, clear on parameter
sensitivity, and cheap to work with but is less accurate than the
Kriging model [48]. However, polynomial functions do not interpo-
late the sample points and are limited by the chosen function type.
The RBF model, especially the multi-quadric RBF, can interpolate
sample points and at the same time is easy to construct. It thus
seems to reach a trade-off between Kriging and polynomials.
Recently, a new model called Support Vector Regression (SVR)
was used and tested [88]. SVR achieved high accuracy over all
other metamodeling techniques including Kriging, polynomial,
MARS, and RBF over a large number of test problems. It is not clear,
however, what are the fundamental reasons that SVR outperform-
sothers. The Least Interpolating Polynomials use polynomial basis
functions and also interpolate responses. They choose a polynomial
basis function of ‘‘minimal degree” as described by [75] and hence
are called ‘‘least interpolating polynomials.” This type of meta-
model deserves more study. In addition, Pérez et al. [89] trans-
formed the matrix of second-order terms of a quadratic
polynomial model into the canonical form to reduce the number
of terms. Messac and his team developed an extended RBF model
[90] by adding extra terms to a regular RBF model to increase its
flexibility, based on which an optimal model could be searched
for. Turner and Crawford proposed a NURBS-based metamodel,
which was applied only to low dimensional problems [91]. If
gradient information can be reliably and inexpensively obtained,
gradient information can be utilized in metamodeling [92,93]. High
dimensional model representation is found to be successfully
applied in the problems related to optimization and system identi-
fication [93,94]. A multipoint approximation (MPA) strategy has
also received some attention [95–97]. MPA uses blending functions
to combine multiple local approximations, and usually gradient
information is used in metamodeling. Metamodels can also be con-
structed when design variables are modeled as fuzzy numbers
[98,99]. Each metamodel type has its associated fitting method.
For example, polynomial functions are usually fitted with the
(weighted) least square method; the kriging method is fitted with
the search for the Best Linear Unbiased Predictor (BLUP). Simpson
et al. [4] illustrated a detailed review on the equations and fitting
methods for common metamodel types. In general computer
experiments have very small random error which might be caused
by the pseudorandom number generation or rounding [100].
Giunta et al. [101] found that numerical noises in computing the
aerodynamic drag of High Speed Civil Transport (HSCT) caused
many spurious local minima of the objective function. The problem
was due to the discontinuous variations in calculating the drag by
using the panel flow solver method. Madsen et al. [102] stated that
noises could come from the complex numerical modelling tech-
niques. In case of physical or noisy computer experiments, it is
found that Kriging and RBF are more sensitive to numerical noise
than polynomial models [103]. However, Kriging, RBF, and ANN
could be modified to handle noises, assuming the signal to noise
ratio is acceptable [104].

The different modelling methods and sampling techniques are
summarized in Table 1. All of these techniques can be used to cre-
ate approximations of existing computer analyses, and produce
fast analysis modules for more efficient computation. These meta-
modeling techniques also yield insight into the functional relation-
ship between input and output parameters. A designer’s goal is
usually to arrive at improved or robust solutions which are the val-
ues of design variables that best meet the design objectives. A
search for these solutions usually relies on an optimization tech-
nique which generates and evaluates many potential solutions in
the path toward design improvement; thus, fast analysis modules
are an imperative. In the later stages of design when detailed infor-
mation about specific solutions is available, highly accurate analy-
sis is essential. In the early stages of design, however, the focus is
on generating, evaluating, and comparing potential conceptual
configurations. The early stages of design are characterised by a
large amount of information, often uncertain, which must be man-
aged. To ensure the identification of a ‘good’ system configuration,
a comprehensive search is necessary. In this case, the trade-off
between accuracy and efficiency may be appropriate. The creation
of metamodels allows fast analysis, facilitating both comprehen-
sive and efficient design space search at the expense of marginal
loss of accuracy. Over the last few decades uncertainty quantifica-
tion in complex structural systems including laminated composites
has gained huge attention from the scientific community to realis-
tically analyse and design the performance of the system [105–
111]. A careful review on the literature concerning uncertainty
quantification of laminated composites reveals that there are dis-
tinctively three different approaches in probabilistic modelling of
such structures: random variable approach (structural and mate-
rial attributes are same throughout the composite including each
layers for a particular sample of Monte Carlo simulation), layer-
wise random variable approach (structural and material attributes
are varied layer-wise for a particular sample of Monte Carlo simu-
lation) and random field approach (structural and material attri-
butes are varied spatially in all the dimensions for a particular
sample of Monte Carlo simulation). Recently a non-probabilistic
approach of fuzzy uncertainty propagation model is proposed for



Table 1
Sampling techniques and metamodelling methods.

1. Sampling
Techniques a) Classic methods

1. Factorial Design
2. Central composite
3. Box-Behnken
4. Optimal designs
5. Plackett-Burman

b) Space-filling methods

1. Simple Grids
2. Latin Hypercube
3. Sobol Sequence
4. Orthogonal Arrays (Taguchi)
5. Hammersley sequence
6. Uniform designs
7. Minimax and Maximin

c) Hybrid methods

d) Random or human selection

e) Importance sampling

f) Directional simulation

g) Discriminative sampling

h) Sequential or adaptive methods
2. Modelling

methods a) Polynomial regression (linear, quadratic, or higher)
b) High dimensional model representation (HDMR)

[cut-HDMR, RS-HDMR, GHDMR]
c) Polynomial Chaos Expansion (PCE)
d) Splines [linear, cubic, Non-Uniform Rational B-splines

(NURBS)]
e) Multivariate Adaptive Regression Splines (MARS)
f) Gaussian Process
g) Kriging
h) Radial Basis Functions (RBF)
i) Least interpolating polynomials (Moving least square)
j) Artificial Neural Network (ANN)
k) Group Method of Data Handling - Polynomial Neural

Network (GMDH - PNN)
l) Knowledge Base or Decision Tree
m)Support Vector Machine (SVM)
n) Weighted Least squares regression
o) Best Linear Unbiased Predictor (BLUP)
p) Multipoint approximation (MPA)
q) Sequential or adaptive metamodeling
r) Hybrid models

Fig. 2. General flowchart of Uncertainty Quantification (UQ) using metamodeling
approach.
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composites that is applicable to the situation where explicit prob-
ability distribution of the material properties are not available
[112]. However, uncertainty quantification based on Monte Carlo
simulation based approach relies on large number of simulations.
The metamodeling techniques have gained popularity to alleviate
the computational burden [105–112]. A typical metamodel based
algorithm for uncertainty quantification of a system is shown in
Fig. 2. Performance assessment of different metamodels in uncer-
tainty quantification of composite structures is particularly critical
because of the fact that composite structures normally have a high
dimensional input parameter space. Scientific literature concern-
ing metamodeling approaches for uncertainty quantification in
composite structures is not adequate. Moreover comparative
assessment of different metamodeling techniques on the basis of
accuracy and computational efficiency is very scarce to find in
literature.

The present study investigates on stochastic structural dynam-
ics of laminated composite plates by exhaustive utilization of sur-
rogate modelling for uncertainty quantification. To fill up the
apparent void on comparative assessment of surrogates on the
basis of accuracy and computational efficiency, the this analysis
employs a finite-element model that includes the effects of trans-
verse shear deformation based on Mindlin’s theory in conjunction
with a layer-wise random variable approach to study the stochastic
free vibration characteristics of graphite–epoxy composite can-
tilever plates. An eight noded isoparametric quadratic plate bend-
ing element with five degrees of freedom at each node is
considered in the finite element formulation. Both individual and
combined variation of stochastic input parameters have been con-
sidered to account for the effect of dimensionality by employing
the most prominent metamodeling techniques such as polynomial
regression (PR), kriging, high dimensional model representation
(HDMR), polynomial chaos expansion (PCE), artificial neural net-
work (ANN), moving Least Square (MLS), support Vector Regres-
sion (SVR), multivariate adaptive regression splines (MARS),
radial basis function (RBF) and polynomial neural network (PNN).
For each of the surrogate modelling techniques, the rate of conver-
gence with respect to traditional Monte Carlo simulation has been
studied considering both low and high dimensional input parame-
ter space. Different sampling techniques are used (namely 2k facto-
rial designs, central composite design, A-Optimal design, I-Optimal
design, D-Optimal design, Taguchi’s orthogonal array design, Box-
Behnken design, Latin hypercube sampling and sobol sequence)
to construct the surrogate models. The sampling technique for a
particular surrogate modelling method is chosen on the basis of
available literature (as furnished in Fig. 3) to ensure best possible
performance of each surrogate. As an integral part of this study,
a comparative assessment of different design of experiment algo-
rithms (2k factorial designs, central composite design, A-Optimal
design, I-Optimal design, D-Optimal design, Taguchi’s orthogonal
array design, Box-Behnken design) is presented considering poly-
nomial regression method. To the best of authors’ knowledge, this
is the first attempt to investigate the comparative performance of
multiple surrogates (ten most prominent models in scientific liter-
ature) in a comprehensive and exhaustive manner to provide a
clear understanding of their prediction capability on the basis of
accuracy and computational efficiency. This article is organized
hereafter as, Section 2: finite element formulation of laminated
composite plate considering layer-wise stochasticity in the input
parameters, Section 3: general overview and mathematical con-
cepts of different metamodels considered in this study, Section 4:
metamodel based stochastic free vibration analysis algorithm for
laminated composite plates, Section 5: results on comparative per-
formance and discussion, Section 6: conclusion.



Fig. 3. Surrogate modelling methods and corresponding sampling techniques.
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2. Theoretical formulation for finite element modelling of
composite plate

In present study, a laminated composite cantilever plate with
uniform thickness ‘t’ is considered as shown in Fig. 4. Based on
the first-order shear deformation theory, the displacement can be
expressed as

uðx;y; zÞ ¼ u0ðx;yÞ � zhxðx;yÞ
vðx; y; zÞ ¼ v0ðx; yÞ � zhyðx; yÞ
wðx; y; zÞ ¼ w0ðx;yÞ ¼ wðx;yÞ

ð1Þ

where, u0, v0, and w0 are displacements of the reference plane and
hx and hy are rotations of the cross section relative to x and y axes,
respectively. Each of the thin fibre of laminae can be oriented at an
arbitrary angle ‘h’ with reference to the x-axis. The constitutive
equations [113] are given by

fFg ¼ ½Dð �xÞ�feg ð2Þ
where Force resultant {F} = {Nx, Ny, Nxy, Mx, My, Mxy, Qx, Qy}T

fFg ¼
Z h=2

�h=2
frx;ry; sxy;rxz;ryz; sxyz; sxz; syzgdz

" #T

and strain {e} = {ex, ey, exy, kx, ky, kxy, cxz, cyz}T

The elasticity matrix of the laminated composite plate is given
by,

D0ð �xÞ� � ¼
Aijð �xÞ Bijð �xÞ 0
Bijð �xÞ Dijð �xÞ 0

0 0 Sijð �xÞ

2
64

3
75 ð3Þ

where

½Aijð �xÞ;Bijð �xÞ;Dijð �xÞ� ¼
Xn
k¼1

Z zk

zk�1

½f�Qijð �xÞgon�k½1;z;z2�dz i; j¼1;2;6
½Sijð �xÞ� ¼
Xn
k¼1

Z zk

zk�1

as½�Qij�kdz i; j ¼ 4;5

where �x indicates the stochastic representation and as is the shear
correction factor (=5/6) and ½�Qij� are elements of the off-axis elastic
constant matrix which is given by

½�Qij�off ¼ ½T1ð �xÞ��1½�Qij�on½T1ð �xÞ��T for i; j ¼ 1;2;6

½�Qij�off ¼ ½T2ð �xÞ��1½�Qij�on½T2ð �xÞ��T for i; j ¼ 4;5
ð4Þ

where

½T1ð �xÞ� ¼
m2 n2 2mn

n2 m2 �2mn

�mn mn m2 � n2

2
64

3
75 and T2ð �xÞ½ � ¼ m �n

n m

� �

ð5Þ
in whichm ¼ sin hð �xÞ and n ¼ cos hð �xÞ, wherein hð �xÞ is random ply
orientation angle.

½Qijð �xÞ�on ¼
Q11 Q12 0
Q12 Q12 0
0 0 Q66

2
64

3
75 for i; j ¼ 1;2;6½�Qijð �xÞ�on

¼ Q44 Q45

Q45 Q55

� �
for j ¼ 4;5

ð6Þ

where

Q11 ¼ E1

1� nu12m21
; Q22 ¼ E2

1� nu12m21
; Q12 ¼ m12E2

1� nu12m21
; Q66

¼ G12Q44 ¼ G23 and Q55 ¼ G13

An eight noded isoparametric quadratic element with five
degrees of freedom at each node (three translations and two rota-
tions) is considered in finite element formulation. The Hamilton’s
principle [114] is employed to study the dynamic nature of the
composite structure. The principle used for the Lagrangian which
is defined as

Lf ¼ T � U �W ð7aÞ
where T, U and W are total kinetic energy, total strain energy and
total potential of the applied load, respectively. The Hamilton’s
principle applicable to non-conservative system can be expressed
as,

dH ¼
Z tf

ti

½dT � dU � dW �dt ¼ 0 ð7bÞ

The energy functional for Hamilton’s principle is the Lagrangian
(Lf) which includes kinetic energy (T) in addition to potential strain
energy (U) of an elastic body. The expression for kinetic energy of
an element is given by

T ¼ 1
2
f _degT ½Með �xÞ� ð7cÞ

The potential strain energy for an element of a plate can be
expressed as,

U ¼ 1
2
fdegT ½Keð �xÞ�fdeg ð7dÞ

The Langrange’s equation of motion is given by

d
dt

@Lf
@de

� �
� @Lf

@de

� �
¼ fFeg ð7eÞ

where {Fe} is the applied external element force vector of an ele-
ment and Lf is the Lagrangian function. Substituting Lf = T–U, and
the corresponding expressions for T and U in Lagrange’s equation,



Fig. 4. Laminate composite cantilever plate.
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one obtains the dynamic equilibrium equation for each element in
the following form

½Mð �xÞ�f€deg þ ð½Keð �xÞ�Þfdeg ¼ fFeg ð7fÞ
After assembling all the element matrices and the force vectors

with respect to the common global coordinates, the resulting equi-
librium equation is obtained. For the purpose of the present study,
the finite element model is developed for different element types
and finite element discretization. Thus, using Hamilton’s principle
and Lagrange’s equation, the dynamic equilibrium equation for
motion of free vibration system ({Fe} = 0 i.e., without applied exter-
nal element force) with n degrees of freedom can be expressed as

½Mð �xÞ�½€d� þ ½Kð �xÞ�fdg ¼ 0 ð7gÞ
In the above equation, Mð �xÞ 2 Rn�n is the mass matrix, ½Kð �xÞ� is

the elastic stiffness matrix and fdg 2 Rnis the vector of generalized
coordinates. The governing equations are derived based on Mind-
lin’s theory incorporating transverse shear deformation. For free
vibration, the random natural frequencies ½xnð �xÞ� are determined
from the standard eigenvalue problem [115] using QR iteration
algorithm. The composite plate is assumed to be lightly damped
and the natural frequencies of the system are obtained as:

x2
j ð �xÞ ¼ 1

kjð �xÞ where j ¼ 1;2;3; . . . ; nmode ð8Þ

Here kjð �xÞ is the jth stochastic eigenvalue of matrix

A ¼ K�1ð �xÞMð �xÞ and nmode indicates the number of modes retained
in this analysis.

3. Mathematical formulation of metamodels

In general, the metamodels can be used as surrogates of the
actual computationally expensive simulation or experimental
model (refer to Fig. 5) when a large number of evaluations are
needed. The metamodels thus represent the results of the struc-
tural analysis (actual model evaluation) encompassing every possi-
ble combination of all input variables. From this, thousands of
combinations of all design variables can be created and performed
a pseudo analysis for each variable set, by simply adopting the cor-
responding predictive values. The formation of metamodel is typi-
cally a three-step process. First step is selection of representative
sample points (which are capable of acquiring information of the
entire design space in an optimal manner), based on which the
metamodel is constructed. In the second step, outputs or responses
are evaluated corresponding to each sample point obtained. After
obtaining the set of design points and corresponding responses,
the last step is constructing the mathematical or statistical model
to map input-output relationship. There exists both several sam-
pling techniques [9,116–118] as well as metamodel formation
methods [119] as discussed in Section 1. One of the main concerns
is selection of appropriate DOE method and metamodelling tech-
nique for a particular problem. All the sampling methods and
metamodelling techniques have their unique properties and there
exists no universal model that can be regarded as the best choice
for all types of problems. Sampling method and metamodelling
technique for a particular problem should be chosen depending
on the complexity of the model, presence of noise in sampling data,
nature and dimension (number) of input parameters, desired level
of accuracy and computational efficiency. Before using a particular
metamodelling technique it is essential to check it rigorously for its
quality of fitting and prediction capability [120–122]. Brief mathe-
matical background of the metamodeling techniques considered in
this study is presented next.

3.1. Polynomial regression (PR)

On the basis of statistical and mathematical analysis, the meta-
modelling technique gives an approximate equation which relates
the input features n and output features y for aparticular system
[46]

y ¼ f ðn1; n2; . . . ; nkÞ þ � ð9Þ
where f denotes the approximate response function and e is the sta-
tistical error term having a normal distribution with mean zero and
k is the number of input parameters. n is usually coded as dimen-
sionless variable having mean zero and a standard deviation of n.
The commonly used first order and second order polynomials used
for this purpose are of following shapes

First-ordermodel ðinteractionÞ : y¼ b0þ
Xk
i¼1

bixiþ
Xk
i¼1

Xk
j>i

bijxixjþe

Second-ordermodel : y¼ b0þ
Xk
i¼1

bixiþ
Xk
i¼1

Xk
j>i

bijxixjþ
Xk
i¼1

biix2i þe

ð10Þ
The metamodel is fit approximately to a set of points in the

design space (which may be chosen using design of experiment
approach) using a multiple regression fitting scheme.

Design of experiments (DOE) is an efficient procedure for plan-
ning experiments so that the data obtained can be utilized to



Fig. 5. Simulation model (Here X and Y represent the sets of stochastic input and
output parameters, while �x is used to denote the stochastic character). The
simulation model is depicted for two different points in the design domain,
indicated as 1 and 2.
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achieve any particular goal. After selection of the design points
using DOE, a response surface metamodel is constructed using
the method of least squares. Method of least squares is a multiple
regression technique and it is assumed in this method that random
errors are identically distributed with a zero mean and a common
unknown variance and they are independent of each other. The dif-
ference between the observed (y) and the fitted value (yi) for the
ith observation ei ¼ yi � yi is called the residual. The criterion for
choosing the bi estimates of equation y ¼ Xbþ e is that they should
minimize the sum of the squares of the residuals, which is often
called the sum of squares of the errors (SSE) and expressed as,

SSE ¼
Xn
i¼1

e2i ¼
X

ðyi � yiÞ2 ð11Þ

The residuals may be written as

e ¼ y� Xb ð12Þ
The SSE thus becomes

SSE ¼ eTe ¼ ðy� XbÞTðy� XbÞ ð13Þ
Differentiating the SSE with respect to b using partial deriva-

tives and equating it to zero, one can get Xb ¼ y. This over-
determined system of equations can be solved directly to obtain
the coefficients b as follows

b ¼ ðXTXÞ�1
XTy ð14Þ

After obtaining the coefficients b as described above, response
surface metamodel can be easily constructed. The major drawback
of RSM is to fit the design points to a second order polynomial as
systems having high degree of nonlinearity cannot be replaced
by a second order model. To overcome this lacuna, the data can
be converted into another form using suitable transformation
scheme to capture the higher degree nonlinearity. For example,
using logarithmic transformation or power transformation the
response surface model takes the following forms,

ln y ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

Xk
j>i

bijxixj þ m
k

i¼1
biix2i þ e

yn ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

Xk
j>i

bijxixj þ
Xk
i¼1

biix2i þ e

ð15Þ
The quality of a response surface model should be checked
based on several criteria. An optimized metamodel is formed by
adding or deleting input factors through backward elimination,
forward addition or stepwise elimination/addition. It involves the
calculation of the P-value (probability value, gives the risk of fal-
sely rejecting a given hypothesis) and Prob. > F value (gives the pro-
portion of time one would expect to get the stated F-value if no
factor effects are significant). The metamodel constructed should
be checked by some criterias such as R2 (A measure of the amount
of variation around the mean explained by the model), R2

adj (A mea-
sure of the amount of variation around the mean explained by the
model, adjusted for the number of terms in the model. The
adjusted R-squared decreases as the number of terms in the model
increases if those additional terms don’t add value to the model)
and R2

pred (A measure of the prediction capability of the response
surface model) expressed as follows.

R2
pred ¼

SSR
SST

¼ 1� SSE
SST

ð0 6 R2 6 1Þ ð16Þ

R2
adj ¼ 1� SSE=ðn� k�1Þ

SST=ðn�1Þ ¼ 1� ðn�1Þ
ðn� k�1Þ ð1�R2Þ ð06 R2

adj 6 1Þ

ð17Þ

R2
pred ¼ 1� PRESS

SST
ð0 6 R2

pred 6 1Þ ð18Þ

where SST ¼ SSE þ SSR is the total sum of square and PRESS is the
predicted residual error sum of squares, which is a measure of
how the model fits the samples in the design space. The values of
R2, R2

adj and R2
pred should be close to 1. A difference between R2

adj

and R2
pred within 0.2 indicates that the model can be used for further

prediction. Another check is Adequate precision, which compares
the range of the predicted values at the design points to the average
prediction error. In general, a value greater than four indicates ade-
quate model. Further, some plots should also be checked such as
normal plot of residuals (indicates whether the residuals follow a
normal distribution, in which case the points will follow a straight
line), residuals vs. predicted plot (plot of the residuals versus the
ascending predicted response values), actual vs. predicted plot (A
graph of the actual response values versus the predicted response
values for the design points used for metamodel formation. It helps
to detect a value, or group of values, that are not easily predicted by
the model) and Box-cox plot (helps to determine the most appropri-
ate power transformation to be applied).

3.2. High dimensional model representation (HDMR)

The high dimensional model representation (HDMR) can effi-
ciently deal with large number of input parameters. This method
is important because in practical applications, the variables are
often correlated, for example, the cases wherein the input variables
have some relations between them. Here relation can be determin-
istic or stochastic. For instance, large values of certain input vari-
ables may imply large or small values of some other stochastic
input variables. Such relation may be controlled by some known
or unknown distributions. These correlations are implicitly con-
tained in the collected samples in practise. The HDMR can con-
struct a proper model for prediction of the random output (say
natural frequency) in the stochastic domain. The present approach
can treat both independent and correlated input variables, and
includes independent input variables as a special case. The role
of D-MORPH in the present form of HDMR is to ensure the compo-
nent functions’ orthogonality in hierarchical manner. The present
technique decomposes the function kðSÞwith component functions
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by input parameters, S ¼ ðS1; S2; . . . ; SkkÞ. As the input parameters
are independent in nature, the component functions are specifi-
cally projected by vanishing condition. Hence, it has limitation
for general formulation. In contrast, a novel numerical analysis
with component functions is portrayed in the problem of present
context wherein a unified framework for general HDMR dealing
with both correlated and independent variables are established.
For different input parameters, the output is calculated as [123]

kðSÞ ¼ k0 þ
Xkk
i¼1

kiðSiÞ þ
X

16i<j6kk

kijðSi; SjÞ þ � � � þ k12...kkðS1; S2; SkkÞ

ð19Þ

kðSÞ ¼
X
u# kk

kuðSuÞ ð20Þ

where k0 (zeroth order component function) represents the mean
value. kiðSiÞ and kijðSi; . . . ; SjÞ denote the first and second order com-
ponent functions, respectively while k12...kkðS1; S2; ;SkkÞ indicates the
residual contribution by input parameters. The subset
u# f1;2; . . . ; kkg denotes the subset where u# kk for simplicity
and empty set, C 2 u. As per Hooker’s definition, the correlated vari-
ables are expressed as,

fkuðSuju# kkÞg ¼ Arg min
fgu2L2ðRuÞ;u# kkg

Z X
u# k

guðSuÞ � kðSÞ
 !2

wðSÞdS

ð21Þ

8u# kk; 8i 2 u;
Z

kuðSuÞ wðSÞdSi dS�u ¼ 0 ð22Þ

8v � u; 8gv :

Z
kuðSuÞgvðSvÞwðSÞdS ¼ hkuðSuÞgvðSvÞi ¼ 0 ð23Þ

The function kðSÞ can be obtained from sample data by experi-
ments or by modelling. To minimize the computational cost, the
reduction of the squared error can be realised easily. Assuming H
in Hilbert space is expanded on the basis {h1, h2,. . ., hkk}, the bigger
subspace �H (�H) is expanded by extended basis {h1, h2,. . ., hkk,
hkk+1,. . ., hm}. Then �H can be decomposed as

�H ¼ H � H? ð24Þ
where H? denotes the complement subspace (orthogonal) of H
[124] within �H. In the past work [125–127], the component func-
tions are calculated from basis functions. The component functions
of Second order HDMR expansion are estimated from basis func-
tions fug as [128]

kiðSiÞ 	
Xkk
r¼1

að0Þi
r ui

rðSiÞ ð25Þ

kijðSi; SjÞ 	
Xkk
r¼1

½aðijÞi
r ui

rðSiÞ þ aðijÞj
r u j

rðSjÞ�

þ
Xl

p¼1

Xl

q¼1

bð0Þij
pq ui

pðSiÞu j
qðSjÞ ð26Þ

i.e., the basis functions of kijðSi; SjÞ contain all the basis functions
used in kiðSiÞ and kjðSjÞ.

The HDMR expansions at Nsamp sample points of S can be repre-
sented as a linear algebraic equation system

CJ ¼ R̂ ð27Þ
where C denotes a matrix (Nsamp � ~t) whose elements are basis
functions at the Nsamp values of S; J is a vector with ~t dimension of
all unknown combination coefficients; R̂ is a vector with Nsamp-

dimension wherein lth element is kðSðlÞÞ � k0. S
ðlÞ denotes the lth

sample of S, and k0 represents the average value of all kðSðlÞÞ. The
regression equation for least squares of the above equation can be
expressed as

1
Nsamp

CTCJ ¼ 1
Nsamp

CT R̂ ð28Þ

Due to the use of extended bases, some rows of the above equa-
tion are identical and can be removed to give an underdetermined
algebraic equation system

AJ ¼ V̂ ð29Þ

It has many of solutions for J composing a manifold Y 2 Re
~t .

Now the task is to find a solution J from Y to force the HDMR com-
ponent functions satisfying the hierarchical orthogonal condition.
D-MORPH regression provides a solution to ensure additional con-
dition of exploration path represented by differential equation

dJðlÞ
dl

¼ vvðlÞ ¼ ðIt � AþAÞvðlÞ ð30Þ

wherein v denotes orthogonal projector ensuring

v2 ¼ v and vT ¼ v ð31Þ

v ¼ v2 ¼ vTv ð32Þ
The free function vector may be selected to ensure the wide

domain for JðlÞ as well as to simultaneously reduce the cost
jðJðlÞÞ which can be expressed as

vðlÞ ¼ � @jðJðlÞÞ
@J

ð33Þ

Then we obtain

@jðJðlÞÞ
@l

¼ @jðJðlÞÞ
@J

� �T
@JðlÞ
@l

¼ @jðJðlÞÞ
@J

� �T

PvðlÞ

¼ � P
@jðJðlÞÞ

@J

� �T

P
@jðJðlÞÞ

@J

� �
6 0

ð34Þ

The cost function can be expressed in quadratic form as

j ¼ 1
2
JTBJ ð35Þ

where B denotes the positive definite symmetric matrix and J1 can
be expressed as

J1 ¼ VtðUT
~t�rV~t�rÞ

�1
UT

~t�rA
þV̂ ð36Þ

where the last columns ð~t � rÞ of U and V are denoted as U~t�r and
V~t�r which can found by decomposition of vB [129]

vB ¼ U
�Sr 0
0 0

" #
VT ð37Þ

This unique solution J1 in Y indicates the minimized cost func-
tion. D-MORPH regression is used to find the J which ensures the
HDMR component functions’ orthogonality in hierarchical manner.
The construction of the corresponding cost function j can be found
in previous literature [125].

3.3. Polynomial chaos expansion (PCE)

The polynomial chaos expansion is an effective tool for solving
stochastic systems. It was first introduced as the homogeneous
chaos by Wiener [130]. The basic idea is to project the random
variables of problem onto a stochastic space spanned by a set of
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complete orthogonal polynomials. The orthogonal polynomial
chaos basis functions, derived from Gram-Schmidt algorithm
[131] is employed in this study for mapping input-output relation.
The solution to generalized equation at a random space can be
expanded into a polynomial chaos expansion as follows:

y ¼ BwðnÞ ð38Þ
where y ¼ ½y1y2 . . . ; yn�T 2 Rn�1 denotes the assembled vector of

output data, wðnÞ ¼ ½psi0ðnÞw1ðnÞ . . .wpðnÞ�T 2 Rp�1 denotes the
assembled vector of polynomial chaos basis functions and B is
expressed as

B ¼

bð1Þ
0 bð1Þ

1 bð1Þ
2 � � � bð1Þ

p

bð2Þ
0 bð2Þ

1 bð2Þ
2 � � � bð2Þ

p

bð3Þ
0 bð3Þ

1 bð3Þ
2 � � � bð3Þ

p

: : : :

: : : :

: : : :

bðnÞ
0 bðnÞ

1 bðnÞ
2 � � � bðnÞ

p

2
6666666666664

3
7777777777775

ð39Þ

where bðiÞ
k are the coefficients of polynomial expansion with

k = 1,2,3. . .p (p is the number of terms retained in the expansion),
n is the number of output parameters, n is an m-dimensional vector
of variables and ‘m’ is the number of input parameters. Gram-
Schmidt algorithm provides the opportunity to derive the polyno-
mial chaos basis functions for any arbitrary probability distribution
on ‘n’. In this method, the polynomial terms are represented as

wjðniÞ ¼ n j
i þ Oðnj�1

i Þ where j ¼ 0;1; . . . ; h. This results in
w0ðniÞ ¼ 1and the remaining terms are computed using the follow-
ing recursive equations:

wjðniÞ ¼ ejðniÞ �
Xj�1

k¼0

cjkwkðniÞ ð40Þ

where cjk ¼
R
supp ni

ejðniÞwkðniÞpðniÞdniR
supp ni

w2
kðniÞpðniÞpðniÞdni

The lower and upper bounds of input variables (i.e., pðLÞ
i ; pðUÞ

i ) can
be transformed into the normalized values of -1 and 1, respectively
and thus a transformation functionuð
Þ for any intermediate value
in the design domain can be obtained as:

ni ¼ uðpiÞ ¼ 2
pi � pðLÞ

i

pðUÞ
i � pðLÞ

i

� 1
2

 !
ð41Þ

pi ¼ u�1ðniÞ ¼
pðUÞ
i � pðLÞ

i

� 	
2

ni þ
pðUÞ
i þ pðLÞ

i

� 	
2

ð42Þ

where ni is the transformed value in domain [-1, 1] corresponding to

pi in the domain [pðLÞ
i ;pðUÞ

i ] for ith input parameter

(n ¼ ½n1; n2; . . . ; nm�T 2 Rm�1).

3.4. Kriging method

The Kriging model initially developed in spatial statistics by
Danie Gerhardus Krige and subsequently extended by Matheron
[132] and Cressie [133]. Kriging is a Gaussian process based mod-
elling method, which is compact and cost effective for computa-
tion. Kriging surrogate models are employed to fit the data those
are obtained for larger experimental areas than the areas used in
low order polynomial regression. Hence Kriging models are global
rather than local wherein such models are used for prediction. The
Kriging model postulates a combination of a known function
employed for simulation of required output as
yðxÞ ¼ y0ðxÞ þ ZðxÞ ð43Þ
where y(x) is the unknown function of interest, x is anm dimensional
vector (m design variables), y0ðxÞ is the known approximation (usu-
ally polynomial) function and Z(x) represents is the realization of a
stochastic process with mean zero, variance, and nonzero covari-
ance. In the model, the local deviation at an unknown point (x) is
expressed using stochastic processes. The sample points are interpo-
lated with the Gaussian random function as the correlation function
to estimate the trend of the stochastic processes. The y0ðxÞ term is
similar to a polynomial response surface, providing global model
of the design space. In present study, y0ðxÞ globally approximates
the design space, Z(x) creates the localized deviations so that the
Kriging model interpolative Kriging models can also be created to
smooth noisy data [134]. The covariance matrix of Z(x) is given as

Cov ½ZðxiÞ; Zðx jÞ� ¼ r2R½Rðxi; x jÞ� ð44Þ
where R is a (p � p) correlation matrix and R(xi, xj) is the correlation
function between any two of the p-sampled data points xi and xj. R
is an (p � p) symmetric matrix with ones along the diagonal. The
correlation function R(xi, xj) is specified by the user, and a variety
of correlation functions exist. Using Gaussian correlation function

Rðxi; x jÞ ¼ exp �
Xn
k¼1

hk xik � x j
k




 


2
" #

ð45Þ

where n is the number of design variables, hk is the unknown corre-

lation parameters used to fit the model, and xik and x j
k are the kth

components of the sample points xi and x j, respectively. The pre-
dicted estimates, ŷ of the response yðxÞ at random values of x are
defined as Kriging predictor

ŷðxÞ ¼ b̂þ rTðxÞR�1½y� f b̂� ð46Þ
where y is the column vector of length p that contains the sample
values of the frequency responses and f is a column vector of length
p that is filled with ones when y0ðxÞ is taken as constant. Now, rTðxÞ
is the correlation vector of length p between the random x and the
sample data points fx1; x2; . . . xpg

rTðxÞ ¼ ½Rðx; x1Þ;Rðx; x2Þ;Rðx; x3Þ . . .Rðx; xpÞ�T ð47Þ

b̂ ¼ ðf TR�1f Þ�1
f TR�1y ð48Þ

An estimate of the variance between underlying global model b̂
and y is estimated by

r̂2 ¼ 1
p
ðy� f b̂ÞTR�1ðy� f b̂Þ ð49Þ

Now the model fitting is accomplished by maximum likelihood
(i.e., best guesses) for hk. The maximum likelihood estimates (i.e.,
‘‘best guesses”) for the hk in Eq. (38) used to fit a Kriging model
are obtained as

Max:CðhkÞ ¼ �1
2

p lnðr̂2Þ þ lnjRj� � ð50Þ

where the variance r2 and |R| are both functions of hk, is solved for
positive values of hk as optimization variables. After obtaining Krig-
ing based surrogate, the random process Z(x) provides the approx-
imation error that can be used for improving the surrogate model.
The maximum mean square error (MMSE) and maximum error
(ME) are calculated as,

MMSE ¼ max :
1
k

Xk
i¼1

ð�yi � yiÞ2
" #

ð51Þ

ME ð%Þ ¼ Max
yi;MCS � yi;Kriging

Yi;MCS

� �
ð52Þ
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where yi and �yi are the vector of the true values and the vector cor-
responding to ith prediction, respectively.

3.5. Multivariate adaptive regression splines (MARS)

Multivariate adaptive regression splines algorithm (MARS)
[135] provides an efficient mathematical relationship between
input parameters and output feature of interest for a system under
investigation based on few algorithmically chosen samples. MARS
is a nonparametric regression procedure that makes no assump-
tion about the underlying functional relationship between the
dependent and independent variables. MARS algorithm adaptively
selects a set of basis functions for approximating the response
function through a forward and backward iterative approach. The
MARS model can be expressed as

Y ¼
Xn
k¼1

akH
f
k ðxiÞ ð53Þ

with Hf
k ðx1; x2; x3 . . . xnÞ ¼ 1 for k ¼ 1

where ak and Hf
k ðxiÞ are the coefficient of the expansion and the

basis functions, respectively. Thus the first term of Eq. (53) becomes
a1, which is basically an intercept parameter. The basis function can
be represented as

Hf
k ðxiÞ ¼ Pik

i¼1 Zi;kðxjði;kÞ � ti;kÞ
� �q

tr ð54Þ
where ik is the number of factors (interaction order) in the kth basis
function, zi;k ¼ �1, xjði;kÞ is the jth variable, 1 � j(i,k) � n, and ti;k is a
knot location on each of the corresponding variables. q is the order
of splines. The approximation function Y is composed of basis func-
tions associated with k sub-regions. Each multivariate spline basis

function Hf
k ðxiÞ is the product of univariate spline basis functions

zi;k, which is either order one or cubic, depending on the degree of
continuity of the approximation. The notation ‘‘tr” means the func-
tion is a truncated power function.

zi;kðxjði;kÞ � ti;kÞ
� �q

tr ¼ zi;kðxjði;kÞ � ti;kÞ
� �q for zi;kðxjði;kÞ � ti;kÞ

� �
< 0 ð55Þ

zi;kðxjði;kÞ � ti;kÞ
� �q

tr ¼ 0; Otherwise ð56Þ
Here each function is considered as piecewise linear with a

trained knot ‘tr’ at each xði;kÞ. By allowing the basis function to bend
at the knots, MARS can model functions that differ in behaviour
over the domain of each variable. This is applied to interaction
terms as well. The interactions are no longer treated as global
across the entire range of predictors but between the sub-regions
of every basis function generated. Depending on fitment, the max-
imum number of knots to be considered, the minimum number of
observations between knots, and the highest order of interaction
terms are determined. The screening of automated variables occur
as a result of using a modification of the generalized cross-
validation (GCV) model fit criterion, developed by Craven and
Wahba [136]. MARS finds the location and number of the needed
spline basis functions in a forward or backward stepwise fashion.
It starts by over-fitting a spline function through each knot, and
then by removing the knots that least contribute to the overall fit
of the model as determined by the modified GCV criterion, often
completely removing the most insignificant variables. The equa-
tion depicting the lack-of-fit (Lf ) criterion used by MARS as

Lf ðY~kÞ ¼ Gcvð~kÞ ¼
1
n

Pn
i¼1½Yi � Y~kðxiÞ�2

1� ~cð~kÞ
n

h i2 ð57Þ

where ~cð~kÞ ¼ cð~kÞ þM � ~k
where ‘n’ denotes the number of sample observations, ~cð~kÞ is the

number of linearly independent basis functions, ~k is the number of
knots selected in the forward process, and ‘M’ is a cost for basis-
function optimization as well as a smoothing parameter for the pro-
cedure. The larger values of ‘M’ result in fewer knots and smoother
function estimates. The best MARS approximation is the one with
the highest GCV value. Thus MARS is also compared with parametric
and nonparametric approximation routines in terms of its accuracy,
efficiency, robustness, model transparency, and simplicity and it is
found suitable methodologies because it is more interpretable than
most recursive partitioning, neural and adaptive strategies wherein
it distinguishes well between actual and noise variables. Compared
to other techniques, the use of MARS for engineering design applica-
tions is relatively new. Sudjianto et al. [137] use MARS to emulate a
conceptually intensive complex automotive shock tower model in
fatigue life durability analysis. Wang et al. [138], compare MARS to
linear, second-order, and higher-order regression models for a five
variable automobile structural analysis. Friedman [135] uses the
MARS procedure to approximate behaviour of performance vari-
ables in a simple alternating current series circuit. The major advan-
tages of using theMARS procedure appears to be accuracy andmajor
reduction in computational cost associated with constructing the
metamodel compared to the kriging method.

3.6. Radial basis function (RBF)

Quadratic surrogates have the benefit of being easy to imple-
ment while still being able to model curvature of the underlying
function. Another way to model curvature is to consider interpolat-
ing surrogates, which are linear combinations of nonlinear basis
functions and satisfy the interpolation points. RBF is often used
to perform the interpolation of scattered multivariate data [139–
141]. The metamodel appears in a linear combination of Euclidean
distances can be expressed as

ŶðxÞ ¼
Xn
k¼1

wk/kðX; xkÞ ð58Þ

where, n is the number of sampling points, wk is the weight deter-
mined by the least-squares method and /kðX; xkÞ is the kth basis
function determined at the sampling point xk. Various symmetric
radial functions are used as the basis function. The radial function
for RBF model can be expressed as,

Rf ðxÞ ¼ exp �ðx� cÞTðx� cÞ
r2

 !
ðFor GaussianÞ ð59Þ

Rf ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx� cÞTðx� cÞ

r2

s
ðFor multi-quadraticÞ ð60Þ

Rf ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx�cÞT ðx�cÞ

r2

q ðFor inverse multi-quadraticÞ ð61Þ

Rf ðxÞ ¼ 1

1þ ðx�cÞT ðx�cÞ
r2

ðFor CauchyÞ ð62Þ

The RBF method can be treated to be as an interpolator like
Kriging. However, such an interpolation method has shortcomings
in that the appearance of a metamodel varies significantly with the
type of basis function and its internal parameters. In the present
study, a Gaussian basis function is employed with the fixed param-
eter r2 ¼ 1. It should be noted that an RBF passes through all the
sampling points exactly. This means that function values from
the approximate function are equal to the true function values at
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the sampling points. This can be seen from the way that the coef-
ficients are found. Therefore, it would not be possible to check RBF
model fitness with ANOVA, which is a drawback of RBF.

3.7. Moving least squares (MLS)

In general, the polynomial regression models give the large
errors in conjunction to non-linear responses while give good
approximations in small regions wherein the responses are less
complex. Such features are found advantageous while implement-
ing the method of moving least squares (MLS). Moreover, the least
square method gives a good result to represent the original limit
state but it creates a problem if anyone like to fit a highly nonlinear
limit function with this technique because this technique uses
same factor for approximation throughout the space of interest.
To overcome this problem, the moving least square method is
introduced. In this method, a weighted interpolation function or
limit state function is employed to the response surface and some
extra support points are also generated over least square method
to represent perfectly the nonlinear limit surface. In stochastic
analysis, uncertainties can be expressed as a vector of random vari-
ables, x ¼ ½x1; x2; x3; . . . xn�T , characterized by a probability density
function (PDF) with a particular distribution such as normal or log-
normal with limit state function of these random variables. To
avoid the curse of dimensionality in dealing with random input
variables, response surface methods (RSM) can be utilised to
increase the computational efficiency. These methods approximate
an implicit limit state function as a response surface function (RSF)
in an explicit form, which is evaluated for a set of selected design
points throughout a number of deterministic structural analyses.
RSM approximates an implicit limit state function as a RSF in expli-
cit form. It selects experimental points by an axial sampling
scheme and fits these experimental points using a second order
polynomial without cross terms expressed as

yðxÞ ¼ bo þ
Xk
i¼1

bixi þ
Xk
i¼1

Xk
j>i

bijxixj þ
Xk
i¼1

biix
2
i ð63Þ

where bo, bi, bij and bii are the unknown coefficients of the polynomial
equation. The least squares approximation commonly used in the
conventional RSM allots equal weight to the experimental points in
evaluating the unknown coefficients of the RSF. The weights of these
experimental points should consider the proximity to the actual limit
state function so thatMLS [142–144] enables a higherweight to yield
a more accurate output. The approximated RSF can be defined in
terms of basis functions bðxÞ and the coefficient vector aðxÞ as
~LðxÞ ¼ bðxÞTaðxÞ ð64Þ

The coefficient vector aðxÞ is expressed as a function of the ran-
dom variables x to consider the variation of the coefficient vector
according to the change of the random variable at each iteration.
The local MLS approximation at x is formulated as [20]

~Lðx; xiÞ ¼ bðxiÞTaðxÞ ð65Þ
where xi denotes experimental points and the basis functions BðxÞ
are commonly chosen as

bðxÞ ¼ 1x1 . . . xnx2 . . . x2n
� �T ð66Þ

The vector of unknown coefficients aðxÞ is determined by min-
imizing the error between the experimental and approximated val-
ues of the limit state function. This error is defined as

ErrðxÞ ¼
Xn
i¼1

wðx� xiÞ ~Lðx; xiÞ � LðxiÞ
h i2

¼ ðBa� LÞTWðxÞðBa� LÞ

ð67Þ
where L ¼ Lðx1Þ; Lðx2Þ; . . . LðxnÞ½ �T , B ¼ bðx1Þ; bðx2Þ; . . . bðxnÞ½ �T and
WðxÞ ¼ diag:½w1ðx1 � xÞ;w2ðx2 � xÞ; . . .wmðxn � xÞ�.

Here (n + 1) is the number of sampling points and (m + 1) is the
number of basis functions. Now for minimization of error with
respect to aðxÞ, @ðErrÞ=@a ¼ 0 transforming the coefficient of vector
aðxÞ as

aðxÞ ¼ ðBTWðxÞBÞ�1
BTWðxÞL ð68Þ

The approximated response surface function is obtained from
Eq. (65) as

~LðxÞ ¼ bðxÞTðBTWðxÞBÞ�1
BTWðxÞL ð69Þ
3.8. Group method of data handling – polynomial neural network
(GMDH-PNN)

In general, the Polynomial Neural Network (PNN) algorithm
[23,24] is the advanced succession of Group Method of Data Han-
dling (GMDH) method wherein different linear, modified quadra-
tic, cubic polynomials are used. By choosing the most significant
input variables and polynomial order among various types of forms
available, the best partial description (PD) can be obtained based
on selection of nodes of each layer and generation of additional
layers until the best performance is reached. Such methodology
leads to an optimal PNN structure wherein the input–output data
set can be expressed as

ðXi;YiÞ ¼ ðx1i; x2i; x3i; . . . xni; yiÞ where i; j ¼ 1;2;3 . . .n ð70Þ
By computing the polynomial regression equations for each pair

of input variable xi and xj and output Y of the object system which
desires to modelling

Y ¼ Aþ Bxi þ Cxj þ Dx2i þ Ex2j þ Fxixj where i; j ¼ 1;2;3 . . .n

ð71Þ
where A, B, C, D, E, F are the coefficients of the polynomial equation.
This provides nðn� 1Þ=2 high-order variables for predicting the out-
put Y in place of the original n variables ðx1; x2; . . . ; xnÞ After finding
these regression equations from a set of input-output observations,
we then find out which ones to save. This gives the best predicted
collection of quadratic regression models. We now use each of the
quadratic equations that we have just computed and generate
new independent observations that will replace the original obser-
vations of the variables ðx1; x2; . . . ; xnÞ From these new independent
variables we will combine them exactly as we did before. That is,
we compute all of the quadratic regression equations of Y versus
these new variables. This will provide a new collection of
nðn� 1Þ=2 regression equation for predicting Y from the new vari-
ables, which in turn are estimates of Y from above equations.
Now the best of new estimates is selected to generate new indepen-
dent variables from selected equations to replace the old, and com-
bine all pair of these new variables. This process is continued until
the regression equations begin to have a poorer predictability
power than did the previous ones. In other words, it is the time
when the model starts to become overfitted. The estimated output

Ŷ i can be further expressed as

Ŷ ¼ f̂ ðx1; x2; x3; . . . xnÞ

¼ A0 þ
Xn
i¼1

Bixi þ
Xn
i¼1

Xn
j¼1

Cijxixj þ
Xn
i¼1

Xn
j¼1

Xn
k¼1

Dijkxixjxk þ � � �

where i; j; k ¼ 1;2;3: . . .n

ð72Þ

where Xðx1; x2; . . . ; xnÞ is the input variables vector and
PðA0; Bi;Cij;Dijk; . . .Þ is vector of coefficients or weight of the
Ivakhnenko polynomials. Components of the input vector X can
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be independent variables, functional forms or finite difference
terms. This algorithm allows to find simultaneously the structure
of model and model system output on the values of most significant
inputs of the system. The following steps are to be performed for
the framework of the design procedure of PNN [145]:

Step1: Determination of input variables: Define the input vari-
ables as xi ¼ 1;2;3; . . .n related to output variable Y. If required,
the normalization of input data is also completed.

Step 2: Create training and testing data: Create the input–output
data set ðnÞ and divide into two parts, namely, training data ðntrainÞ
and testing data ðntestÞ where n ¼ ntrain þ ntest . The training data set
is employed to construct the PNNmodel including an estimation of
the coefficients of the partial description of nodes situated in each
layer of the PNN. Next, the testing data set is used to evaluate the
estimated PNN model.

Step 3: Selection of structure: The structure of PNN is selected
based on the number of input variables and the order of PD in each
layer. Two kinds of PNN structures, namely a basic PNN and a mod-
ified PNN structure are distinguished. The basic taxonomy for the
architectures of PNN structure is furnished in Fig. 6.

Step 4: Determination of number of input variables and order of
the polynomial: Determine the regression polynomial structure of
a PD related to PNN structure. The input variables of a node from
n input variables x1; x2; x3; . . . xn are selected. The total number of
PDs located at the current layer differs according to the number
of the selected input variables from the nodes of the preceding
layer. This results in k ¼ n!=ðn!� r!Þr! nodes, where r is the number
of the chosen input variables. The choice of the input variables and
the order of a PD itself help to select the best model with respect to
the characteristics of the data, model design strategy, nonlinearity
and predictive capability.

Step 5: Estimation of coefficients of PD: The vector of coefficients
Ai is derived by minimizing the mean squared error between Yi and

Ŷ i .

PI ¼ 1
ntrain

Xntrain
i¼1

ðYi � Ŷ iÞ
2 ð73Þ

where PI represents a criterion which uses the mean squared differ-
ences between the output data of original system and the output
data of the model. Using the training data subset, this gives rise
to the set of linear equations

Y ¼
Xn
i¼1

XiAi ð74Þ

The coefficients of the PD of the processing nodes in each layer
are derived in the form

Ai ¼ ½XT
i Xi��1

XT
i Y ð75Þ

where

Y ¼ ½y1; y1; y1; y1; . . . ; yntrain �
T

Xi ¼ ½x1i; x2i; x3i . . .Xki . . .Xtrain i�T

XT
ki ¼ ½xki1xki2 . . . xkin . . . xmki1; xmki2 . . . xmkin�T

Ai ¼ ½A0iA1iA2i . . .An0 i�T
Fig. 6. Taxonomy for architectures of PNN.
with the following notations i as the node number, k as the data
number, ntrain as the number of the training data subset, n as the
number of the selected input variables, m as the maximum order,
and n0 as the number of estimated coefficients. This procedure is
implemented repeatedly for all nodes of the layer and also for all
layers of PNN starting from the input layer and moving to the out-
put layer.

Step 6: Selection of PDs with the best predictive capability: Each
PD is estimated and evaluated using both the training and testing
data sets. Then we compare these values and choose several PDs,
which give the best predictive performance for the output variable.
Usually a predetermined number W of PDs is utilized.

Step 7: Check the stopping criterion: The stopping condition indi-
cates that a sufficiently good PNN model is accomplished at the
previous layer, and the modelling can be terminated. This condi-
tion reads as PIj > PI where PIj is a minimal identification error
of the current layer whereas PI⁄ denotes a minimal identification
error that occurred at the previous layer.

Step 8: Determination of new input variables for the next layer: If
PIj (the minimum value in the current layer) has not been satisfied
(so the stopping criterion is not satisfied), the model has to be
expanded. The outputs of the preserved PDs serve as new inputs
to the next layer.

3.9. Artificial neural network (ANN)

The fundamental processing element of ANN is an artificial neu-
ron (or simply a neuron). A biological neuron receives inputs from
other sources, combines them, generally performs a non-linear
operation on the result, and then outputs the final result [146].
In the present study, the stochastic natural frequencies can be
determined due to variability of input parameters. The ability of
the ANNs, to recognize and reproduce the cause-effect relation-
ships through training for the multiple input-output systems
makes them efficient to represent even the most complex systems
[147]. The main advantages of ANN as compared to response sur-
face method (RSM) include:

a) ANN does not require any prior specification of suitable fit-
ting function, and

b) It also has a universal approximation capability to approxi-
mate almost all kinds of non-linear functions including
quadratic functions, whereas RSM is generally useful for
quadratic approximations [148].

A multi-layer perceptron (MLP) based feed-forward ANN, which
makes use of the back propagation learning algorithm, was applied
for computational modelling. The network consists of an input
layer, one hidden layer and an output layer. Each neuron acts
firstly as a adding junction, summing together all incoming values.
After that, it is filtered through an activation transfer function, the
output of which is forwarded to the next layer of neurons in the
network. The hyperbolic tangent was used as the transfer function
for the input and hidden layer nodes. The reason behind employing
the transfer function as logistic function or hyperbolic tangent
(tanh) can be described as the logistic function generates the values
nearer to zero if the argument of the function is substantially neg-
ative. Hence, the output of the hidden neuron can be made close to
zero, and thus lowering the learning rate for all subsequent
weights. Thus, it will almost stop learning. The tanh function, in
the similar fashion, can generate a value close to -1.0, and thus will
maintain learning. The algorithm used to train ANN in this study is
quick propagation (QP). This algorithm is belonging to the gradient
descent back-propagation. It has been reported in the literature
that quick propagation learning algorithm can be adopted for the
training of all the ANN models [149]. The performance of the ANNs
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are statistically measured by the root mean squared error (RMSE),
the coefficient of determination (R2) and the absolute average devi-
ation (AAD) obtained as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðYi � YidÞ2
vuut ð76Þ
R2 ¼ 1�
Pn

i¼1ðYi � YidÞ2Pn
i¼1ðYid � YmÞ2

ð77Þ
AAD ¼ 1
n

Xn
i¼1

ðYi � YidÞ
Yid












" #
� 100 ð78Þ

where n is the number of points, Yi is the predicted value, Yid is the
actual value, and Ym is the average of the actual values.
Fig. 7. Soft margin loss setting corresponding to a linear Support Vector machine.

Fig. 8. Flowchart of stochastic natural frequency ana
3.10. Support vector regression method

Support vector regression (SVR) model is a special version
of the Support Vector Machine (SVM) developed for
regression analysis. Suppose the training data is given as
fðx1; y1Þ; ðx2; y2Þ . . . ðxl; ylÞg � v�Rwhere v andR denote the space
of the input patterns and Euclidean space vector. In support vector

regression [150], the primary objective is to find a function f̂ ðxÞ that
has at most e deviation from the actually obtained targets yi for all
these training data and at the same time, is as flat as possible. In
otherwords, errors are neglected as long as they are less than e (refer
to Fig. 7), but itwill not accept any deviation larger than this limiting
value. Thus SVR model uses a subset of data samples, support vec-
tors, to construct a metamodel that has a maximum deviation of e
from the function value of each training data. For a linear regression,
the SVR model can be written as

f̂ ðxÞ ¼ ŶðxÞ ¼ hW � xi þ b ð79Þ

where ŶðxÞ, W and b denote the approximate value of the objective
function at x, vector of weights and the bias term, respectively while
h�i indicates the inner product. The sample points which lie within
the �e band (known as the e-tube) are ignored, with the predictor
being defined entirely by those that lie on or outside this region ter-
med as the support vectors. The basic form of the SVR prediction is
the familiar sum of basis functions wðiÞ, with weightings wðiÞ, added
to a base term b, which can be expressed as,

f̂ ðxÞ ¼ bþ
Xk
i¼1

W ðiÞwðx; xðiÞÞ ð80Þ
lysis using (a) surrogate model and (b) ANSYS.



Table 2
Convergence study for non-dimensional fundamental natural frequencies [x = xn L2p
(q/E1t2)] of three layered (h�/�h�/h�) graphite-epoxy untwisted composite plates, a/

b = 1, b/t = 100, considering E1 = 138 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, m12 = 0.3.

Ply
angle, h

Methods Mesh Sizes Qatu and
Leissa [153]

4 � 4 6 � 6 8 � 8 10 � 10

0� Present FEM 1.0112 1.0133 1.0107 1.0040 1.0175
ANSYS 1.0111 1.0130 1.0101 1.0035

45� Present FEM 0.4591 0.4603 0.4603 0.4604 0.4613
ANSYS 0.4588 0.4600 0.4598 0.4696

90� Present FEM 0.2553 0.2567 0.2547 0.2542 0.2590
ANSYS 0.2550 0.2565 0.2545 0.2541

Fig. 9. Finite element mesh convergence study using ANSYS for combined
stochasticity.
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To produce a prediction which generalizes well, it is required to
find the function with, at most, e deviations from y and at the same
time, minimum complexity. Instead of minimizing the empirical
risk on the training data during the fitting process, SVR minimizes
an upper bound on the expected risk using an e-insensitive loss
function, as constrained convex quadratic optimization problem
proposed by [42]

GðxÞ ¼ 0 jYðxÞ � ŶðxÞj 6 e
jYðxÞ � ŶðxÞj � e Otherwise

( )
ð81Þ

SVRmodel performs both linear as well as non-linear regression
e-insensitive loss function, at the same time, tries to reduce the
model complexity by minimizing the norm of the weighting vector,

Minimize 1
2 jjWjj2

Subjected to
Yi � hW � xðiÞi � b 6 e
hW � xðiÞi þ b� Yi 6 e

( ) ð82Þ

It should be noted that there might not be a function that satis-
fies the condition in Eq. (82). The regularization parameter deter-
mines the trade-off between the model complexity and the
degree for which deviation larger than e is tolerated in Eq. (82).
A non-linear regression can be achieved by replacing the h�i in
Eq. (79) with a kernel function, K as

f̂ ðxÞ ¼
Xk
i¼1

ðai � a
i ÞKðxi; xÞ þ b ð83Þ

In the case studies examined in this paper, a Gaussian kernel
function is used and e and G parameters are chosen based on the
recommendation proposed by Cherkassky and Ma [151]. For more
details on SVR, the interested reader may refer to [150–152].

4. Metamodel based stochastic natural frequency analysis

The stochasticity in layer-wise material properties of laminated
composite plates, such as longitudinal elastic modulus, transverse
elastic modulus, longitudinal shear modulus, transverse shear
modulus, Poisson’s ratio, mass density and geometric properties
such as ply-orientation angle are considered as input parameters.
In the present study, frequency domain feature (first three natural
frequencies) is considered as output. It is assumed that the distri-
bution of randomness of input parameters exists within a certain
band of tolerance with their central deterministic mean values fol-
lowing a uniform random distribution. Both individual (ply-
orientation angle) and combined layer-wise variation of input
parameters are considered to account for the effect of low and high
dimensional input parameter space in the surrogate based uncer-
tainty quantification algorithms as follows

(a) Variation of ply-orientation angle only:⁄⁄⁄
hð �xÞ ¼ h1h2h3 . . . hi . . . hl
(b) Combined variation of ply orientation angle, elastic modulus
(longitudinal and transverse), shear modulus (longitudinal
and transverse), Poisson’s ratio and mass density:
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gfhð �xÞ;qð �xÞ;G12ð �xÞ;G23ð �xÞ;E1ð �xÞg
¼ fU1ðh1 . . .hlÞ;U2ðE1ð1Þ . . .E1ðlÞÞ;U3ðE2ð1Þ . . .E2ðlÞÞ;

U4ðG12ð1Þ . . .G12ðlÞÞ;U5ðG23ð1Þ . . .G23ðlÞÞ;U6ðl1 . . .llÞ;U7ðq1 . . .qlÞg
where hi, E1(i), E2(i), G12(i), G23(i), li and qi are the ply orientation
angle, elastic modulus along longitudinal and transverse direction,
shear modulus along longitudinal direction, shear modulus along
transverse direction, Poisson’s ratio and mass density, respectively
and ‘l’ denotes the number of layer in the laminate. In present study,
±5� for ply orientation angle with subsequent ±10% tolerance for
material properties from deterministic mean value are considered
following standard industry practise for presenting results. The
sampling technique for a particular surrogate modelling method
is chosen on the basis of available literature to ensure best possible
performance of each surrogate as furnished in Fig. 3. Fig. 8(a) pre-
sents the flowchart of stochastic natural frequency analysis using
surrogate models.

A major limitation of the studies on uncertainty quantification
of laminated composites as presented in the literature review sec-
tion is that most of the investigations are based on finite element
codes written in scientific programming languages like FORTRAN
or MATLAB. This restricts application of such uncertainty quantifi-
cation methods to large-scale complex structures, for which com-
mercially available finite element modelling packages are
Individual cases

(a)

(c)

Fig. 10. (a–d) Error (%) of mean and standard deviation of first three natural frequencies b
and MCS results for individual variation of ply orientation angle and combined variation
commonly used in industry. In this article, we present a useful
industry oriented uncertainty quantification scheme using com-
mercial finite element software in conjunction with MATLAB. For
that purpose, the APDL script generated after modelling the com-
posite plate in ANSYS environment is integrated with MATLAB. A
fully automated MATLAB code is developed capable of rewriting
the APDL script in each iteration containing the random values of
stochastic input parameters, then running the APDL script to
obtain desired outputs (refer the flowchart presented in Fig. 8(b))
and saving the results for each sample. Thus Monte Carlo simula-
tion can be carried out using ANSYS in conjunction with MATLAB
for any number of samples following the proposed approach.

5. Results and discussion

The previous investigations in the field of laminated composites
have focused on the deterministic aspect of different static and
dynamic responses over the last few decades [153–169]. A rela-
tively new area of research is the quantification of uncertainty in
laminated composite structures [170]. The amount of research car-
ried out in the field of uncertainty quantification of composite
structures is insufficient owing to the computational intensiveness
of such analyses. However, the stage of research on application of
metamodels to achieve computational efficiency in the uncertainty
Combined cases

(b)

(d)

etween polynomial regression method with different design of experiment methods
(f1 f2 and f3 denote first three modes of vibration).
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quantification of composites is still in its infancy. As discussed in
the introduction section, all the investigations on metamodel
based uncertainty quantification of laminated composites are per-
formed using a single metamodel. Thus there exists a strong ratio-
nale among the scientific community to investigate the relative
performance of different metamodels, which is the focus of the
present study. In the present paper, a three layered graphite-
epoxy symmetric angle-ply (45�/�45�/45�) laminated composite
cantilever plate is considered to investigate the comparative per-
formance of different metamodels on the basis of accuracy and
computational efficiency. The length, width and thickness of the
composite laminate considered in the present analysis are 1 m,
1 m and 5 mm, respectively. Material properties of graphite–epoxy
composite [171] considered with deterministic mean value as
E1 = 138.0 GPa, E2 = 8.96 GPa, G12 = 7.1 GPa, G13 = 7.1 GPa,
G23 = 2.84 GPa, l = 0.3, q = 3202 kg/m3. An eight noded isopara-
metric quadratic plate bending element is considered for the pre-
sent FEM approach. For full scale MCS, number of original finite
element analysis is same as the sampling size. In general for com-
plex composite structures, the performance function is not avail-
able as an explicit function of the random design variables. The
considered metamodels are employed to find the predictive and
representative surrogates relating the first three natural frequen-
cies to a number of input variables on a comparative basis. Thus
the metamodels are used to determine the first three natural fre-
quencies corresponding to given values of stochastic input vari-
ables, instead of time-consuming and computationally intensive
finite element analysis.

Table 2 presents the finite element mesh convergence study for
non-dimensional fundamental natural frequencies of three layered
graphite-epoxy untwisted composite plates validated with the
results obtained from ANSYS as well as Quatu and Leissa [153].
Validation of the developed deterministic finite element code with
the results of commercial packages like ANSYS caters to more
confidence in the present analysis. Other than validation of the
Fig. 11. Scatter diagram and probability density function for first three natural frequenci
regression using D-optimal design method.
deterministic finite element formulation by computer code, ANSYS
is also employed to validate the stochastic model of three layered
angle-ply (45�/�45�/45�) composite cantilever plates correspond-
ing to individual and combined variation of input parameters fol-
lowing the algorithm presented in Fig. 8(b). A convergence study
is carried out with respect to mesh sizes (4 � 4), (6 � 6), (8 � 8),
(10 � 10) and (12 � 12) as furnished in Fig. 9. To enumerate best
predictive mesh convergence, (6 � 6) mesh size is considered in
the present comparative study corresponding to individual and
combined variation of input parameters.

A comparative assessment of different design of experiment
methods has been carried out in conjunction with polynomial
regression method. Fig. 10 presents the error in percentage of
mean and standard deviation of first three natural frequencies for
polynomial regression based stochastic analysis using different
design of experiment algorithms with respect to MCS results for
individual variation of ply orientation angle fhð �xÞg and combined
variation fhð �xÞ; E1ð �xÞ; E2ð �xÞ;G12ð �xÞ;G23ð �xÞ;lð �xÞ;qð �xÞg. D-
optimal design method is observed to be the most computationally
efficient and accurate compared to other design of experiment
algorithms. The scatter plot and probability density function plot
for first three natural frequencies corresponding to combined vari-
ation of input parameters are furnished in Fig. 11 considering poly-
nomial regression using D-optimal design method along with
traditional Monte Carlo simulation results. The figures corroborate
excellent capability of D-optimal design based polynomial regres-
sion method in prediction as well as characterizing the probabilis-
tic features for first three natural frequencies.

Fig. 12 presents the percentage error of mean and standard
deviation of first three natural frequencies between the considered
surrogate modelling methods and MCS results with respect to dif-
ferent sample sizes for individual variation of ply orientation angle
½hð �xÞ�,while Fig. 13 indicates the error in percentage for mean and
standard deviation of first three natural frequencies between
surrogate modelling methods and MCS results with respect to
es corresponding to combined variation of input parameters considering polynomial
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. (a–f) Error (%) of mean and standard deviation of first three natural frequencies between surrogate modelling methods and MCS results with respect to different
sample sizes for individual variation of ply orientation angle [hð �xÞ] for angle-ply (45�/�45�/45�) composite plates.
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different sample sizes for combined variation of all stochastic input
parameters fhð �xÞ; E1ð �xÞ; E2ð �xÞ;G12ð �xÞ;G23ð �xÞ;lð �xÞ;qð �xÞg. In
general, for all cases, the sparsity of first three natural frequencies
for combined variation of input parameters are found to be higher
than that of individual variation of input parameter, as expected.
As the sample size increases, the percentage of error of mean and
standard deviation of first three natural frequencies between
surrogate modelling methods and MCS results are found to reduce
irrespective of modelling methods. An exhaustive study is carried
out to enumerate the best minimum sample size required to con-
struct the metamodel for all tested modelling methods corre-
sponding to suitable sampling techniques. Polynomial regression



Mean Error (%) SD Error (%)

(a) (b)

(c) (d)
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Fig. 13. (a–f) Error (%) of mean and standard deviation of first three natural frequencies between surrogate modelling methods and MCS results with respect to different
sample sizes for combined variation fhð �xÞ; E1ð �xÞ; E2ð �xÞ;G12ð �xÞ;G23ð �xÞ;lð �xÞ;qð �xÞg for angle-ply (45�/-45�/45�) composite plates.
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with D-optimal design method is found to require least number of
samples for suitable fitment of surrogates corresponding to
individual as well as combined variation cases. In contrast, Group
method of data handling – Polynomial neural network (GMDH-
PNN) method and Support Vector Regression (SVR) are observed
to require maximum number of sample for individual variation
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while Artificial neural network (ANN) method is found to need the
maximum number of samples for combined variation compared to
other tested modelling methods. Table 3 presents the minimum
number of samples required for different tested metamodelling
methods to obtain reasonable accuracy in terms of mean and stan-
dard deviation for the layer-wise stochastic analysis of composite
plate for both individual and combined variation. A clear idea
about the performance of different metamodeling techniques from
the viewpoint of computational efficiency can be perceived for
both low and relatively higher dimensional input parameter space.
The probability distributions obtained by using ten different
Table 3
Minimum sample size required for different metamodeling methods.

Sl.
No.

Metamodeling methods Mínimum number of
samples required for
model formation

Individual
variation

Combined
variation

1. High dimensional model representation
(HDMR)

256 512

2. Kriging method 128 256
3. Polynomial chaos expansion (PCE) 64 128
4. Artificial neural network (ANN) 256 2048
5. Multivariate adaptive regression splines

(MARS)
64 128

6. Moving Least Square (MLS) 128 512
7. Radial basis function (RBF) 64 1024
8. Group method of data handling –

Polynomial neural network (GMDH-PNN)
512 1024

9. Polynomial Regression (by D-optimal) 32 64
10. Support Vector Regression (SVR) 512 1024

Fig. 14. Probability density function for first three natural frequencies corresponding to
other colours are indicated in the figures).
metamodelling methods along with traditional MCS for first three
natural frequencies corresponding to individual (only ply angle)
and combined variation of input parameters are shown in
Figs. 14 and 15, respectively. From the viewpoint ofaccuracy in
probabilistic characterization with respect to traditional MCS, per-
formances are comparatively worse for ANN and SVM in case of
individual stochasticity and SVM and PCE in case of combined
stochasticity respectively. Other metamodels are found to obtain
satisfactory results, polynomial regression based on D-optimal
design being the best. ANN performs better for the higher dimen-
sional input parameter space (combined case), even though it
requires more samples compared to most of the other methods.
However, it can be noted that the results presented in Figs. 14–
15 are obtained using the corresponding sample size provided in
Table 3, which is finalized on the basis of error analysis for mean
and standard deviation. The trade-off between desired level of
accuracy and computational efficiency should be judged based on
specific requirements for a particular problem. The results pre-
sented in this article along with the in-depth previous comparative
investigations on response surface method [46] and kriging model
variants [14] can provide a reasonably composed guideline for
choosing sampling method and surrogate modelling technique
for future applications. However, it should always be noted that
surrogate modelling being a problem-specific technique, it is quite
difficult to identify a single surrogate model that works best for all
problems. Thus future researches are necessary to investigate the
comparative performances of different surrogates for other types
of problems in structural mechanics from different other angles
such as non-linearity, dimension of input parameter space and
the effect of correlation among them, noise etc. The present article
will serve as an important reference for such future investigations.
individual variation of input parameters (colour code: MCS and specification of



Fig. 15. Probability density function for first three natural frequencies corresponding to combined variation of input parameters (colour code: MCS and specification of
other colours are indicated in the figures).
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6. Conclusion

This paper presents a concise reviewonmetamodel based uncer-
tainty quantification algorithms along with a critical comparative
assessment of differentmetamodels (such as polynomial regression,
kriging, high dimensional model representation, polynomial chaos
expansion, artificial neural network, moving least square, support
vector regression, multivariate adaptive regression splines, radial
basis function and polynomial neural network) for stochastic natu-
ral frequency analysis of composite laminates from the viewpoint of
accuracy (with respect to traditional Monte Carlo simulation) and
computational efficiency. To the best of authors’ knowledge, this is
the first ever attempt to present a comprehensive comparative
investigation considering all the most prominent metamodeling
techniques in such large scale providing a complete understanding
about the relative performances based on different criteria. First
three stochastic natural frequencies of a laminated composite plate
are considered for individual and combined variation of layer-wise
random input parameters. A comparative investigation is presented
on different design of experiment methods (such as 2k factorial
designs, central composite design, A-Optimal design, I-Optimal, D-
Optimal, Taguchi’s orthogonal array design, Box-Behnken design)
in conjunction with polynomial regression revealing that D-
optimal designobtainsmost satisfactory results compared to others.
For each of the metamodeling techniques, the rate of convergence
with respect to traditionalMonte Carlo simulation has been studied
considering both low and high dimensional input parameter space.
Probabilistic descriptions of the natural frequencies obtained on the
basis of different metamodeling techniques are presented along
with crude Monte Carlo simulation results.
Polynomial regressionwithD-optimal designmethod is found to
bemost computationally cost effective for suitable fitment of surro-
gates corresponding to individual as well as combined variation of
input parameters. Group method of data handling – polynomial
neural network (GMDH-PNN) method and support vector regres-
sion (SVR) are observed to be least computationally efficient for
individual variation while artificial neural network (ANN) method
is found to be most computationally expensive for combined varia-
tion compared to other metamodels. From the viewpoint of accu-
racy in probabilistic characterization with respect to traditional
MCS, performances are comparatively worse for ANN and SVM in
case of individual stochasticity while SVM and PCE shows relatively
less accuracy in case of combined stochasticity. On the basis of the
stochastic results presented in this article, a clear idea about the
performance of different metamodeling techniques from the view-
point of accuracy and computational efficiency can be perceived for
both low and relatively higher dimensional input parameter space.
Although this study focuses on stochastic natural frequency analy-
sis of composite plates, the outcomes regarding comparative perfor-
mance of differentmetamodelswill serve as a valuable reference for
different other computationally intensive problems in the broader
field of science and engineering.
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