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Reliability Analysis Using Parabolic Failure Surface
Approximation
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Abstract: In the second-order reliability method the failure surface is approximated by a general quadratic surface in the neig
of the design point. In this paper this general quadratic surface is further approximated by a parabolic surface. Several m
proposed to obtain the probability content associated with this parabolic failure surface. It is assumed that the basic random v
Gaussian. The proposed methods can be broadly grouped into:(1) nonasymptotic approximate methods,(2) exact methods, and(3)
asymptotic distribution methods. Most of these methods result in a closed-form expression for the failure probability. For nona
approximations, a least-square approach and an optimal point expansion method using approximate probability density fun
quadratic form in Gaussian random variables have been proposed. It is shown that such approximations give accurate res
significant numerical effort. Exact results, however, require greater numerical effort. The new asymptotic result is derived fo
when the number of random variables approaches infinity. Several numerical examples are provided to compare the proposed
existing equivalent results and Monte Carlo simulations.
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Introduction

Reliability based structural analysis and design have two
objectives, namely:(1) to obtain the probability of failure of a
existing structure under the action of applied loadings, and(2) to
design a structure with prescribed reliability requirements.
both types of problem, it is required to calculate the probabilit
failure (or survival) of a structure, either to assess the risk a
ciated with an existing structural facility, or to determine i
structural design has met the prescribed reliability criteria.
pose the random variables describing the uncertainties in
structural properties and loading are considered to form a v
xPRn. The statistical properties of the system are fully descr
by the joint probability density functionpsxd :Rn°R. For a given
set of variablesx the structure will either fail under the appli
(random) loading or will be safe. The condition of the struct
for everyx can be described by a safety margingsxd :Rn°R such
the structure has failed ifgsxdø0 and is safe ifgsxd.0. Thus
the probability of failure is given by

Pf =E
gsXdø0

psxddx s1d

The function gsxd is also known as the failure surface or
limit-state function. The central theme of a reliability analysi
to evaluate the multidimensional integral Eq.(1). The exac
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evaluation of this integral, either analytically or numerically
not possible for most practical problems because:(1) n is large;
(2) psxd is non-Gaussian; and(3) gsxd is a highly nonlinear func
tion of x. Even direct Monte Carlo simulation is quite expens
becausePf is usually a small quantity.

Over the past three decades there has been extensive re
(see for example, the books by Thoft-Christensen and B
1982; Madsen et al. 1986; Ditlevsen and Madsen 1996; Mel
1999) to develop approximate numerical methods for the effic
calculation of the reliability integral. A review of earlier as wel
current works may be found in Manohar and Gupta(2003). The
approximate reliability methods can be broadly grouped into(1)
first-order reliability method(FORM), and(2) second-order rel
ability method(SORM). In FORM and SORM it is assumed th
all the basic random variables are transformed and scaled s
they are uncorrelated Gaussian random variables, each with
mean and unit standard deviation. In principle such a transfo
tion can always be achieved, for example using the Rose
(1952) transformation. In the transformed space Hasofer and
(1974) defined the reliability index

b = sx* Tx * d1/2 s2d

Herex*, the “design point” or the “checking point,” is the po
on the failure surface with minimum distance from the ori
That is, x* is the solution of the following optimization proble

minhsxTxd1/2j

subject togsxd = 0 s3d

Once the reliability index and the design point is known,
probability of failure can be obtained using FORM or SORM
FORM the failure surface is approximated by a hyperplane w
is tangent to the failure surface at the design point. In SORM
actual failure surface is approximated by a quadratic hypersu
in the neighborhood of the design point. It is possible for the
be multiple points with the same minimum distance from

origin. In which case one separately calculates the contributions
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arising from all design points which are significant and adds t
to obtain the total failure probability.

In general it is difficult to quantify the amount of error int
duced in FORM or SORM. For standard Gaussian basic varia
Breitung (1984) proposed an asymptotic method(asymptotic
SORM) which becomes exact in the limit whenb→`. In a later
work, using the maximum likelihood approach in conjunc
with the asymptotic analysis, Breitung(1991) obtained the failur
probability in the space of non-Gaussian basic random varia
Here, like the failure surface, the log-likelihood function is a
expressed by a second-order Taylor series in the neighborho
the design point. This is equivalent to approximating the b
non-Gaussian probability density function(PDF) by a Gaussia
PDF in the vicinity of the design point. In view of this, one c
identify three different stages of approximations, and co
quently errors, in SORM:
1. Type 1: error due to approximating a general nonlinear

ure surface by a quadratic hypersurface in the neighbor
of the design point;

2. Type 2: error due to approximating a general PDF b
Gaussian PDF in the neighborhood of the design point;

3. Type 3: any errors in evaluating the probability content a
making the previous two assumptions.

In a recent paper Breitung(2002) pointed out the importanc
of distinguishing between these errors. Type 1 error is funda
tal to SORM and cannot be improved unless higher order de
tives of the failure surface are used(Breitung and Richter 1996).
Type 2 error can be avoided provided the basic variables
already Gaussian or transformed to Gaussian using num
transformations. Breitung(1984, 1989, 1991) used asymptotic ap
proximations at each stage and has shown that the three ty
errors asymptotically vanish whenb→`. Extensive work ha
been done, for example by Hohenbichler and Rackwitz(1988),
Naess(1987), Tvedt (1990), Köylüoğlu and Nielsen(1994), Cai
and Elishakoff(1994), Zhao and Ono(1999a, b), Polidori et al
(1999), and Hong(1999), to improve the reliability assessme
when the asymptotic condition does not hold. Majority of th
works deal with Type 3 error. Another route to reducing all th
types of errors is to use simulation methods, which, with
development of importance sampling techniques are beco
very efficient. Further discussions on developments in this
can be found in the recent review paper by Manohar and G
(2003) and the cited references therein.

This paper deals with Type 3 error. Three distinct meth
namely nonasymptotic approximate methods, exact methods
asymptotic distribution methods, are proposed to reduce th
ror. It is assumed that the basic random variables are Gauss
that Type 2 error is not present. Discussions are confined to
bolic failure surfaces and systems with a unique design
only.

Transformations of Failure Surface

General Quadratic Surface

For standard Gaussian basic variablesx,Nns0,I nd the joint PDF
is given by

psxd:Rn ° R = s2pd−n/2e−xTx/2 s4d

Assuming thatgsxd is continuous, smooth and at least twice
ferentiable, in SORM the actual failure surface is replaced b

second-order Taylor series expansion about the design point

1408 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2
f

gsxd < gsx * d + = gsx * dTsx − x * d + 1
2sx − x * dTHgsx * d

3sx − x * d = g̃sxd s5d

Becausex* is on the failure surface,gsx* d=0 and we obtain

g̃sxd = s− = gTx * + 1
2x* THgx * d − s− = gT + x* THgdx + 1

2xTHgx

s6d

For notational conveniencesx* d is omitted. Fiessler et al.(1979),
Madsen et al.(1986), and Tvedt(1990) have used orthogon
transformations to reduce Eq.(5) into suitable forms. At the de
sign point the gradient vector to the failure surface and the v
from the origin are parallel, that is

x*

b
= −

=g

u = gu
= a* s7d

whereb= ux* u anda* =units vector tox*. Dividing Equation(6)
by u=gu and using Eq.(7) the second-order approximation to
failure surface can be expressed as

g̃sxd
u = gu

= Sb +
b2

2
a* T Hg

u=gu
a * D − Sa* T + ba* T Hg

u=gu
Dx +

1

2
xT Hg

u=gu
x

s8d

Using the orthogonal transformation

x = Tỹ s9d

whereỹ,Nns0,I nd andT PRn3n is the matrix of eigenvectors
Hgsx* d, Eq. (8) can be transformed to

g̃

u = gu
= ã0 − ã1

Tỹ + ỹTÃ2ỹ s10d

Here

ã0 = b +
b2

2
a* T Hg

u = gu
a * [ R s11d

ã1
T = Sa* T + ba* T Hg

u = gu DT [ R13n s12d

and

Ã2 =
1

u2 = gu
diagfl1,l2, ¯ ,lng [ Rn3n s13d

The quadratic hypersurface in Eq.(10) can be elliptic, paraboli
or hyperbolic. The parabolic case appears when for somek, lk

=0 buta1k
Þ0. Becausepsxd in Eq. (4) is rotationally symmetric

any orthogonal transformation(rotation) like Eq. (9) does no
change the probability content of an infinitely small volume
ment. Therefore, the failure probability can be approximated

Pf < Probfg̃/u = gu ø 0g = ProbFã0 + o
k=1

n

s− ã1k
ỹk + Ã2kk

ỹk
2d ø 0G

s14d

By inverting the characteristic function ofg̃/ u=gu, Tvedt (1990)
has proposed a complex-domain numerical integration metho

the exact evaluation of Eq.(14).
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Parabolic Approximation

Madsen et al.(1986) proposed a parabolic approximation to
(5) which keeps the intuitive notion of the reliability index. Co
struct an orthogonal matrixRPRn3n whosenth column isa*,
that is

R = fR1ua * g whereR1 [ Rn3n−1

and

a* TR1 = 013sn−1d s15d

The matrixR can be obtained, for example, by Gram–Schm
orthogonalization. Using the orthogonal transformation

x = Rỹ s16d

and partitioningỹ as

ỹ = H y

yn
J

where

y , Nn−1s0n−1,I n−1d

and

yn , N1s0,1d s17d

from Eq. (8) one obtains

g̃

u = gu
= Sb +

b2

2
a* T Hg

u = gu
a * D − Syn + ba* T Hg

u = gu
RỹD + ỹTÃỹ

s18d

Here

Ã =
1

2

RTHgsx * dR
u = gsx * du

[ Rn3n s19d

For convenience partitionÃ as

Ã =F A Ã1n

Ãn1 Ãnn

G s20d

whereA PRsn−1d3sn−1d and Ãn1=Ã1n
T PR13sn−1d

In view of this partition, Equation(18) reads

g̃

u = gu
= − yn + b + yTAy +

b2

2
a* T Hg

u = gu
a * − ba* T Hg

u = gu
Rỹ

+ 2ynÃn1y + Ãnnyn
2 s21d

Keeping only second-order terms iny and neglecting any cro
terms Madsen et al.(1986) have approximated Eq.(21) by a
parabolic surface

g̃

u = gu
< − yn + b + yTAy s22d

The matrixA can be diagonalized by a further orthogonal tra
formation using the eigenvectors ofA. The parabolic surface
Eq. (22) has been used by a number of authors, for exam
Hohenbichler and Rackwitz(1988), Köylüoğlu and Nielsen
(1994), Cai and Elishakoff(1994), Zhao and Ono(1999a, b),
Polidori et al. (1999), and Hong(1999). Der-Kiureghian et a
(1987) and Der-Kiureghian and de Stefano(1991) have also use
this parabolic surface as the basis for point fitted SORM. W

this approximation the failure probability is given by

JOURNAL
Pf < ProbF g̃

u = gu
ø 0G < Probfyn ù b + yTAyg s23d

Denoting

U:Rn−1 ° R = yTAy s24d

as a central quadratic form in standard Gaussian random
ables, the failure probability can be rewritten as

Pf < Probfyn ù b + Ug =E
R
HE

b+u

`

wsynddynJpUsuddu

= EfFs− b − Udg s25d

The exact probability density function of the quadratic formU is
in general not available in closed form. For this reason it is
ficult to calculate the expectationEfFs−b−Udg analytically. Sev
eral authors have used approximations ofEfFs−b−Udg to obtain
closed-form expressions ofPf. A selected collection of such e
pressions can be found in Zhao and Ono(1999a). In this pape
closed-form expressions ofPf will be derived with an aim t
improve on the accuracy of currently available formulae. D
numerical integration methods, like the saddle-point integra
method in Tvedt(1990), can be used to evaluateEfFs−b−Udg in
Eq. (25) exactly and quite efficiently. Nevertheless, sim
closed-form expressions are useful in many situations, fo
ample;(1) to intuitively understand numerical results, and(2) in
the initial design stage when sensitivity of the failure probab
with respect to certain design variables is required.

Outline of Paper

The various new methods to obtain expressions ofPf proposed in
this paper are presented in the following sequence:
A. Methods using approximation ofFs−b−ud

1. Taylor series of lnfFs−b−udg aboutu=0
2. Least-square method
3. Optimal point expansion method.

B. Methods using approximation of the pdf ofU
1. Mean value approximation
2. Patnaik’sx2 type approximation
3. Pearson’s approximation

C. Methods for exact probability content for parabolic failure
faces

1. Series expansion methods
2. Fourier series method
3. Fourier sin transform method

D. Asymptotic distribution method forn→`
In the next few sections these methods are explained in d

Results obtained from each method are illustrated by num
examples and compared with existing reliability approximat
and Monte Carlo simulations. The last section summarize
main outcomes of this paper.

Nonasymptotic Approximations to Failure
Probability

Using quadratic approximation of the failure surface toge

with asymptotic analysis Breitung(1984) proved that
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Pf →
Fs− bd

p j=1

n−1 Î1 + 2baj

whenb → ` s26d

Here aj, the eigenvalues ofA, can be related to the princip
curvatures of the surfacek j asaj =k j /2. This result is importan
because it gives the asymptotic behaviorPf under general cond
tions. Some approximations to be proposed in this paper are
asymptotic in the sense that we do not assume any paramete
b in Eq. (26), is approaching infinity. The advantage of n
asymptotic approximations is that the approximations may w
well when the asymptotic condition is not met. The disadvan
is that one cannot in general prove that an approximation
proaches the exact value when some conditions(like an
asymptotic condition) are fulfilled. However, for reliability ap
proximations one would expectPf →0 as b→`. This limiting
behavior is satisfied by all the approximate formulae to be de
in this paper.

As mentioned earlier, the main difficulty in obtaining the pr
ability of failure from Eq. (25) is that the probability densi
function of the quadratic formU given in Eq.(24) is in genera
not available in closed form. However its moment genera
function, characteristic function and moments of any order ca
obtained. Extensive discussions on quadratic forms in Gau
random variables can be found in the books by Johnson and
(1970, Chapter 29) and Mathai and Provost(1992). For any s
PC the moment generating function ofU can be obtained as

MUssd = EfesUg = iI n−1 − 2sAi−1/2 s27d

Due to the simplicity of this expression, in the next section
propose three different approaches to approximateFs−b−ud in
terms of exponentials ofu. The matrixA is likely to be positive
definite because the Hessian matrixHgsx* d is expected to b
positive definite in the projection on the tangential space. S
authors, for example Köylüoğlu and Nielsen(1994), Zhao and
Ono (1999a), Polidori et al. (1999) have considered the cas
whenA is negative definite or more generally positive semid
nite. Here we have not considered such cases and througho
paper it is assumed thatA is a positive definite matrix.

Failure Probability Using Approximations
of F„−b−U…

Taylor Series of ln †F„−b−u…‡ about u =0

The functionFs−b−ud is smooth, continuous, and differentia
(of any order) for uPR. We write

Fs− b − ud = elnfFs−b−udg s28d

From the definition ofU in Eq. (24) it is easy to see thatuPR+ as
A is positive definite. The maximum of lnfFs−b−udg in R+ oc-
curs atu=0. Therefore, the maximum contribution to the exp
tation of lnfFs−b−Udg comes from the neighborhood ofu=0.
Expanding lnfFs−b−udg in a first-order Taylor series aboutu
=0 we obtain

Fs− b − ud < exp lnfFs− bdg −
wsbd

Fs− bd
u = Fs− bdexp −

wsbd
Fs− bd

u

s29d

The reason for keeping only one term in the Taylor series

exploit the expression of the moment generating function in Eq.

1410 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2
(27). From Eq.(25) the probability of failure can be obtained
taking the expectation of Eq.(29) as

Pf = EfFs− b − Udg < Fs− bdII n−1 + 2
wsbd

Fs− bd
AI−1/2

s30d

The termwsbd /Fs−bd in Eq. (30) was first obtained by Hohe
bichler and Rackwitz(1988) and later rederived by Köylüoğlu
and Nielsen(1994) and Polidori et al.(1999) using different ap
proaches. In this paper the credit for this formula is attribute
Hohenbichler and Rackwitz(1988). A minor difference betwee
Eq. (30) and existing similar expressions in the cited referenc
that the eigenvalues ofA are not required in Eq.(30). Taking an
asymptotic expansion ofwsbd /Fs−bd we obtain

wsbd
Fs− bd

< b + b−1 − 2b−3 + 10b−5 − 74b−7 + 706b−9 + ¯

s31d

Breitung’s approximation in Eq.(26) can be obtained from E
(30) by keeping only the first term in this series, which is asy
totically correct whenb→`. Numerical works in Köylüoğlu and
Nielsen(1994) and Polidori et al.(1999) show that the formul
Eq. (30) works reasonably well for smallerb. In terms of a simpl
formula,Pf expressed in Eq.(30) is possibly the best available
current literature.

Least-Square Method

The only source of error in formula(30) is from approximating
Fs−b−ud by an one-term exponential function in Eq.(29). After
this approximation, the expectation operation is carried ouex-
actly using the moment generating function ofU. Several author
have proposed methods to improve this approximation. Ho
bichler and Rackwitz(1988) have proposed an importance sa
pling technique to reduce this error while Köylüoğlu and Nielsen
(1994) have used higher-order terms in the McLaurin series
pansion of the error term. The aim here is to see how far we
go with a simple single-exponential term approximation ofFs
−b−ud. Therefore, we are looking for an approximation toFs
−b−ud of the form

Fs− b − ud < c1e
−c2u s32d

such that the error in this approximation is minimized in s
sense. The error in representingFs−b−ud by Eq.(32) is given by

«sud = Fs− b − ud − c1e
−c2u s33d

Recalling thatuPR+, the objective function can be defined by
l2 norm of «sud as

c =E
0

`

«sud2du=E
0

`

fFs− b − ud − c1e
−c2ug2du s34d

To minimizec with respect toc1 andc2 we must have

]c

]ci
= 0 for i = 1,2 s35d

After some simplifications of Eq.(35) one obtains

c1 = 2c2LfFs− b − ud;c2g for i = 1 s36d
and

004
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c1 = 4c2
2LfuFs− b − ud;c2g for i = 2 s37d

whereLffsud ;sg is the Laplace transform offsud in s. Substitut-
ing c1 from Eq. (36) into Eq. (37) and using the Laplace tran
forms of Fs−b−ud anduFs−b−ud from Eqs.(147) and(148) in
the Appendix, one has

s2c2
2 + 2bc2 − 1dec2

2/2+c2bFs− b − c2d − 2c2wsbd + Fs− bd = 0

s38d

The constantc2 can be obtained by solving this equation. Sub
tuting the value ofc2 in Eq. (36) the constantc1 can be calculate
obtained as

c1 = 2fFs− bd − ec2
2/2+c2bFs− b − c2dg s39d

An exact closed-form solution of Eq.(38) does not exist. How
ever, numerical solution can be obtained easily using wi
available nonlinear equation solvers(the function “fzero” inMAT-
LAB® is used here). Becausec2 and consequentlyc1 are functions
of the reliability indexb only, we can produce a unique table
the values ofc1 and c2 for different values ofb which can be
directly used in practical applications. Table 1 shows the valu
c1 andc2 for b ranging from 0 to 5 with steps of 0.25. This ta
is obtained by solving Eq.(38) with an initial guess ofc2

=wsbd /Fs−bd.
The probability of failure corresponding to the approxima

in Eq. (32) is given by

Pf = EfFs− b − Udg < c1iI n−1 + 2c2Ai−1/2 s40d

It is easy to see that Breitung’s approximation in Eq.(26) and also
the approximation in Eq.(30) are like special cases of Eq.(40).
For Breitung’s approximationc1=Fs−bd and c2=b. For the ap
proximation in Eq.(30) by Hohenbichler and Rackwitz(1988),
c1=Fs−bd, which is the same as Breitung’s, butc2=wsbd /
Fs−bd. A graphical comparison between the constantsc1 andc2

Table 1. Values ofc1 andc2 in Least-Square Method

b c1 c2

0.00 5.5089583e-01 1.3075

0.25 4.3609324e-01 1.4497

0.50 3.3133310e-01 1.6024

0.75 2.4091628e-01 1.7650

1.00 1.6721652e-01 1.9366

1.25 1.1054756e-01 2.1165

1.50 6.9479790e-02 2.3038

1.75 4.1448781e-02 2.4977

2.00 2.3437948e-02 2.6975

2.25 1.2548254e-02 2.9024

2.50 6.3544929e-03 3.1120

2.75 3.0412682e-03 3.3255

3.00 1.3746774e-03 3.5426

3.25 5.8648912e-04 3.7627

3.50 2.3605347e-04 3.9857

3.75 8.9590399e-05 4.2110

4.00 3.2051520e-05 4.4385

4.25 1.0805111e-05 4.6679

4.50 3.4314611e-06 4.8990

4.75 1.0263359e-06 5.1316

5.00 2.8904481e-07 5.3656
obtained from the least-square method and those obtained in Brei-

JOURNAL
tung (1984) and Hohenbichler and Rackwitz(1988) is shown in
Fig. 1. Although the values themselves are not very different,
make noticeable difference to the reliability estimate(see exampl
1 later) becausePf is usually a very small quantity.

In Fig. 2, a comparison is drawn betweenFs−b−ud and vari-
ous single-exponential term approximations. The plots are
malized byFs−bd. Four representative values ofb are selecte
and the range ofu is considered as 0øuø4. The curve obtaine
by the least-square approach is the closest toFs−b−ud for all
four values ofb. The difference between the other methods
the least-square method is greater for lower values ofb and less
for the higher values. Thus, whenb is small the least-squa
approach is expected to give a better result(see example 1 late).

Optimal Point Expansion Method

The probability density function ofU has not been consider
explicitly in deriving the previous two approximations. From
(25) we can write

Fig. 1. Comparison of values ofc1 and c2 between existing resu
and least square analysis

Fig. 2. Approximation of Fs−b−ud using single exponenti
function
OF ENGINEERING MECHANICS © ASCE / DECEMBER 2004 / 1411
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Pf =E
R+

Fs− b − udpUsuddu=E
R+

elnfFs−b−udg+lnfpUsudgdu

s41d

The aim here is to expand the integrand in a first-order Ta
series about the most probable point or optimal point, sayu=u*.
The optimal point is the point where the integrand reache
maxima inuPR+. Clearly, to obtain the maxima of the integra
knowledge ofpUsud is also required. Because in general the e
closed-form expression ofpUsud is not available, an approxim
tion to pUsud is needed. Such an approximatepUsud will only be
used to find the maxima of the integrand and willnot be used
subsequently to calculate the expectation. The expectation o
tion will be carried out exactly by utilizing the expression of
moment generating function in Eq.(27). For the maxima of th
integrand we must have

]

]u
hlnfFs− b − udg + lnfpUsudgj = 0 s42d

or

wsb + ud
Fs− sb + udd

=

]pUsud
]u

pUsud
s43d

Because this relationship holds at the optimal pointu* we define
a constanth as

h =
wsb + u * d

Fs− sb + u * dd
=

1

pUsu * d
]pUsu * d

]u
s44d

The choice ofu* will depend on pUsud and will be discusse
shortly. Taking a first-order Taylor series expansion of lnfFs−b
−udg aboutu=u* we have

lnfFs− b − udg < lnfFs− b − u * dg −
wsb + u * d

Fs− sb + u * dd
su − u * d

s45d

or

Fs− b − ud < exp lnfFs− sb + u * ddg −
wsb + u * d

Fs− sb + u * dd
su − u * d

s46d

Using Eq.(44) this reduces to

Fs− b − ud < Fs− b8dehu*e−hu s47d

where

b8 = b + u* s48d

Taking the expectation of Eq.(47), the probability of failure usin
the optimal point expansion method can be expressed as

Pf < Fs− b8dehu*iI n−1 + 2hAi−1/2 s49d

To obtain u* and h knowledge of the PDF ofU is required
Several approximations topUsud are available in the reference
for example, see the books by Johnson and Kotz(1970, Chapte
29) and Mathai and Provost(1992). Fiessler et al.(1979) have
suggested an approximation topUsud by a centralx2 density of
sn−1d degrees-of-freedom by using the mean of the eigenv
of A. This “mean curvature” approach is later used by Zhao
Ono (1999a, b). Here, we use two simplex2 approximations

2
namely, Patnaik’sx type approximation(Patnaik 1949) and an
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approximation analogous to Pearson’s three moment centx2

approximation to the distribution of a noncentralx2 (Pearson
1959). In the next sections it will be shown that within the sc
of x2 approximations these two are better than the mean curv
approximation.

Patnaik’s Approximation
In this approximation the quadratic formU is approximated by
centralx2 distribution such that their first two central mome
are the same. Thus

U . uxn
2 s50d

such that

EfUg = Efuxn
2g s51ad

and

VarfUg = Varfuxn
2g s51bd

From the equality of the moments in Eqs.(51a) and (51b) we
have

un = TracesAd s52ad

and

2u2n = 2TracesA2d s52bd

By solving these two equations the parametersu and n can be
obtained as

u =
TracesA2d
TracesAd

s53ad

and

n =
fTracesAdg2

TracesA2d
s53bd

Using the transformation in Eq.(50) the approximate probabili
density function ofU can be expressed as

pUsud <
1

u
pxn

2Su

u
D =

un/2−1e−u/2u

s2udn/2Gsn/2d
s54d

SubstitutingpUsud into Eq.(43) the equation for the optimal poi
can be simplified to

wsb + u * d
Fs− sb + u * dd

=
1

2
Sn − 2

u*
−

1

u
D s55d

An exact closed-form solution of this equation does not e
However, it can be easily solved numerically(for example the
function “fzero” in MATLAB® can be used) to obtain u*. An
approximate solution of Eq.(55) can be obtained by consideri
the asymptotic expansion of the ratiowsb+u* d /Fs−sb+u* dd,
similar to that given in Eq.(31). Keeping only the first term, th
left-hand side becomessb+u* d and consequently we obtain

sb + u * d <
1

2
Sn − 2

u*
−

1

u
D s56d

or

u* 2 + S 1

2u
+ bDu * − sn − 2d/2 < 0 s57d

Taking the positive solution of this quadratic equation the opt

point is obtained as
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u * < − S 1

4u
+

b

2
D +

1

4u
Îs2ub + 1d2 + 8u2sn − 2d s58d

Numerical calculations show that this approximate expressio
u* is accurate enough for all practical purposes. The constah
can be directly evaluated from Eq.(55) as

h =
1

2
Sn − 2

u*
−

1

u
D s59d

In view of Eqs.(48) and (56) we also have

b8 < h s60d

Substitutingh in Eq. (49) the probability of failure using Pa
naik’s approximation is given by

Pf < Fs− b8de1/2sn−2−u*/udII n−1 + Sn − 2

u*
−

1

u
DAI−1/2

s61d

Next Pearson’s approach is considered to approximatepUsud.

Pearson’s Approximation
Pearson’s approximation is similar to Patnaik’s approximation
cept that an additional parameterg is used such that

U . g + uxn
2 s62d

Mathai and Provost(1992) have mentioned that Pearson’s
proximation, which requires very little additional work compa
to that of Patnaik, gives a much better fit to the true pdf ofU. The
parametersn, u andg are selected such that the first three cen
moments ofU andg+uxn

2 are the same, that is

g + un = TracesAd s63ad

2u2n = 2TracesA2d s63bd

and

8u3n = 8TracesA3d s63cd

By solving these three equations simultaneously the parametg,
u, andn can be obtained as

g = TracesAd −
fTracesAdg2

TracesA3d
s64ad

u =
TracesA3d
TracesA2d

s64bd

and

n =
fTracesA2dg3

fTracesA3dg2 s64cd

Using the transformation in Eq.(62) the approximate probabili
density function ofU is given by

pUsud <
1

u
pxn

2Su − g

u
D =

su − gdn/2−1e−su−gd/2u

s2udn/2Gsn/2d
s65d

SubstitutingpUsud into Eq.(43) the equation for the optimal poi
can be simplified to

wsb + u * d
Fs− sb + u * dd

=
1

2
S n − 2

u * − g
−

1

u
D s66d

This equation can be solved exactly by using numerical met
to obtain u*. With one-term asymptotic expansion ofwsb

+u* d /Fs−sb+u* dd, Eq. (66) can be approximated as

JOURNAL
sb + u * d <
1

2
S n − 2

u * − g
−

1

u
D s67d

or

u* 2 + S 1

2u
+ b − gDu * − S1

u
+ 2bDg

2
− sn − 2d/2 < 0 s68d

Positive solution of this quadratic equation produces

u * < − S 1

4u
+

b − g

2
D

+
1

4u
Îs2usb − gd + 1d2 + 8gus1 + 2ubd + 8u2sn − 2d

s69d

This approximate expression foru* is accurate enough for a
practical purposes. The constanth can be directly evaluated fro
Eq. (66) as

h =
1

2
S n − 2

u * − g
−

1

u
D s70d

Substitutingh in Eq. (49) the probability of failure using Pea
son’s approximation is given by

Pf < Fs− b8dexp
u*

2
S n − 2

u * − g
−

1

u
D

3II n−1 + S n − 2

u * − g
−

1

u
DAI−1/2

s71d

Substitutingg=0 in Eqs.(69) and (70) recovers the Patnaik
approximation[Eqs. (58) and (59)]. This is expected asg is the
only additional term used in Pearson’s approximation. There
combining Patnaik’s and Pearson’s approximations, the fa
probability using the optimal point expansion method can be
pressed by

Pf < Fs− hdehu*iI n−1 + 2hAi−1/2 s72d

In generalu* and h are given by Eqs.(69) and (70). The extra
work required to use Eq.(72) is small compared to Breitung
formula (26) and Hohenbichler and Rackwitz’s formula(30). In
the numerical example it will be shown that this slight modifi
tion results in a very good approximation to the failure probab
for systems with a large number of random variables, over a
range ofb values.

Example 1. Failure Probability Using Approximations
of F(−b−u)
We consider a problem for which the failure surface isexactly
parabolic in the normalized space, as given by Eq.(22). The
purpose of this hypothetical example is to understand how
proposed approximate formulae work after making a para
failure surface assumption. Therefore, the effect of Type 1
Type 2 errors cannot and will not be investigated here. In num
cal calculations we have fixed the number of random variabn
and the trace of the coefficient matrixA. Based on the values
n and TracesAd two cases are considered:
1. small number of random variables:n−1=10, and Trac

sAd=10 and
2. large number of random variables:n−1=50, and TracesAd

=5.
When TracesAd=0 the failure surface is effectively line
Therefore, the more the value of TracesAd the more nonlinear the
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failure surface becomes. The above two cases covers two d
ent type of scenario that might arise in practical application
further considered that the eigenvalues ofA are spaced in a cub
manner, that isaj = j3ã, for j =1,2,¯n−1 andãù0. Note that

TracesAd = o
j

n−1

aj = ãSnsn − 1d
2

D2

s73d

therefore

ã =
TracesAd

snsn − 1d/2d2 s74d

Thusã is defined uniquely for fixed values ofn and TracesAd. To
compare the relative accuracy of different methods some kin
indicator function is useful. Using the idea of relative error
centage proposed by Der Kiureghian et al.(1987) we define the
relative error

ei =
uPfapprox

− Pfexact
u

Pfexact

, i = 1,2,̄ s75d

For better approximationsei will be close to zero and vice vers
The exact probability of failurePfexact

is obtained by direct calcu
lation of the expectation in Eq.(25) using numerical simulation
The samples ofU are generated using Monte Carlo simulat
For each problem 3,000 samples have been generated a
result obtained from the Monte Carlo simulation is treated
benchmark.

In total five approximate methods are considered, na
Breitung’s formula in Eq.(26), Eq. (30) derived by Hohenbichle
and Rackwitz(1988), the least-square formula given by Eq.(40)
and two formulae derived using the optimal point expan
method in Eqs.(61) and (71). For Case 1, the probability
failure obtained using the five approximate methods and the
probability of failure obtained using Monte Carlo simulation
shown in Fig. 3(a). For each methodb is varied from 0 to 5
BecausePf is very small, the numerical values are normalized
dividing with Fs−bd, that is, the quantityPf /Fs−bd is plotted for
all proposed methods. The relative error, defined in Eq.(75), cor-
responding to each method is shown in Fig. 3(b). From these
figures it is clear that the results obtained from the three prop
methods are closest to the exact values within the range
øbø4. The least-square method and the optimal point expa
method using Patnaik’s approximation are closest over the
range ofb. The optimal point expansion method using Pears
approximation is accurate over the lower range ofb values, bu
less so in the higher range.

Normalized probability of failure for Case 2 is shown in F
4. The least-square method and the optimal point expansion
ods perform better than the two existing methods. Both opt
point expansion methods, particularly using Pearson’s pdf,
very good approximation over the full range ofb. The expres
sions of approximateu* given by Eqs.(58) and (69) are used in
this study. It was verified that the use of exactu* obtained by
solving the nonlinear Eqs.(57) and(68) does not make a signi
cant difference to the result. From Fig. 4 it may be noted tha
optimal point expansion methods give 100 times greater acc
than the existing formulae without any significant increas
computation. This fact makes these methods very suitabl
reliability calculations. Based on these results it is recomme
that when the number of random variables is small the op

point expansion method based on Patnaik’s approximation should

1414 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2
e

Fig. 3. Failure probability and relative error using one-te
exponential approximation ofFs−b−ud. Case(1): n−1=10 andtrace
sAd=10.
Fig. 4. Normalized failure probability using one-term exponen
approximation ofFs−b−ud. Case(2): n−1=50, tracesAd=5.
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be used, and when the number of random variables is larg
optimal point expansion method based on Pearson’s appro
tion should be used.

From the results obtained in this section the following con
sions may be drawn:
1. Two new approximate methods to obtain the failure prob

ity using parabolic hypersurface approximation, namely
least-square method and the optimal point expansion m
improve upon the equivalent existing approximations. Th
approximations are non-asymptomatic, therefore
asymptotic requirements, such asb→`, are not needed.

2. Explicit calculation of the eigenvalues of the matrixA is not
required to use any of the derived expressions forPf.

3. The least square method can be implemented very e
using Table 1 provided for the numerical values of the
required constants.

4. When the number of random variables is small(say n−1
ø20) the optimal point expansion method based on Patn
approximation should be used to calculatePf.

5. When the number of random variables is large(say n−1
ù20) the optimal point expansion method based on P
son’s approximation should be used to calculatePf.

It should be noted that for the non-asymptotic case(i.e., whenb
is not very large) there will be errors associated with the quadr
approximation of the failure surface in Eq.(5). Such errors cann
be improved using the formulations derived here.

Failure Probability Using Approximations
of Probability Density Functional of U

In the previous section onlyFs−b−ud is approximated. In thi
section we will approximatepUsud to evaluate the failure pro
ability using Eq.(25). Derivation of probability density and di
tribution functions of quadratic forms in random variables
received extensive attention in literature. Johnson and
(1970, Chapter 29) and Mathai and Provost(1992, Chapter 4)
have summarized significant contributions in this area. If the
trix A is an idempotent matrix thenU becomes ax2 random
variable withsn−1d degrees-of-freedom(a nonsingular matrixA
is said to be idempotent ifA =A2). In generalA is not an idem
potent matrix. In such a case it can be shown that the exac
sity of U can be represented by an infinite sum of centrax2

random variables. Several other representations of the exac
sity of U are also available in the literature(see Mathai and Pro
vost 1992, Chapter 4), for example, power series expansion,
guerre series expansion, series expansion in terms of con
hypergeometric function, and series expansion in zonal po
mials. Application of these results in the context of struct
reliability analysis has not been adequately investigated. H
ever, it is expected that the resulting expressions forPf using
these will be complicated. We consider the simplest case
pUsud is approximated in terms of a singlex2 random variable
Applicability of the two simplex2 approximations introduced
the previous section is investigated here. Comparisons are d
with the mean value approximation suggested in the reliab
literature.

Mean Value Approximation

This is the earliest(first suggested by Fiessler et al. 1979) and
possibly the simplest approximation used in the context of s

tural reliability analysis. HerepUsud is approximated by a central

JOURNAL
-
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x2 density ofsn−1d degrees-of-freedom by using the mean of
eigenvalues ofA. This is equivalent to replacingA by an idem
potent matrix. Thus,pUsud has the same form as Patnaik’s
proximation given by Eq.(54), but the constantsu and n are
defined by

u =
1

n − 1
TracesAd s76ad

and

n = n − 1 s76bd

The probability of failure using this approximation is given b

Pf <
1

s2udsn−1d/2Gsn/2dE0

`

Fs− b − udusn−3d/2e−u/2udu s77d

From Eq. (154) in the Appendix this integral can be evalua
exactly in closed form providedn is odd andnù3. Otherwise
numerical evaluation is needed over a finite interval. Rec
Zhao and Ono(1999a, b) have reinvestigated this approximat
and have provided empirical formulae to evaluate this inte
This approximation is expected to be accurate when the d
ences between the eigenvalues ofA are very small.

Patnaik’s x2 Type Approximation

Evaluation Using Exact Integral
The PDF ofU using Patnaik’sx2 approximation is given by E
(54). Using this, the probability of failure can be approxima
from Eq. (25) as

Pf <
1

s2udn/2Gsn/2dE0

`

Fs− b − udun/2−1e−u/2udu s78d

From Eq.(154) in the Appendix a closed-form expression for
integral is possible providednÞ0 is an even integer. However,
view of Eq.(52b) n is expected to be fractional and in general
integral in Eq.(78) has to be evaluated numerically over a fi
interval. To obtain a closed-form expression further approx
tion of Fs−b−ud is necessary. We consider the following t
approximations:

First-Order Taylor Series Expansion of ln[F(−b−u)]
An approximation ofFs−b−ud using a first-order Taylor seri
expansion of lnfFs−b−udg about the most the most proba
point u* is given in Eq.(47). Using this, together withh in Eq.
(59), from Eq. (78) one has

Pf <
Fs− b8d

s2udn/2Gsn/2d
e1/2sn−2−u*/udE

0

`

e−su/2dsn−2−u*/ud/u*un/2−1e−u/2udu

= Fs− b8de1/2sn−2−u*/udSusn − 2d
u*

D−n/2

s79d

Second-Order Taylor Series Expansion of ln[F(−b−u)]
Expanding lnfFs−b−udg in a Taylor series about the most pr

able pointu* and retaining only the first two terms one has
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lnfFs− b − udg < lnfFs− b8dg + hu * s1 − sh − b8du * /2d

− hs1 − sh − b8du * du − hsh − b8du2/2

s80d

whereb8 and h are given in Eqs.(48) and (59). If the approxi-
mation in Eq.(60) is used then it is easy to see that Eq.(80)
reduces to Eq.(45). This essentially implies that when the a
proximateu* in Eq. (57) is used, the second-order approxima
of lnfFs−b−udg given by Eq.(80) does not offer any improve
ment over the first-order approximation. Therefore, going to
second-order approximation for lnfFs−b−udg makes a differenc
only if u* is obtained from the exact solution of Eq.(55).

UsingpUsud from Eq.(54) and substituting lnfFs−b−udg from
Eq. (80) we have

Pf <E
0

`

elnfFs−b−udgpUsuddu

=
Fs− b8d

s2udn/2Gsn/2d
em0E

0

`

un/2−1e−m1ue−m2u2/2du s81d

where

m0 = hu * s1 − sh − b8du * /2d s82d

m1 = hs1 − sh − b8du * d +
1

2u
s83d

m2 = hsh − b8d s84d

The integral appearing in Eq.(81) can be evaluated exac
(Gradshteyn and Ryzhik 1994, Section 3.462) as

E
0

`

un/2−1e−m1ue−m2u2/2du= sm2d−n/4Gsn/2dem1
2/4m2D−n/2S m1

Îm2
D
s85d

where D−n/2s·d=parabolic cylinder function. Discussions on
parabolic cylinder function may be found in Gradshteyn
Ryzhik (1994, Sections 9.24–9.25) and Abramowitz and Stegu
(1965, Chapter 19). Using this integral the probability of failu
can be obtained from Eq.(81) as

Pf < Fs− b8dem0+m1
2/4m2s2uÎm2d−n/2D−n/2S m1

Îm2
D s86d

Pearson’s Approach

Evaluation Using Exact Integral
The PDF ofU using Pearson’s approximation is given in Eq.(65).
Using this, from Eq.(25) the probability of failure can be a
proximated as

Pf <
1

s2udn/2Gsn/2dE0

`

Fs− b − udsu − gdn/2−1e−su−gd/2udu

s87d

A closed-form expression of this integral is in general not
sible and it has to be evaluated numerically by considering a
interval. To obtain a closed-form expression, a first-order Ta

series expansion of lnfFs−b−udg is considered.
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First-Order Taylor Series Expansion of ln[F(−b−u)]
An approximation to the random variableU using Pearson’s a
proach is given in Eq.(62). The moment generating function ofU
can be obtained as

Efe−ssg+uxn
2dg = e−sgs1 + 2sud−n/2 s88d

An approximation ofFs−b−ud using a first-order Taylor seri
expansion of lnfFs−b−udg about the most the most proba
point u* is given in Eq.(47). Using this we have

Pf < Fs− b8dEfehu*e−hUg s89d

whereh is given by Eq.(70). This expectation can be evalua
using the moment generating function in Eq.(88) and the fina
result can be simplified to

Pf < Fs− b8des1/2dsn−2−su*−gd/udSusn − 2d
u * − g

D−n/2

s90d

Example 2. Comparison of Approximate Probability Density
Functions
The accuracy ofPf obtained using an approximate PDF ofU
depends on how well the true PDF of the quadratic formU is
approximated. For this reason it is useful to compare the thrx2

type approximations ofU, namely, the mean value approxim
tion, Patnaik’s approximation and Pearson’s approximation,
Monte Carlo simulation results. Fig. 5 shows the probability
sity function and the moment generating function ofU for Case 1
described in Example 1. The histogram ofU is obtained from
3,000 sample Monte Carlo simulation and has been scaled to
unit area. The moment generating function has been obtain

directly calculating the mean ofe−sU
. Patnaik’s approximation

the best for this case. Both the mean value and Pearson’s ap
mations do not yield very accurate results. Pearson’s appro
tion becomes worse in the lower tail of the PDF and in the hi
rangess.3d of MUs−sd.

The probability density function and the moment genera
function ofU for Case 2 described in Example 1 is shown Fig
Unlike the previous case, Pearson’s approximation provide
best fit, followed by Patnaik’s approximation. The mean v
approximation shows the greatest divergence from the simu
results. From the results obtained in this example we con
that when the number of random variables is small Patnaik’
proximation should be used, and when the number of ran
variables is large, Pearson’s approximation should be use
either case, both newly suggested approximations improve
the mean value approximation.

Example 3. Failure Probability Using Exact Integration
In this examplePf obtained using the threex2 type approxima
tions of U, namely, the mean value approximation, Patnaik’s
proximation, and Pearson’s approximation are compared
Monte Carlo simulation, Breitung’s formula in Eqs.(26) and(30)
derived by Hohenbichler and Rackwitz(1988). A closed-form
exact expression ofPf using x2 type approximations can be o
tained only in special cases. In general Eqs.(77), (78), and (87)
have to be evaluated numerically over a finite interval. Effic
algorithms for one dimensional numerical integration are wi
available(for example the function “quadl” inMATLAB®). For
the numerical examples considered here it was observed th
integral converges to a fixed value whenuù15.

Fig. 7 shows probability of failure(normalized by dividing

with Fs−bd) for Case 1 with values ofb ranging from 0 to 5.Pf
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using Patnaik’s approximation produces the best result for
case. Both the mean value approximation and Pearson’s ap
mations underestimatePf and are quite far from the exact valu
Pearson’s approximation is worse, especially for higher va
of b.

Probability of failure for case 2 with values ofb ranging from
0 to 5 is shown in Fig. 8. Unlike the previous case,Pf using
Pearson’s approximation becomes the best, followed by Patn
approximation. Especially,Pf using Pearson’s approximation
very accurate over the complete range ofb. The mean valu
approximation consistently underestimatesPf and turns out to b
the worse in this case.

It is useful to understand as to why Pearson’s approxim
works so well for high values ofn and less so otherwise. The k
to understanding this feature lies in the nature of the approxi
PDF. For the calculation of failure probability the lower tail of
PDF of U is very important becausePf is usually very small. O
closer inspection of the plots of the PDF in Figs. 5(a) and 6(a) it
can be noticed that in the lower tail Pearson’s approximatio
not very good whenn is small and very good whenn is high. This

Fig. 5. Approximations of central quadratic form in Gauss
random variables,U=yTAy, y,Nn−1s0n−1,I n−1d. Case(1): n−1=10,
tracesAd=10.
analysis suggests that in order to get a good approximation to the

JOURNAL
Fig. 6. Approximations of central quadratic form in Gauss
random variables,U=yTAy, y,Nn−1s0n−1,I n−1d. Case(2): n−1=50,
tracesAd=5.
Fig. 7. Normalized failure probability using exact integration w
approximatepUsud. Case(1): n−1=10, tracesAd=10.
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failure probability using an approximate PDF, it is necessary
the approximate PDF should fit the lower tail of the PDF a
rately.

Recently Zhao and Ono(1999a, b) have consideredPf ob-
tained from Eq.(77) as the benchmark. The results obtained
suggest that this method of benchmarking may yield mislea
results because in many cases the mean value approximate
can be grossly inaccurate. As a consequence, even an exa
merical integration using an inaccurate PDF produces an inco
Pf, which cannot be used as a basis for comparing the accura
other existing methods.

Example 4. Failure Probability Using Approximate
Integration
Three methods, namely Patnaik’s pdf with linear and quad
approximations of lnfFs−b−udg and Pearson’s PDF with line
approximation of lnfFs−b−udg, that is, Eqs.(79), (86), and(90)
are considered. Results obtained using these three formula
compared with existing formulae proposed by Breitung(1984)
and Hohenbichler and Rackwitz(1988) and with Monte Carlo
simulation. Eqs.(79), (86), and(90) are expected to provide mo
inaccurate results as in deriving them approximations for
pUsud and Fs−b−ud are utilized. However, the advantage
using these formulae are that they are simple to use and re
little computational effort to evaluatePf. The purpose of thi
example is to verify if these formulae can at all be used
practical purposes.

Fig. 9 shows the probability of failure for Case 1 with val
of b ranging from 0 to 5. The approximations using Patna
PDF produce acceptable results. The linear approximation
comes inaccurate for largeb. The quadratic approximation
quite good for smallb and gives similar accuracy as Breitun
and Hohenbichler and Rackwitz(1988)’s formulae for largeb. As
expected, the approximation using Pearson’s PDF is not
becausen is small.

Fig. 10 shows the probability of failure for Case 2. All th
approximate formulae produce acceptable results. In particuPf

calculated using Pearson’s PDF with linear approximatio
lnfFs−b−udg [Eq. (90)] yields a very good result. These resu
suggest that even though formulae(79), (86), and(90) are derived

Fig. 8. Normalized failure probability using exact integration w
approximatepUsud. Case(2): n−1=50, tracesAd=5.
using several approximations, they still provide acceptable re-
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F
-

sults. The results are especially good when the number of ra
variables is large. This fact is promising because in real-life s
tural reliability problems the number of random variables is
pected to be quite large.

From the results obtained in these representative exam
and also others not reported here, the following conclusions
be drawn:
1. When the number of random variables is smallsn−1ø20d,

Patnaik’s approximation should be used to approximate
PDF of U and to calculatePf.

2. When the number of random variables is largesn−1ù20d,
Pearson’s approximation should be used to approximat
PDF of U and to calculatePf. Pearson’s approximation b
comes very good forn.50.

3. The mean value approximation is in general inaccurate
compared to the previous two approaches without prov
any computational advantage.

Fig. 9. Normalized failure probability using approximate integra
and approximatepUsud. Case(1): n−1=10, tracesAd=10.

Fig. 10. Normalized failure probability using approxima
integration and approximatepUsud. Case(2): n−1=50, tracesAd=5.
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Exact Probability Content for Parabolic Failure
Surfaces

The exact probability of failure with parabolic failure surface
sumption may be obtained by an exact evaluation of the exp
tion operation in Eq.(25). It can be done in two ways:(1) by
using the exact probability density function function ofU, or (2)
by exact representation ofFs−b−ud in terms of other function
such that the expression for the exact moment generating fun
in Eq. (27) can be utilized. The method proposed by Tvedt(1990)
belongs to the first approach. Here the second approach w
used to obtain the exact probability of failure. It should be n
that in this context “exact” means “exact after making the p
bolic failure surface approximation.” Therefore, errors that o
due to the parabolic failure surface approximation itself cann
improved.

Series Expansion Methods

Power Series Expansion
The function Fs−b−ud can be expanded as an infinite pow
series inu. ExpandingFs−b−ud in a McLaurin series provides

Fs− b − ud = Fs− bd + o
k=0

`
dk+1

duk+1Fus− b − uduu=0
uk+1

sk + 1d!

s91d

Calculating the generalkth order derivative ofFs−b−ud, the
above equation can be expressed as

Fs− b − ud = Fs− bd − wsbdo
k=0

`

bk+1u
k+1 s92d

where

bk+1 =
s− 1dk2−k/2Hksb/Î2d

sk + 1d!
s93d

and Hks·d=Hermite polynomial of orderk (see Abramowitz an
Stegun 1965, Chapter 22 for discussions on the Hermite po
mials). Using Eq.(92), the probability of failure can be obtain
from Eq. (25) as

Pf = EfFs− b − Udg = Fs− bd − wsbdo
k=0

`

bk+1MU
sk+1d s94d

where

MU
sk+1d = EfUk+1g s95d

A method to obtain moments of arbitrary order of the quad
form U is given in Mathai and Provost(1992, Section 3.2b). The
first three moments are given by

MU
s1d = TracesAd s96d

MU
s2d = 2TracesA2d + fTracesAdg2 s97d

MU
s3d = 8TracesA3d + 6TracesA2dTracesAd + fTracesAdg3

s98d

The expression in Eq.(94) is exact if an infinite number of term
are retained in the series. The series is convergent if TracesAd,1

and it is observed that the rate of convergence is poor, especially

JOURNAL
if TracesAd is not small. For largeb using a finite number o
terms may result in a negativePf which is obviously incorrec
For these reasons Eq.(94) should be used only ifb and TracesAd
are small.

Series Expansion in Terms ofe−u

There are two main reasons behind the choice ofe−u for a series
expansion:(1) any “powers series” ine−u is always convergent fo
uPR+, and(2) calculation of the expectation operation involv
the powers ofe−u is straightforward as the moment genera
function of U is known exactly.

For anyuPR+ we can define a variableyPR+ such that

u = − lnsyd s99d

or

v = e−u s100d

Sinceu=0 impliesv=1, we are interested in the Taylor series
Fs−b+lnsvdd aroundv=1, which can be expressed as

Fs− b + lnsvdd = Fs− bd + wsbdo
k=1

`
dk

k!
sv − 1dk s101d

where

dkwsbd =
dk

dvkFus− b + lnsvdduv=1 s102d

The expression ofdk valid for all values ofk is defined by Eq
(158) in the Appendix. Substitutingv from Eq. (100), Eq. (101)
can be rewritten as

Fs− b − ud = Fs− bd + wsbdo
k=1

`
dk

k!
se−u − 1dk s103d

Now construct a function

esud =
Fs− b − ud − Fs− bd

wsbd
s104d

which has the following limiting properties:

lim
u→0

esud = 0 s105d

and

lim
u→`

esud = −
Fs− bd
wsbd

s106d

From Eqs.(103) and (104) it is obvious that

esud = o
k=1

`
]k

k!
se−u − 1dk s107d

Conditions(105) and(106) must be satisfied by this series exp
sion. Condition(105) is naturally satisfied because limu→0e

−u=1.
To satisfy condition(106) we propose an approach by conside
that for all practical purposes the series Eq.(107) must be trun
cated. Retaining a finite number of terms, saym, Eq. (107) can be
approximated as

esud < o
k=1

m−1
dk

k!
se−u − 1dk +

dm

m!
se−u − 1dm s108d

This expression will become exact whenm→`. The aim here i

to modify the last term so that condition(106) is satisfied. Taking
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the limit u→` in Eq. (108), from Eq. (106) the required cond
tion can be expressed as

o
k=1

m−1
dk

k!
s− 1dk +

dm

m!
s− 1dm = −

Fs− bd
wsbd

s109d

or

dm = m ! s− 1dsm−1dSFs− bd
wsbd

+ o
k=1

m−1
dk

k!
s− 1dkD s110d

Truncating the series in the left-hand side of Eq.(103) after the
mth term and substituting this expression ofdm, it is hoped tha
the left-hand side of Eq.(103) will approach to exactFs−b−ud
for large values ofm. Numerical results suggest that the con
gence of this series is much better than the powers serie
proach described in the previous section. Note that

Efse−u − 1dkg = EFo
r=0

k Sk

r
Dse−udrs− 1dk−rG

= o
r=0

k

s− 1dk−rSk

r
DiI n−1 + 2rAi−1/2 s111d

Using this, the probability of failure can be obtained by taking
expectation of Eq.(103) as

Pf = Fs− bd + wsbdo
k=1

`
dk

k! or=0

k

s− 1dk−rSk

r
DiI n−1 + 2rAi−1/2

s112d

Fourier Series Method

We expressFs−b−ud as

Fs− b − ud = Fs− bdse−mu − rsudd s113d

where

rsud = e−mu −
Fs− b − ud

Fs− bd
s114d

andm=wsbd /Fs−bd, which is similar to that derived by Hohe
bichler and Rackwitz(1988). The aim here is to expressrsud by a
Fourier sin series

rsud = o
k=1

`

ak sinSkpu

L
D s115d

where s0,Ld is the domain over which it is required to expr
Fs−b−ud by a Fourier series. For numerical calculations i
sufficient to considerL=5p as beyond this limitFs−b−ud is
practically zero for all values ofb. For largeb even smalle
values ofL may be sufficient. The Fourier coefficientsak are
given by

ak =
2

L
E

0

L

rsudsinSkpu

L
Ddu s116d

The above coefficients can be obtained in a closed-form by ta
the imaginary part of the integrale0

Lrsudeivudu (with v=kp /L)
considered in Eq.(146) in the Appendix. After some algebra,

can be shown that
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ak =
2

L
ISkp

L
D s117d

where the functionIsvd :R→R is given by

Isvd =
e−mLsv cossvLd + m sinsvLdd − v

m2 + v2 +
Fs− b − Ld − Fs− bd

vFs− bd

−
e−v2/2

vFs− bd
Rhe−ibvFs− b − L + ivd − Fs− b + ivdj s118d

Taking the expectation of Eq.(113) and substitutingrsud from
Eq. (115) one has

Pf = Fs− bdSiI n−1 + mAi−1/2 − o
k=1

`

akEFsinSkp

L
UDGD

s119d

For anyvPR, from the moment generating function in Eq.(27)
we can have

EfsinsvUdg = IhEfeivUgj = IhiI n−1 − 2ivAi−1/2j s120d

Using this forv=kp /L, Eq. (119) provides

Pf = Fs− bdII n−1 − 2
wsbd

Fs− bd
AI−1/2

− Fs− bdo
k=1

`

akI

3HII n−1 − 2i
kp

L
AI−1/2J s121d

The second part of the right-hand side of this equation ca
viewed as a correction to the Hohenbichler and Rackwitz’s
mula in Eq.(30).

Fourier Sin Transform Method

This method is similar to the Fourier series method except tha
function rsud is expressed in terms of a Fourier sin transf
rather than a Fourier sin series. Thus, in place of the Fourier
in Eq. (115) we now have the Fourier integral

rsud =
2

p
E

0

`

r̂svdsinsvuddv s122d

wherer̂svd is defined as

r̂svd =E
0

`

rsudsinsvuddu s123d

Using Eq.(147) in the Appendix and after some simplificatio
the preceding integral can be obtained in a closed form as

r̂svd = −
m2

vsm2 + v2d
+

e−v2/2

vFs− bd
Rhe−ibvFs− b − ivdj

s124d

Taking the expectation of Eq.(113) and substitutingrsud from
Eq. (122) one has

Pf = Fs− bdSiI n−1 + mAi−1/2 −
2

p
E

0

`

r̂svdEfsinsvUdgdvD
s125d

Substituting r̂svd from Eq. (124) and the expression

EfsinsvUdg from Eq. (120) we have
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Pf = Fs− bdII n−1 + 2
wsbd

Fs− bd
AI−1/2

+
2

p
E

0

` S m2Fs− bd
vsm2 + v2d

−
e−v2/2

v
Rhe−ibvFs− b − ivdjDIhiI n−1 − 2ivAi−1/2jdv

s126d

The second part of the right-hand side of this equation ca
viewed as a correction to the Hohenbichler and Rackwitz’s
mula in Eq.(30). Based on an earlier work of Rice(1980), Tvedt
(1990) obtained the probability of failure exactly using an integ
in the complex domain. Like Tvedt’s result, Eq.(126) is also an
exact expression forPf. Because Eq.(126) is an integral over th
real domain, all well known techniques for the numerical ev
ation of one dimensional real integrals can be directly use
obtainPf.

Example 5. Exact Failure Probability Using Parabolic
Failure Surface Approximation
In this example the probability of failure obtained using the th
exact methods, namely, series expansion in terms ofe−u, Fourier
series method, and Fourier sin transform method, are com
with Monte Carlo simulation, Breitung’s formula in Eqs.(26) and
(30) derived by Hohenbichler and Rackwitz(1988). Formulae fo
Pf corresponding to these three methods are given in Eqs.(112),
(121), and(126). Fig. 11 shows the probability of failure[normal-
ized by dividing withFs−bd] and corresponding relative error
Case 1 with values ofb ranging from 0 to 5. The series expans
formula in Eq. (112) with 15 terms and the Fourier transfo
integral in Eq.(126) with an upper limit of 5 yield very accura
results. The Fourier series method works well for higher valu
b, but less so for the lower values.

It should be noted that these results are exact only in a m
ematical sense and numerical methods are required for pra
implementation of these formulae. Accuracy of the numerica
sults obtained using these formulae depend on several facto
example:(1) the number of terms retained in the series expan
Eq. (112); (2) the domain of the integration used to evaluate
Fourier coefficients given by Eq.(116); (3) the number of term
retained in the Fourier series Eq.(121); (4) the method of numer
cal integration, the selection of a finite upper limit in place o
infinite limit in the integral Eq.(126); and(5) the computation o
cumulative normal distribution with a complex argument. In c
trast to the approximate formulae derived in the previous sec
here the final results will depend on the details of the nume
methods selected. From the nature of these formulae, it is
obvious that a greater numerical effort provides more acc
results. Computational cost can be prohibitively expensive e
cially when the dimension ofA is large and high accuracy
required. Nevertheless, as an alternative to Monte Carlo sim
tion, these formulae can be used as a benchmark.

Failure Probability Using Asymptotic Distribution

We consider the case when the number of random variab
very large, that is, when asymptoticallyn→`. From Eqs.(22)
and (23) the probability of failure can be rewritten as

Pf < ProbF g̃

u=gu
ø 0G = Probfzù bg s127d
where

JOURNAL
z= yn − yTAy [ R s128d

From the central limit theorem it is expected that whenn→` the
random variablez will asymptotically approach a Gaussian r
dom variable. Discussions on asymptotic distribution of quad
forms may be found in Mathai and Provost(1992, Section 4.6b).
Here one of the simplest forms of asymptotic distribution ofz will
be used to obtainPf.

We start with the moment generating function ofz

Mzssd = Efeszg = Efesyn−syTAyg s129d

Becauseyn andyTAy are independent random variables this e
tion reduces to

Mzssd = EfesyngEfe−syTAyg s130d

Considering the eigenvalues ofA we have

Mzssd = es2/2p
k=1

n−1

s1 + 2sakd−1/2 s131d

Now construct a new random variableq=z/În. The moment gen

Fig. 11. Failure probability and relative error using exact meth
n−1=10, tracesAd=10
erating function ofq is given by
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Mqssd = Mzss/Înd = es2/2np
k=1

n−1

s1 + 2sak/Înd−1/2 s132d

From this

lnsMqssdd = s2/2n −
1

2o
k=1

n−1

lns1 + 2sak/Înd

= s2/2n −
1

2o
k=1

n−1

2sak/În − s2s2ak/Înd2/2

+ s3s2ak/Înd3/3 − ¯ s133d

provided

u2saku , 1, for k = 1,2,¯ ,n − 1 s134d

Consider a case whenak and n are such that the higher-ord
terms ofs vanish asn→`, i.e., we assumen is large such that th
following conditions hold:

o
k=1

n−1

s2ak/Înd2/2 , `

or

2

n
TracesA2d , ` s135d

and

o
k=1

n−1

s2ak/Îndr/r → 0

or

2r

nr/2r
TracesA rd → 0, ∀ r ù 3 s136d

Under these assumptions, the series in Eq.(133) can be truncate
after the quadratic term so that

lnsMqssdd < s2/2n −
1

2o
k=1

n−1

ss2ak/Înd − s2s2ak/Înd2/2

= − TracesAds/În + s1 + 2TracesA2dds2/2n s137d

Therefore, the moment generating function ofz=qÎn can be ap
proximated by

Mzssd < e−TracesAds+s1+2TracesA2dds2/2 s138d

From the uniqueness of the Laplace transform pair it follows
when conditions(134)–(136) are satisfied,z asymptotically ap
proaches a Gaussian random variable with means−TracesAdd and
variances1+2 TracesA2dd, that is

z. N1s− TracesAd,Î1 + 2TracesA2dd whenn → ` s139d

Using the PDF ofz, the asymptotic probability of failure can
obtained from Eq.(127) as

Pf → FS−
b + TracesAd

Î1 + 2TracesA2d
D whenn → ` s140d

Like Breitung’s result in Eq.(26), this is another asymptotic r
sult. Here the asymptotic behavior whenn→`, instead ofb
→`, is considered. If the failure surface is linear or close

2
linear then TracesAd=TracesA d→0, and it is easy to see that Eq.
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(140) reduces to the classical FORM formulaPf <Fs−bd. In
many real-life problems the number of random variables is
pected to be large. In such situations this asymptotic result
turn out to be useful.

Minimum Value of n Required for the Accuracy of the
Asymptotic Approach

Here we aim to derive a simple expression for the minimum v
of n which is sufficient for a desired accuracy of the asymp
distribution method. SinceakPR+∀k, condition(134) can be re
written as

s,
1

2 maxsakd
s141d

Regarding the truncation of Eq.(133) after the second-order ter
assume that there exist a small real numbere such that

1

r S 2s
În
Dr

TracesA rd , e ∀ r ù 3 s142d

This ensures that the error in truncating the series Eq.(133) is
small. Assuming equality in Eq.(141) and substitutings in Eq.
(142) one obtains

2r

r

1

nr/2S 1

2 maxsakd
Dr

TracesA rd , e s143d

or

n .
1

Îr r2e2
SÎ3TracesA rd

maxsakd
D2

∀ r ù 3 s144d

Since A =positive definite matrix, the critical value ofn is ob-
tained for r =3. Therefore, the minimum value ofn can be ob
tained from

n .
1

Î39e2
SÎ3TracesA3d

maxsakd
D2

s145d

The following points may be observed from this expression(1)
the minimum number of random variables required for a de
accuracy from the asymptotic distribution approach would
more if e (the error) is considered to be small(as expected), (2)
n~1/e2/3, and (3) the convergence would be better if the ma
mum eigenvalue ofA is large compared to the other eigenvalu

Example 6. Failure Probability Using Asymptotic
Distribution
In this example probability of failure obtained using
asymptotic Gaussian distribution is compared with both B
tung’s asymptotic result and the formula(30) derived by Hohen
bichler and Rackwitz(1988). Fig. 12 shows asymptotic probab
ity of failure (normalized by dividing withFs−bd) for values ofb
ranging from 0 to 5. It is assumed thatn−1=100 and TracesAd
=1.5. The eigenvalues ofA are spaced in a cubic manner(as in
Example 1). For this problem, the minimum number of rand
variables required for the applicability of the asymptotic distr
tion formula can be obtained from Eq.(145). Consideringe
=0.001, it can be shown from Eq.(145) that n.231 or n
−1.230. Although this condition is not satisfied here, the re
obtained from this approach is acceptable, especially for l
values ofb. This numerical example also shows that the cond
derived in Eq.(145) is only a sufficient condition and not a ne

essary condition.
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Results obtained from the asymptotic analysis improve w
the number of random variables becomes large. Fig. 13 s
asymptotic probability of failure forn−1=250 and TracesAd
=1.5. For this case the condition in Eq.(145) is satisfied sinc
n−1.230. As expected, asymptoticPf match very well with the
Monte Carlo simulation result for this case.

Summary and Conclusions

Probability of failure after approximating the failure surface b
parabolic hypersurface in the neighborhood of the design
has been considered. It is assumed that the basic random va
are Gaussian. Several methods to obtain the probability of fa
based on these assumptions have been proposed. The pr
methods can be broadly grouped into:(1) nonasymptotic approx
mate methods,(2) exact methods, and(3) asymptotic distributio
methods. Further divisions of each of these methods are su
rized in Fig. 14. Table 2 summarizes the main results of the p
From the numerical examples it is shown that the accuracy
vided by the optimal point expansion methods is sufficient

Fig. 12. Asymptotic failure probability,n−1=100, tracesAd=1.5

Fig. 13. Asymptotic failure probability,n−1=250, tracesAd=1.5
JOURNAL
s

d
practical purposes. These methods require very little nume
effort and produce excellent accuracy over a wide range of
ability indices and number of random variables. When the nu
of random variables becomes large further simplifications are
sible. One can either use the approximate pdf using Pea
method or the asymptotic formula. The new asymptotic formu
simple and numerical results suggest that it produces exc
accuracy when the asymptotic conditions are met. Some
formulae for the failure probability have been derived. Altho
the computational cost is high for the exact methods, like M
Carlo simulation, they can be used as a benchmark. The form
derived here provide exact or accurate resultsafter making the
parabolic failure surface assumption. Fundamental errors a
ated with the parabolic failure surface assumption itself cann
improved using the proposed methods. Further research is n
to extend these methods to obtain failure probability estim
associated with general quadratic failure surfaces with
Gaussian basic random variables.
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Appendix. Some Mathematical Details Used in the
Paper

Some Integrals Involving F„·…

A few useful indefinite and definite integrals involving the cum
lative normal distribution functionFs·d are derived here. The
integrals specifically arise in reliability problems and may no
found readily in the standard tables of integrals. First conside
indefinite integral

Table 2. Summary of Formulae for Determination of Failure Proba

Method

Asymptotic,b→` (Breitung 1984). Fs−bdiI +2bAi−

A 1. Taylor series of lnfFs−b−udg
aboutu=0 (Hohenbichler and Rackwitz 1988).

Fs−bdiI +2mAi

Least-square approximation
of Fs−b−ud.

c1iI +2c2Ai−1/2

3. Optimal point expansion
based on Patnaik‘s and
Pearson‘s approximation for
the PDF of a quadratic form.

Fs−hdehu*iI +2h

h= sn−2/u*−g
approximationg

B 1. Numberical integration using
Patnaik‘s approximate PDF.

e0
`Fs−b−ud1/ u

2. Patnaik‘s approximate PDF
with first-order approximation
of lnfFs−b−udg.

Fs−b8des1/2dsn−2−

3. Patnaik‘s approximate PDF
with second-order approximation of lnfFs−b−udg.

Fs−b8dem0+m1
2/4m

4. Numerical integration using
Pearson‘s approximate PDF.

e0
`Fs−b−ud1/ u

5. Pearson‘s approximatee PDF
with first-order approximation
of lnfFs−b−udg.

Fs−b8dexpsn−2

C 1. Power series expansion. Fs−bd−wsbdok=
`

2. Series expansion in the powers ofe−u.
Fs−bd+wsbdok=

`

3. Fourier series expansion. Fs−bdiI +2mAi

4. Fourier sin transform. Fs−bdiI +2mAi

−exps−v2/2 /

D Asymptotic,n→`.
Fs−b+TracesA
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E Fs− b − udeaudu=
1

a
Fs− b − ud −

1

a
ea2/2−abFs− b − u + ad

s146d

This result is derived using integration by parts. The Lap
transform ofFs−b−ud can be obtained by substitutinga=−s in
Eq. (146). Taking the appropriate limits and noting thatFs−`d
=0 one obtains

Using Parabolic Failure Surface Approximation

Pf Remarks

Works well when the
asymptotic condition is met.

Works well whenb is large
and Trace(A) is small.

Works well especially for sma
b.
Accuracy is independent of th
probabilistic characteristics
of U.

,
d /2. For Patnaik‘s

In terms of cost effectiveness
these are the best methods.
small n use Patnaik‘s
approximation, for largen use
Pearson‘s approximation.

/ u ddu Works very well for largeb
small n.

sn−2d/u* d−n/2 Accuracy is poor for smalln
and largeb. Works reasonably
well otherwise.

2d−n/23D−n/2
sm1/Îm2

d Achieves similar accuracy to
exact integration method with
Patnaik‘s approximate PDF.

−g/ u ddu Accuracy is very poor for
small n
and largeb. Works very well
for largen for any b.

u*−gd/ 2u dsusn−2d/u*−g d−n/2 Accuracy is poor for smalln
and largeb. For largen works
very well.

kg Accuracy is very poor,
especially when Trace(A)
large.

! or=0
k s−1dk−rskr diI +2rAi−1/2

Accuracy is good for smallb
and Trace(A). Otherwise
requires many terms.

s−bdok=1
` akIhiI −2i kp/LAi−1/2j Like the previous method, bu

requires more computation,
especially ifA is a large
matrix.

/pe0
`sm2Fs−bd/vsm2+v2d

−ibvFs−b− ivdjdIiI −2ivAi−1/2dv

Numerical integration over a
finite interval is required.
Numerically inefficient for
largen andb.

2TracesA2d d Works very well if the
asymptotic conditions in
Eqs.(135) and (136) are satisfi
bility

1/2

−1/2

Ai−1/2

− 1/ u
=0

px
n
2su

u*/udsu

2s2uÎm

px
n
2su

/2 − s

1bkEfU

1dk/ k

−1/2−F

−1/2+ 2

vdRhe

d/Î1+
004
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LfFs− b − ud;sg =E
0

`

Fs− b − ude−sudu

=
1

s
Fs− bd −

1

s
es2/2+sbFs− b − sd s147d

The Laplace transform ofu Fs−b−ud=s] /]sdLfFs−b−ud ;sg. So
using Eq.(147) we have

E
0

`

uFs− b − ude−sudu= −
]

]s
H1

s
Fs− bd −

1

s
es2/2+sbFs− b − sdJ

=
1

s2Fs− bd − S1 +
b

s
−

1

s2Des2/2+sb

3Fs− b − sd −
1

s
wsb + sd s148d

This formula can be generalized for any integern as

E
0

`

unFs− b − ude−sudu

= s− 1dn
dn

dsnH1

s
Fs− bd −

1

s
es2/2+sbFs− b − sdJ s149ad

=
n!

sn+1Fs− bd − s− 1dn
dn

dsnH1

s
es2/2+sbFs− b − sdJ s149bd

Assumingf1=1/s, f2=esb+s2/2, andf3=Fs−b−sd for any integerj
we can derive the following generalized derivatives:

f1
s jd =

dj

dsj

1

s
= s− 1d j j !

sj+1 s150d

f2
s jd =

dj

dsj e
sb+s2/2 = esb+s2/2o

k=0

f j /2g
j !

k!s j − 2kd!
2−ksb + sd j−2k s151d

f3
s jd =

dj

dsj Fs− b − sd = s− 1d j2−s j−1d/2wsb + sdHj−1Sb + s

Î2
D
s152d

The second part of Eq.(149b) can be obtained by success
application of the Leibnitz’ rule of general differentiation o
product as

dn

dsn hf1f2f3j = o
r1=0

n

o
r2=0

n−r1 S n

r1
DSn − r1

r2
D f1

sr1df2
sr2df3

sn−r1−r2d s153d

Using this, from Eq.(149b) we have

E
0

`

unFs− b − ude−sudu=
n!

sn+1Fs− bd − s− 1dno
r1=0

n

o
r2=0

n−r1 S n

r1
D

3Sn − r1

r2
D f1

sr1df2
sr2df3

sn−r1−r2d s154d

where f i
s jd for i =1, 2, 3 are given by Eq.(150)–(152). Although

this is the exact expression of the integral, it becomes increas
complicated for largen. In such cases numerical integration o

a finite domain may be preferable.

JOURNAL
Coefficients dk in Eq. (101)

Before deriving the coefficients explicitly first consider the
mula for the kth derivative of a composite function. Supp
fsxd=Fsyd and y=wsxd. Then, from Gradshteyn and Ryzh
(1994, Section 0.43) we have

dk

dxk fsxd = o
j=1

k
Uj

j !
Fs jdsyd s155d

where

Uj = o
r=1

j−1 S j

r
Ds− 1dryr dk

dxkyj−r s156d

From Eq.(102) we have

dk =
1

wsbd
dk

dvkFusFsvdduv=1 s157d

where Fsvd=−b+lnsvd. This derivative can be obtained us
Eqs.(155) and (156) as

dk =
1

wsbdoj=1

k

d j8
skdFs jds− bd s158d

where

Fs jds− bd =
dj

dxj Fus− b + xdux=0 = s− 1d2j2−s j−1d/2wsbdHj−1S b

Î2
D

s159d

It may be shown that the constantsd j
8skd are the coefficients ass

ciated withxj in the polynomial expression of

Gsx + 1d
Gsx − k + 1d

Using this relationships the first ten terms can be explicitly
tained as

d1 = 1 s160d

d2 = − 1 +b s161d

d3 = 1 − 3b + b2 s162d

d4 = 8b − 6b2 + b3 s163d

2 3 4
d5 = − 8 − 20b + 29b − 10b + b s164d
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d6 = 60 + 34b − 135b2 + 75b3 − 15b4 + b5 s165d

d7 = − 394 + 126b + 619b2 − 525b3 + 160b4 − 21b5 + b6

s166d

d8 = 2,632 − 2,514b − 2.632b2 + 3,654b3 − 1,540b4 + 301b5

− 28b6 + b7 s167d

d9 = − 18,542 + 28,008b + 7,580b2 − 25,704b3 + 14,469b4

− 3,780b5 + 518b6 − 36b7 + b8 s168d

d10 = 138,870 − 285,774b + 36,900b2 + 181,040b3 − 137,025b4

+ 45,381b5 − 8,190b6 + 834b7 − 45b8 + b9 s169d

Notation

The following symbols are used in this paper:
A 5 a symmetric matrix containing firstsn−1d

3 sn−1d block of Ã;

Ã 5 transformed and scaled Hessian matrix
defined in Eq.(19);

aj 5 j th eigenvalue ofA;
bk 5 constants in power series expansion of

Fs−b−ud;
C 5 space of complex numbers;

c1,c2 5 real scalar constants in least-square
approximation ofFs−b−ud;

D−n 5 parabolic cylinder function;
diagfvg 5 diagonal matrix containing vectorv in

diagonal;
Ef·g 5 expectation operator;
gsxd 5 failure surface in space of basic

variables;
g̃sxd 5 quadratic approximation of failure

surface;
Hgsx* d 5 Hessian matrix ofgsxd evaluated atx*,

fHgsx* dgi j = us]2gsxd /]xi]xjdux=x* ;
Hks·d 5 Hermite polynomial of orderk;

I k 5 unit matrix of orderk;
Isvd 5 function of v defined in Eq.(118);
Is·d 5 imaginary part ofs·d;

i 5 unit imaginary number,i =Î−1;
f j /2g 5 integer part ofj /2, for examplef3/2g=1,

f5/2g=2, f6/2g=3 etc.;
s k

r
d 5 binomial coefficients;

L 5 upper limit of integral in Fourier coefficients
of Fs−b−ud;

Lffsud ;sg 5 Laplace transform of functionfsud in s,
Lffsud ;sg=e0

`fsude−sudu;
MUssd 5 moment generating function ofU;

MU
j 5 j th raw moment of quadratic formU;
m 5 number of terms in series expansion ofFs−b

−ud in e−u;
Nnsm ,Sd 5 n dimensional Gaussian random vector with

meanmPRn and covariance matrixS
PRn3n;
n 5 number of basic random variables;

1426 / JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2
Pf 5 probability of failure;
psxd 5 probability density function ofx;

Probf·g 5 probability of the events·d;
pUsud 5 probability density function ofu;

px
n
2 5 probability density function ofxn

2;
PDF 5 probability density function;

q 5 scaled random variable used for asymptotic
distribution;

R 5 orthogonal transformation matrix defined in
Eq. (15);

R 5 space of real numbers;
R+ 5 space of positive real numbers;

Rs·d 5 real part ofs·d;
s 5 a scalar complex variable;

T 5 matrix of eigenvectors ofHgsx* d;
Traces·d 5 trace of matrixs·d;

U 5 quadratic formyTAy in standard Gaussian
random variables;

u 5 real scalar variable for values of
randomvariableU;

u* 5 optimal expansion point;
Varf·g 5 variance ofs·d;

x 5 basic random variables;
x* 5 design point;
y 5 n−1 dimensional uncorrelated Gaussian

random vector;
ỹ 5 n dimensional uncorrelated Gaussian random

vector;
yn 5 standard Gaussian random variable fornth

coordinate;
z 5 random variable used for asymptotic

distribution;
a* 5 unit vector to the design point;
ak 5 Fourier coefficients;
b 5 Hasofer and Lind reliability index;

b8 5 modified reliability index,b8=b+u*;
Gs·d 5 Gamma function;

g 5 translation constant in Pearson’s approximat
pdf;

dk 5 constants in series expansion ofFs−b−ud in
e−u;

d j
8skd 5 constants in series expansion ofdk;

e 5 small real number;
esud 5 error term in series expansion ofFs−b−ud in

e−u;
«sud 5 error in least-square approximation;

h 5 ratio wsb+u* d /Fs−sb+u* dd;
u 5 multiplication constant in Patnaik’s and

Pearson’s approximate probability density
functional;

k j 5 j th principal curvature of failure surface at
design point;

lk 5 kth eigenvalue of Hessian matrixHgsx* d;
m 5 ratio wsbd /Fs−bd;
n 5 degrees of freedom forx2 probability density

functional;
rsud 5 error term in Fourier series expansion ofFs

−b−ud;
r̂svd 5 Fourier sin transform ofrsvd;
Fs·d 5 standard Gaussian cumulative distribution

function;
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ws·d 5 standard Gaussian probability density
function;

xn
2 5 x2 random variable withn degrees of

freedom;
c 5 objective function for least-square

approximation;
v 5 real scalar variable used in Fourier series

expansion;
=gsxd 5 gradient vector ofgsxd; h,gsxdji

=]gsxd /]xi;
s·dT 5 matrix transpose;

s·ds jd 5 j th order derivative ofs·d;
u ·u 5 l2 norm of a vector;
i ·i 5 determinant of a matrix;
< 5 approximately equal to;
∀ 5 for all;
P 5 belongs to;
° 5 maps into;
~ 5 proportional to;

→ 5 approaches to;
, 5 distributed as; and
. 5 approximately distributed as.
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