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Abstract: In the second-order reliability method the failure surface is approximated by a general quadratic surface in the neighborhood
of the design point. In this paper this general quadratic surface is further approximated by a parabolic surface. Several methods ar
proposed to obtain the probability content associated with this parabolic failure surface. It is assumed that the basic random variables a
Gaussian. The proposed methods can be broadly grouped(intoonasymptotic approximate method) exact methods, an(B)
asymptotic distribution methods. Most of these methods result in a closed-form expression for the failure probability. For nonasymptotic
approximations, a least-square approach and an optimal point expansion method using approximate probability density functions of .
quadratic form in Gaussian random variables have been proposed. It is shown that such approximations give accurate results witho
significant numerical effort. Exact results, however, require greater numerical effort. The new asymptotic result is derived for the case
when the number of random variables approaches infinity. Several numerical examples are provided to compare the proposed results wi
existing equivalent results and Monte Carlo simulations.
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Introduction evaluation of this integral, either analytically or numerically, is
not possible for most practical problems becayégn is large;
Reliability based structural analysis and design have two main (2) p(x) is non-Gaussian; an@) g(x) is a highly nonlinear func-
objectives, namely(1) to obtain the probability of failure of an  tion of x. Even direct Monte Carlo simulation is quite expensive
existing structure under the action of applied loadings, @ydo becauseP; is usually a small quantity.
design a structure with prescribed reliability requirements. For ~ Over the past three decades there has been extensive research
both types of problem, it is required to calculate the probability of (see for example, the books by Thoft-Christensen and Baker
failure (or surviva) of a structure, either to assess the risk asso- 1982; Madsen et al. 1986; Ditlevsen and Madsen 1996; Melchers
ciated with an existing structural facility, or to determine if a 1999 to develop approximate numerical methods for the efficient
structural design has met the prescribed reliability criteria. Sup- calculation of the reliability integral. A review of earlier as well as
pose the random variables describing the uncertainties in thecurrent works may be found in Manohar and Gu#803. The
structural properties and loading are considered to form a vectorapproximate reliability methods can be broadly grouped i(p:
x € R". The statistical properties of the system are fully described first-order reliability method FORM), and(2) second-order reli-
by the joint probability density functiop(x) : R"— R. For a given ability method(SORM). In FORM and SORM it is assumed that
set of variables the structure will either fail under the applied all the basic random variables are transformed and scaled so that
(random loading or will be safe. The condition of the structure they are uncorrelated Gaussian random variables, each with zero

for everyx can be described by a safety margi): R"— R such mean and unit standard deviation. In principle such a transforma-
the structure has failed (x) <0 and is safe ifg(x) >0. Thus, tion can always be achieved, for example using the Rosenblatt
the probability of failure is given by (1952 transformation. In the transformed space Hasofer and Lind
(1974 defined the reliability index
i f p(x)dx (o) B = (x*Tx*)¥? 2
g(X)<0

. . . Here x*, the “design point” or the “checking point,” is the point
The functiong(x) is also known as the failure surface or the on the failure surface with minimum distance from the origin.

limit-state function. The central theme of a rehab”lty analySiS is That is’ X* is the solution of the fo”owing Optimization pr0b|em:
to evaluate the multidimensional integral E(L). The exact ) ;
min{(x"x)"3}
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arising from all design points which are significant and adds them
to obtain the total failure probability.

In general it is difficult to quantify the amount of error intro-
duced in FORM or SORM. For standard Gaussian basic variables
Breitung (1984 proposed an asymptotic methgasymptotic
SORM) which becomes exact in the limit whgh—cc. In a later
work, using the maximum likelihood approach in conjunction
with the asymptotic analysis, Breituri$991) obtained the failure
probability in the space of non-Gaussian basic random variables.
Here, like the failure surface, the log-likelihood function is also
expressed by a second-order Taylor series in the neighborhood o
the design point. This is equivalent to approximating the basic
non-Gaussian probability density functigRDF) by a Gaussian
PDF in the vicinity of the design point. In view of this, one can
identify three different stages of approximations, and conse-
quently errors, in SORM:

1. Type 1: error due to approximating a general nonlinear fail-
ure surface by a quadratic hypersurface in the neighborhood
of the design point;

2. Type 2: error due to approximating a general PDF by a
Gaussian PDF in the neighborhood of the design point; and
3. Type 3: any errors in evaluating the probability content after

making the previous two assumptions.
In a recent paper Breitun@002 pointed out the importance
of distinguishing between these errors. Type 1 error is fundamen-
tal to SORM and cannot be improved unless higher order deriva-
tives of the failure surface are us@8reitung and Richter 1996
Type 2 error can be avoided provided the basic variables are

already Gaussian or transformed to Gaussian using numerical

transformations. Breitun@l984, 1989, 199lused asymptotic ap-

gx) = g(x* )+ Vg(x* )T(x=x* ) + 5(x =x* ) Hy(x*)
X(x=x*)=G(x) G

Becausex* is on the failure surfaceg(x*)=0 and we obtain

TGO =(= Vg'x* + 2x*THex* ) = (= Vg7 +x* THgx + 3xTHx
(6)

For notational conveniendg* ) is omitted. Fiessler et al1979),
adsen et al(1986, and Tvedt(1990 have used orthogonal

fr/lansformations to reduce E¢p) into suitable forms. At the de-

sign point the gradient vector to the failure surface and the vector
from the origin are parallel, that is

X* Vg

— —--——=-Q

B |V
wherep =|x* | anda* =units vector tox*. Dividing Equation(6)
by |Vg| and using Eq(7) the second-order approximation to the
failure surface can be expressed as

*

@)

2
& - (B + B—a*Tig-a * ) _ (a*T+ Ba*Ti:L)X + }XTig'X
[Vl 2 |vy Vol/" 27 |V

8

Using the orthogonal transformation

x=Ty (€)

wherey ~N,(0,1,) andT e R™" is the matrix of eigenvectors of

proximations at each stage and has shown that the three types Olf-lg(x* ), Eq. (8) can be transformed to

errors asymptotically vanish whe— . Extensive work has
been done, for example by Hohenbichler and Racki@88),
Naess(1987, Tvedt (1990, Koyluoglu and Nielsen(1994), Cai
and Elishakoff(1994), Zhao and Onq1999a, b, Polidori et al.
(1999, and Hong(1999, to improve the reliability assessment
when the asymptotic condition does not hold. Majority of these
works deal with Type 3 error. Another route to reducing all three
types of errors is to use simulation methods, which, with the
development of importance sampling techniques are becoming
very efficient. Further discussions on developments in this area
can be found in the recent review paper by Manohar and Gupta
(2003 and the cited references therein.

This paper deals with Type 3 error. Three distinct methods,

namely nonasymptotic approximate methods, exact methods, andnd

asymptotic distribution methods, are proposed to reduce this er-

ror. It is assumed that the basic random variables are Gaussian so
that Type 2 error is not present. Discussions are confined to para-

bolic failure surfaces and systems with a unique design point
only.

Transformations of Failure Surface

General Quadratic Surface

For standard Gaussian basic variabtesIN,(0,1,) the joint PDF
is given by

P(X):RM > R = (2m) M2e X2 @

g " A HVAY (10
Here
- B* .1 Hg
a0:B+Ea* |Vg|a* €R (11
H
a{:<a*T+ Ba*T|—V(’g—|)T € Rxn (12
A,= mdiag[xl,xz, o\ ] € RO (13)

The quadratic hypersurface in Eq.0) can be elliptic, parabolic,
or hyperbolic. The parabolic case appears when for skme

=0 butalkq& 0. Because(x) in Eq. (4) is rotationally symmetric,
any orthogonal transformatio(rotation) like Eq. (9) does not
change the probability content of an infinitely small volume ele-
ment. Therefore, the failure probability can be approximated as

n

P; ~ Prolfg/| V g| < 0] = Prot{éo + 2 AT+ AT <0
k=1

(14)

Assuming thag(x) is continuous, smooth and at least twice dif- By inverting the characteristic function @/ |V|, Tvedt (1990
ferentiable, in SORM the actual failure surface is replaced by its has proposed a complex-domain numerical integration method for
second-order Taylor series expansion about the design point the exact evaluation of Eql4).
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Parabolic Approximation

Madsen et al(1986 proposed a parabolic approximation to Eq.
(5) which keeps the intuitive notion of the reliability index. Con-
struct an orthogonal matriR € R™" whosenth column isa*,
that is

R=[R,Ja* ] whereR, € R™"1
and
o* Ry =04y (n-1) (19

The matrixR can be obtained, for example, by Gram—-Schmidt
orthogonalization. Using the orthogonal transformation

x =Ry (16)
and partitioningy as
Yn
where
y~ Nn—1(0n—1v| n—1)
and
Yo~ Ni(0,2) 17
from Eq.(8) one obtains
o))
Vo - Bt S TThar |-yt Bt TTLRY | +FTAY
[V 2 |vd| " |V
(18)
Here
~ 1R™Hy(x*)R
A= SR HAR gy (19
2 [Vgx*)|
For convenience partitioﬁ as
~ A A
A= [~ f“] (20)
Anl Ann
whereA e RDX(m1) and A =AT e R0
In view of this partition, Equatiori18) reads
= 2
9 _ T T Hg T Hg ~
Vg = YetBHYAY+ Do T ek - B T T RY
Vgl " 2 |vg [V
+ 2yn'z‘nly + ’A'nnyﬁ (21)

Keeping only second-order terms ynand neglecting any cross
terms Madsen et al(1986 have approximated Eq21) by a
parabolic surface

g

Vg
The matrixA can be diagonalized by a further orthogonal trans-
formation using the eigenvectors &f The parabolic surface in
EqQ. (22) has been used by a number of authors, for example,
Hohenbichler and Rackwit21988, Koyluoglu and Nielsen
(1994, Cai and Elishakoff(1994), Zhao and Onqa1999a, b,
Polidori et al. (1999, and Hong(1999. Der-Kiureghian et al.
(1987 and Der-Kiureghian and de Stefa(t®91) have also used

this parabolic surface as the basis for point fitted SORM. With
this approximation the failure probability is given by

~ -y *+B+y'Ay (22

P~ Prot{ﬁ < 0] ~ Prody, =B +y'Ay] (23

Denoting

U:R™— R =yTAy (24)
as a central quadratic form in standard Gaussian random vari-
ables, the failure probability can be rewritten as

J‘B+u

The exact probability density function of the quadratic fddhis

in general not available in closed form. For this reason it is dif-
ficult to calculate the expectatidef ® (- —U)] analytically. Sev-
eral authors have used approximation€Epd (- —U)] to obtain
closed-form expressions &;. A selected collection of such ex-
pressions can be found in Zhao and Qi®993. In this paper
closed-form expressions @®; will be derived with an aim to
improve on the accuracy of currently available formulae. Direct
numerical integration methods, like the saddle-point integration
method in Tved{1990, can be used to evaluagd(-g—-U)] in

Eq. (25 exactly and quite efficiently. Nevertheless, simple
closed-form expressions are useful in many situations, for ex-
ample; (1) to intuitively understand numerical results, af®l in

the initial design stage when sensitivity of the failure probability
with respect to certain design variables is required.

P;~ Projy,= g +U]= J { cp(yn)dyn}pu(u)du
R

=E[®(-p-U)] (29)

Outline of Paper

The various new methods to obtain expressionB;qfroposed in
this paper are presented in the following sequence:
A. Methods using approximation @b(—3 —u)

1. Taylor series of Ifb(-B—u)] aboutu=0
2. Least-square method
3. Optimal point expansion method.

B. Methods using approximation of the pdf Of

1. Mean value approximation
2. Patnaik’sx? type approximation
3. Pearson’s approximation

C. Methods for exact probability content for parabolic failure sur-
faces

1. Series expansion methods
2. Fourier series method
3. Fourier sin transform method

D. Asymptotic distribution method fon— oo

In the next few sections these methods are explained in detail.
Results obtained from each method are illustrated by numerical
examples and compared with existing reliability approximations
and Monte Carlo simulations. The last section summarizes the
main outcomes of this paper.

Nonasymptotic Approximations to Failure
Probability

Using quadratic approximation of the failure surface together
with asymptotic analysis Breitun@.984) proved that
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d(-B) (27). From Eq.(25) the probability of failure can be obtained by

Pr— —1 whenp — (26) taking the expectation of E¢29) as
IT. Vi+28a
= -1/2
Here a;, the eigenvalues oA, can be related to the principal Pi=E[®P(-B-U)]=P(-B)|l-1+2 o (B) A (30)
curvatures of the surface; asa;=«;/2. This result is important o(-B)

because it gives the asymptotic behavfprunder general condi-  The terme(B)/®(-B) in Eq. (30) was first obtained by Hohen-
tions. Some approximations to be proposed in this paper are nontichler and Rackwit21988 and later rederived by Koyligu
asymptotic in the sense that we do not assume any parameter, likeynd Nielsen1994) and Polidori et al(1999 using different ap-

B in Eq. (26), is approaching infinity. The advantage of non- proaches. In this paper the credit for this formula is attributed to
asymptotic approximations is that the approximations may work Hohenbichler and Rackwit¢1988. A minor difference between
well when the asymptotic condition is not met. The disadvantage gq. (30) and existing similar expressions in the cited references is
is that one cannot in general prove that an approximation ap-that the eigenvalues @ are not required in Eq:30). Taking an

proaches the exact value when some conditiglike an asymptotic expansion af(B)/P(-p) we obtain
asymptotic condition are fulfilled. However, for reliability ap-
proximations one would exped;—0 as— . This limiting o(B)

behavior is satisfied by all the approximate formulae to be derived g, — B B+B -2+ 10877487+ 70637+ -+
in this paper.

As mentioned earlier, the main difficulty in obtaining the prob- (31)
ability of failure from Eq.(25) is that the probability density  pyejtung’s approximation in Eq26) can be obtained from Eq.
function of the quadratic forn given in Eq.(24) is in general (30 py keeping only the first term in this series, which is asymp-
not available in closed form. However its moment generating totically correct wher — . Numerical works in Kéyluglu and
function, characteristic function and moments of any order can be Nielsen (1994 and Polidori et al(1999 show that the formula

obtained. Extensive discussions on quadratic forms in Gaussiangq (30) works reasonably well for smallg: In terms of a simple
random variables can be found in the books by Johnson and Kotzformya, P, expressed in Eq30) is possibly the best available in
(1970, Chapter 29and Mathai and Provostl992. For anys current literature.

e C the moment generating function bf can be obtained as

My(s) = E[e3V] = ||l -, — 2sA |22 (27) Least-Square Method

Due to the simplicity of this expression, in the next section we The only source of error in formul&@30) is from approximating
propose three different approaches to approxindtep—u) in ®(-B-u) by an one-term exponential function in E@9). After
terms of exponentials af. The matrixA is likely to be positive this approximation, the expectation operation is carried eout
definite because the Hessian mathby(x*) is expected to be actly using the moment generating functionldf Several authors
positive definite in the projection on the tangential space. Some have proposed methods to improve this approximation. Hohen-
authors, for example Koyli@tu and Nielsen(1994), Zhao and bichler and Rackwit1988 have proposed an importance sam-
Ono (19993, Polidori et al.(1999 have considered the cases Ppling technique to reduce this error while Koyfilo and Nielsen
whenA is negative definite or more generally positive semidefi- (1994 have used higher-order terms in the McLaurin series ex-
nite. Here we have not considered such cases and throughout th@ansion of the error term. The aim here is to see how far we can
paper it is assumed that is a positive definite matrix. go with a simple single-exponential term approximationdaf
—-B-u). Therefore, we are looking for an approximation &g
-B-u) of the form

Failure Probability Using Approximations

of d(-p-U) O(-B-u)~cre ™ (32
such that the error in this approximation is minimized in some

Taylor Series of In[®(-B-u)] about u =0 sense. The error in representidg— —u) by Eq.(32) is given by

The function® (- -u) is smooth, continuous, and differentiable &(U) = d(— B - U) - ¢, (33)

(of any ordey for ue R. We write
Recalling thau € R*, the objective function can be defined by the

O(- B - u) = el (29 I, norm of e(u) as
From the definition ofJ in Eq. (24) it is easy to see thate R* as o w
A is positive definite. The maximum of [@(-B-u)] in R oc- llJ:J s(u)zdu:f [P(-p-u)-c,@¥2du  (34)
curs atu=0. Therefore, the maximum contribution to the expec- o 0

tation of If®(-B—-U)] comes from the neighborhood of=0.

Expanding Ihid®(-p-u)] in a first-order Taylor series about To minimize with respect tac, andc, we must have

=0 we obtain
o(B) o(B) %=O fori=1,2 (35
d(-B-u)=explf®(-B)]- ———u=Pd(-Blexp ~————u '
g P g ®(-p) PIexp P(-B) After some simplifications of Eq.35) one obtains
(29
€1 =2C,L[P(-B—-u);c,] fori=1 (36)

The reason for keeping only one term in the Taylor series is to
exploit the expression of the moment generating function in Eq. and
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Table 1. Values ofc; andc, in Least-Square Method

B Cq Co

0.00 5.5089583e-01 1.3075
0.25 4.3609324e-01 1.4497
0.50 3.3133310e-01 1.6024
0.75 2.4091628e-01 1.7650
1.00 1.6721652e-01 1.9366
1.25 1.1054756e-01 2.1165
1.50 6.9479790e-02 2.3038
1.75 4.1448781e-02 2.4977
2.00 2.3437948e-02 2.6975
2.25 1.2548254e-02 2.9024
2.50 6.3544929¢e-03 3.1120
2.75 3.0412682e-03 3.3255
3.00 1.3746774e-03 3.5426
3.25 5.8648912e-04 3.7627
3.50 2.3605347e-04 3.9857
3.75 8.9590399e-05 4.2110
4.00 3.2051520e-05 4.4385
4.25 1.0805111e-05 4.6679
4.50 3.4314611e-06 4.8990
4.75 1.0263359e-06 5.1316
5.00 2.8904481e-07 5.3656

¢, =4c3L[ud(- B —u);c,] fori=2 (37)

where L[ f(u);s] is the Laplace transform df(u) in s. Substitut-
ing ¢, from Eg. (36) into Eq. (37) and using the Laplace trans-
forms of ®(-B-u) andud(-B-u) from Eqgs.(147) and(148) in
the Appendix, one has

(2C2+ 2BC, — DEFFRD(~ B — ¢;) — 20,0(B) + D(~ ) =0
(39)

The constant, can be obtained by solving this equation. Substi-
tuting the value of, in Eg. (36) the constant; can be calculated
obtained as

C1= 2 D(- B) - eF2BD(— § - )] (39)

An exact closed-form solution of E¢38) does not exist. How-
ever, numerical solution can be obtained easily using widely
available nonlinear equation solvetke function “fzero” inMAT-
LAB® is used herg Because&, and consequently, are functions
of the reliability indexp only, we can produce a unique table for
the values ofc; andc, for different values ofg which can be
directly used in practical applications. Table 1 shows the values of
¢, andc, for B ranging from 0O to 5 with steps of 0.25. This table
is obtained by solving Eq(38) with an initial guess ofc,
=¢(B)/D(-B).

The probability of failure corresponding to the approximation
in EqQ. (32) is given by

Pi=E[®(- B —U)] = cyfll -1 + 2C,A[ 2 (40)

It is easy to see that Breitung’s approximation in E2f) and also
the approximation in Eq30) are like special cases of EG0).
For Breitung’s approximatior;=®(-B) andc,=p. For the ap-
proximation in Eqg.(30) by Hohenbichler and Rackwit¢l988),
¢, =®(-B), which is the same as Breitung's, bat=0(B)/
®(-B). A graphical comparison between the constaitand ¢,
obtained from the least-square method and those obtained in Brei

él'.;_ 1.1
g
<7 1.05
1 A
0 0.5 1 L5 2 2.5 3 35 4 4.5 5
B
6 T T T T T
I | Breitung -
= - =+ Hohenbichler & Rackwitz PPN
5 apL=_-_Least—square eI
g R AL
3 el
g cemmIETiT
£ 7 B e R
& fo--zzitoente
2 [ e
= T e
olacs .
0 0.5 1 1.5 2 2[.35 3 35 4 45 5

Fig. 1. Comparison of values af; andc, between existing results
and least square analysis

tung (1984 and Hohenbichler and Rackwit2988) is shown in
Fig. 1. Although the values themselves are not very different, they
make noticeable difference to the reliability estimgtee example
1 laten becauseP; is usually a very small quantity.

In Fig. 2, a comparison is drawn betwedt—f -u) and vari-
ous single-exponential term approximations. The plots are nor-
malized by®(—p). Four representative values pfare selected
and the range afl is considered as€u<4. The curve obtained
by the least-square approach is the closesb(e—u) for all
four values off3. The difference between the other methods and
the least-square method is greater for lower value@ ahd less
for the higher values. Thus, whep is small the least-square
approach is expected to give a better regsge example 1 later

Optimal Point Expansion Method

The probability density function ob) has not been considered
explicitly in deriving the previous two approximations. From Eq.
(25) we can write

D(-B-u)/P(-p)

D(=P~-u)/d(-B)
=)

D(-B-u)/d(~B)

----- Breitung

+=++ Hohenbichler & Rackwitz
= = Least-square

— Exact

P(-B-wIb(-B)

Fig. 2. Approximation of ®(-B-u) using single exponential

- function
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Py = f ®(- B - u)py(uydu= f i@ -p-ul+inlpy]gy
R* R*

(41)

The aim here is to expand the integrand in a first-order Taylor
series about the most probable point or optimal point, say*.

approximation analogous to Pearson’s three moment cegtral
approximation to the distribution of a noncentrsa? (Pearson
1959. In the next sections it will be shown that within the scope
of x? approximations these two are better than the mean curvature
approximation.

Patnaik’'s Approximation

The optimal point is the point where the integrand reaches its |, ihis approximation the quadratic forth is approximated by a

maxima inu € R*. Clearly, to obtain the maxima of the integrand,
knowledge ofpy(u) is also required. Because in general the exact
closed-form expression qf,(u) is not available, an approxima-
tion to py(u) is needed. Such an approximatg(u) will only be
used to find the maxima of the integrand and witit be used

subsequently to calculate the expectation. The expectation opera-

tion will be carried out exactly by utilizing the expression of the
moment generating function in ER7). For the maxima of the
integrand we must have

[~ B - w)] + In[py (W]} = 0 (@2
or
)
e(B+u) au 43

O(-(B+w)  py(w)
Because this relationship holds at the optimal paintve define
a constanty as
_eBrur) 1
1T e +ur) pyur)
The choice ofu* will depend on py(u) and will be discussed

shortly. Taking a first-order Taylor series expansion ¢fb+-3
—-u)] aboutu=u* we have

dpy(u*)
Ju

(44)

In[(-B - 0] = nfa-B -u™)}- pAEE S w-u)
(45
or
B -0 = expIf(- (B +u )] - A mu)
(46)
Using Eq.(44) this reduces to
P(-p-u) = O(-Bee™ (47)
where
B'=p+u* (48)

Taking the expectation of E¢47), the probability of failure using
the optimal point expansion method can be expressed as

Pi =~ ®(=BE™ Iy + 20nA M2 (49)

To obtainu* and m knowledge of the PDF olJ is required.
Several approximations tp,(u) are available in the references,
for example, see the books by Johnson and K870, Chapter
29) and Mathai and Provosgtl992. Fiessler et al(1979 have
suggested an approximation pg(u) by a centraly? density of

(n-1) degrees-of-freedom by using the mean of the eigenvalues

of A. This “mean curvature” approach is later used by Zhao and
Ono (1999a, h. Here, we use two simplg? approximations,
namely, Patnaik’sy?> type approximatior(Patnaik 1949 and an

central x? distribution such that their first two central moments
are the same. Thus

U=0x> (50
such that
E[U] = E[6X’] (51a)
and
varfU] = Var6x’] (51b)

From the equality of the moments in Eq&la) and (51b) we
have

0v =TracdA) (52a)
and
20%v = 2TracéA?) (52b)

By solving these two equations the parametgrand v can be
obtained as

_ TracdA?)

"~ TracdA) (532)
and

_ [TracdA)J?

"~ TracdA? (530)

Using the transformation in E¢50) the approximate probability
density function ofU can be expressed as

uv/2—le—u/26

(2002 (v/2)

Substitutingp,(u) into Eq.(43) the equation for the optimal point
can be simplified to

e(B+u*) :1<
d(-(B+ur)) 2

An exact closed-form solution of this equation does not exist.
However, it can be easily solved numericallpr example the
function “fzero” in MATLAB® can be usedto obtainu*. An
approximate solution of Eq55) can be obtained by considering
the asymptotic expansion of the ratig+u*)/d(-(B+u*)),
similar to that given in Eq(31). Keeping only the first term, the
left-hand side becomg$ +u*) and consequently we obtain

1
py(u) = 5pr(§) (54)

v—2_l) 55

u* 0

1fv-2 1
B =352 %
u*2+<%+8>u*—(v—2)/2%0 (57)

Taking the positive solution of this quadratic equation the optimal
point is obtained as
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* o~

E) + 4_19v’(268 +1)7+80°(v-2) (58

(1
—+
40 2

(67)

Numerical calculations show that this approximate expression of or

u* is accurate enough for all practical purposes. The consjant
can be directly evaluated from E¢p5) as

_}(v—Z_}) (59)
Tolur T
In view of Egs.(48) and(56) we also have

B'~=m (60)

Substitutingm in Eq. (49) the probability of failure using Pat-
naik’s approximation is given by

| +(v_2 }>A
n-1 u* 0

Next Pearson’s approach is considered to approximpgte).

-1/2

Pf ~ (D(— Br)el/Z(v—Z—u*/O) (61)

Pearson’s Approximation
Pearson’s approximation is similar to Patnaik’s approximation ex-
cept that an additional parametgris used such that

U=r~y+0x> (62)

Mathai and Provost1992 have mentioned that Pearson’s ap-
proximation, which requires very little additional work compared
to that of Patnaik, gives a much better fit to the true pdfloThe
parameters, 6 andy are selected such that the first three central
moments ofU andy+exf are the same, that is

v+ 0v=TracdA) (63a)

20%v = 2TracgA?) (63b)
and

80y = 8TracgA®) (630)

By solving these three equations simultaneously the paramgters
0, andv can be obtained as

_ _ [TraceA)J?
v =TracdA) —Trace(A3) (64a)
_ TracdA?)
"~ TracdA?) (640)
and
2\13
_ [TracdA9)] (640)

V- [TracdA®)]?

Using the transformation in E¢62) the approximate probability
density function ofU is given by

u-— 7) (U _ ,y)v/2—le—(u—y)/29
0 ) (20)"T(v/2)

Substitutingpy(u) into Eq.(43) the equation for the optimal point
can be simplified to

v-2 1 )

u*—~vy 0

1
pu(u) = pr‘2’< (65)

e(B+u*) :g(
(- (B+u*)) 2

(66)

This equation can be solved exactly by using numerical methods

to obtain u*. With one-term asymptotic expansion af(B
+u*)/d(=(B+u*)), Eq. (66) can be approximated as

1 1 v
24| —+B- ) *—<—+2 )—— -2)/2=0 (68
“(zeB”eBz(v) (68
Positive solution of this quadratic equation produces

U S '
u~(4e+2>

+ 4—1ev"(26(s -y) + 1)+ 8y0(1 +20p) + 80%(v - 2)

(69

This approximate expression far* is accurate enough for all
practical purposes. The constaptan be directly evaluated from

Eq. (66) as
_1(
72

Substitutingm in Eq. (49) the probability of failure using Pear-
son’s approximation is given by

v-2 })

u*-—+vy 0

( v-2 1) 2
g + -— A
n-1 u*— v 0

Substitutingy=0 in Egs.(69) and(70) recovers the Patnaik’s
approximation[Egs. (58) and (59)]. This is expected as is the
only additional term used in Pearson’s approximation. Therefore,
combining Patnaik's and Pearson’s approximations, the failure

probability using the optimal point expansion method can be ex-
pressed by

Vo2 —3) (70

u*-—+vy 0

Py~ B(- B')exp“;(

X (71)

Pr = ®(=m)e™ I 11 + 2nA[ Y2 (72

In generalu* and m are given by Eqs(69) and (70). The extra
work required to use Eq.72) is small compared to Breitung’s
formula (26) and Hohenbichler and Rackwitz’s formu{d@0). In

the numerical example it will be shown that this slight modifica-
tion results in a very good approximation to the failure probability
for systems with a large number of random variables, over a wide
range ofp values.

Example 1. Failure Probability Using Approximations

of ®(-B-u)

We consider a problem for which the failure surfaceeisactly
parabolic in the normalized space, as given by Ex). The
purpose of this hypothetical example is to understand how the
proposed approximate formulae work after making a parabolic
failure surface assumption. Therefore, the effect of Type 1 and
Type 2 errors cannot and will not be investigated here. In numeri-
cal calculations we have fixed the number of random variatles
and the trace of the coefficient matix Based on the values of

n and Traceg(A) two cases are considered:

1. small number of random variables—1=10, and Trace

(A)=10 and
2. large number of random variables-1=50, and TracéA)
=5,

When Trace(A)=0 the failure surface is effectively linear.
Therefore, the more the value of Tra@e) the more nonlinear the
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failure surface becomes. The above two cases covers two differ- 10°

. . . . . . . 0 j ) N Breitung
ent type of scenario that mlght arise in practical apphcatlon_s. It . Honentichler & Rackwitz
further considered that the eigenvaluesfoére spaced in a cubic - - Least-square A .
manner, that i®; =], for j=1,2,+:n~1 anda=0. Note that 22" Qpumatpoint expansion ()
o Exact (MCS)

n-1 _ 2
TracdA)= >, & :"é< n(n2 D) (73
j
therefore
- TracdA) (74

(n(n-=1)/2)?

Thusa is defined uniquely for fixed values afand TracgA). To
compare the relative accuracy of different methods some kind of
indicator function is useful. Using the idea of relative error per- 005 1 15 2 235 3 35 1
centage proposed by Der Kiureghian et(@987 we define the B

relative error

|Pf — Py 1 - I]-Bllc-;i::lrl:l;gichler & Rackwitz
e= approx exact ,i=1,2,- (75) - = Least-square
Pfexact 3 -0+ Optimal point expansion (Patnaik)
, | — Optimal point expansion (Pearson)
For better approximations will be close to zero and vice versa. 10 g ]
The exact probability of failur@fexalc is obtained by direct calcu- i
lation of the expectation in Eq25) using numerical simulation. B
The samples ofJ are generated using Monte Carlo simulation. " 4
For each problem 3,000 samples have been generated and the|g
result obtained from the Monte Carlo simulation is treated as a |2
benchmark. Ef
In total five approximate methods are considered, namely 0
Breitung’s formula in Eq(26), Eq.(30) derived by Hohenbichler
and Rackwitz(1988), the least-square formula given by E40)
and two formulae derived using the optimal point expansion .
method in Egs(61) and (71). For Case 1, the probability of N T T T S TR
failure obtained using the five approximate methods and the exact B
probability of failure obtained using Monte Carlo simulation is
shown in Fig. 8a). For each method is varied from 0 to 5. Fig. 3. Failure probability and relative error using one-term

BecauseP; is very small, the numerical values are normalized by €xponential approximation @b(-g-u). Case(1): n-1=10 andrace
dividing with ®(—3), that is, the quantity?;/ () is plotted for (A)=10.
all proposed methods. The relative error, defined in(£§), cor-
responding to each method is shown in Figb)3 From these
figures it is clear that the results obtained from the three proposed
methods are closest to the exact values within the range of O .
<B=<4. The least-square method and the optimal point expansion W = Brettang
method using Patnaik’'s approximation are closest over the full <=+ Hohenbichler & Rackwitz
range off. The optimal point expansion method using Pearson’s 10°'f o Ol oot ¢xpansion (Patnaik)
approximation is accurate over the lower range3ofalues, but IS - gg& pgér;texpansion (Pearson)
less so in the higher range. U

Normalized probability of failure for Case 2 is shown in Fig. ’
4. The least-square method and the optimal point expansion meth- &
ods perform better than the two existing methods. Both optimal 5
point expansion methods, particularly using Pearson’s pdf, yield o~
very good approximation over the full range pf The expres-
sions of approximate* given by Eqs.(58) and(69) are used in
this study. It was verified that the use of exattobtained by
solving the nonlinear Eq$57) and(68) does not make a signifi-
cant difference to the result. From Fig. 4 it may be noted that the
optimal point expansion methods give 100 times greater accuracy
than the existing formulae without any significant increase of
computation. This fact makes these methods very suitable for
reliability calculations. Based on these results it is recommended _ ) ) = ) )
that when the number of random variables is small the optimal Fig. 4._ Nor.mallzed failure probability using one-term exponential
point expansion method based on Patnaik’s approximation shoulg@PProximation of(-g-u). Case(2): n-1=50, trace(A)=5.
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be used, and when the number of random variables is large, thex? density of(n—1) degrees-of-freedom by using the mean of the
optimal point expansion method based on Pearson’s approxima-eigenvalues ofA. This is equivalent to replacing by an idem-

tion should be used. potent matrix. Thuspy(u) has the same form as Patnaik’'s ap-
From the results obtained in this section the following conclu- proximation given by Eq(54), but the constant® and v are
sions may be drawn: defined by

1. Two new approximate methods to obtain the failure probabil-
ity using parabolic hypersurface approximation, namely, the 1
least-square method and the optimal point expansion method 6= mTfaCQA) (76a)
improve upon the equivalent existing approximations. These
approximations are non-asymptomatic, therefore any
asymptotic requirements, such @s-, are not needed.

2. Explicit calculation of the eigenvalues of the mathixs not
required to use any of the derived expressionsHopr

3. The least square method can be implemented very easily - ) ) ) S
using Table 1 provided for the numerical values of the two The probability of failure using this approximation is given by
required constants.

4. When the number of random variables is sn{ady n—1 _ 1 * (n-3)/20-u/26
<20) the optimal point expansion method based on Patnaik’s Pr~ (20)" DL (p/2) P(=p-wum e du (77)
approximation should be used to calcul&ge 0

5. When the number of random variables is lafgay n—1
=20) the optimal point expansion method based on Pear-
son’s approximation should be used to calculte

It should be noted that for the non-asymptotic céise, whenp

is not very larggthere will be errors associated with the quadratic

approximation of the failure surface in E¢). Such errors cannot

be improved using the formulations derived here.

and

v=n-1 (76b)

From Eq.(154) in the Appendix this integral can be evaluated
exactly in closed form provided is odd andn=3. Otherwise
numerical evaluation is needed over a finite interval. Recently
Zhao and On@1999a, b have reinvestigated this approximation
and have provided empirical formulae to evaluate this integral.
This approximation is expected to be accurate when the differ-
ences between the eigenvaluesfofire very small.

Failure Probability Using Approximations Patnaik’s x? Type Approximation
of Probability Density Functional of U

Evaluation Using Exact Integral
In the previous section onlyp(-B~-u) is approximated. In this ~ The PDF ofU using Patnaik’sy? approximation is given by Eq.
section we will approximatey(u) to evaluate the failure prob-  (54). Using this, the probability of failure can be approximated
ability using Eq.(25). Derivation of probability density and dis-  from Eqg.(25) as
tribution functions of quadratic forms in random variables has

received extensive attention in literature. Johnson and Kotz 1 o
(1970, Chapter 29and Mathai and Provogt1992, Chapter % P; ~ mf O(-B-uuzlgv®dy  (78)
have summarized significant contributions in this area. If the ma- (20)"T(v12) Jo

trix A is an idempotent matrix thet) becomes ax? random

variable with(n—1) degrees-of-freedorfa nonsingular matrixA From Eq.(154) in the Appendix a closed-form expression for this
is said to be idempotent A=A2). In generalA is not an idem- integral is possible provided# 0 is an even integer. However, in

potent matrix. In such a case it can be shown that the exact den-~iew of Eq.(52b) v is expected to be fractional and in general the
sity of U can be represented by an infinite sum of cenjal integral in Eq.(78) has to be evaluated numerically over a finite

random variables. Several other representations of the exact deninterval. To obtain a closed-form expression further approxima-

sity of U are also available in the literatueee Mathai and Pro-  tion of ®(—-B-u) is necessary. We consider the following two

vost 1992, Chapter)4for example, power series expansion, La- approximations:

guerre series expansion, series expansion in terms of confluent

hypergeometric function, and series expansion in zonal polyno- First-Order Taylor Series Expansion of In[@®(-B-u)]

mials. Application of these results in the context of structural An approximation of®(—3—u) using a first-order Taylor series

reliability analysis has not been adequately investigated. How- expansion of Ifd(-B—u)] about the most the most probable

ever, it is expected that the resulting expressionsHpusing point u* is given in Eq.(47). Using this, together with, in Eq.

these will be complicated. We consider the simplest case when(59), from Eq.(78) one has

pu(u) is approximated in terms of a singj¢ random variable.

Applicability of the two simplex? approximations introduced in d(-B)

the previous section is investigated here. Comparisons are drawnP; =~ —— 5=~
. O . o (20)"<I" (v/2)

with the mean value approximation suggested in the reliability

literature.

el/Z(v—Z—u*le)f e—(u/Z)(v—Z—u*/(-))/u*uv/2—le—u/29du
0

. (v -2 -v/2
- (I)(— Br)elIZ(v—Z—u /9)( (1:[* )> (79)
Mean Value Approximation

This is the earliestfirst suggested by Fiessler et al. 19%hd Second-Order Taylor Series Expansion of Infp(— - u)]
possibly the simplest approximation used in the context of struc- Expanding Iid(-B—u)] in a Taylor series about the most prob-
tural reliability analysis. Her@(u) is approximated by a central  able pointu* and retaining only the first two terms one has
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IN[P(-B-w]=In[®(-B)]+mu* (1-(n—-BHu*/2)
-n(1=(n=B)u*)u=n(n-pHui/2
(80

where’ andy are given in Eqs(48) and (59). If the approxi-
mation in Eq.(60) is used then it is easy to see that E§0)
reduces to Eq(45). This essentially implies that when the ap-
proximateu* in Eq. (57) is used, the second-order approximation
of In[®(-B-u)] given by Eq.(80) does not offer any improve-
ment over the first-order approximation. Therefore, going to the
second-order approximation for[fh(—- —u)] makes a difference
only if u* is obtained from the exact solution of E(5).

Using py(u) from Eq.(54) and substituting lkb(—3 —u)] from
Eq. (80) we have

P~ f gnl®B-vlp (u)du
0
)

= e f welerle gy (8Y)
(20)T(vi2) J,

where

po=mu* (L—=(n—-B"Hu*/2) (82
=n(l-(n-Bu* N 83
p1=n(d-(m-pHu*) 28 (83
pe=m(n-p") (84)

The integral appearing in Eq81) can be evaluated exactly
(Gradshteyn and Ryzhik 1994, Section 3.462

“__1>

Vi

J
(85)

where D_,»(-)=parabolic cylinder function. Discussions on the
parabolic cylinder function may be found in Gradshteyn and
Ryzhik (1994, Sections 9.24-9.p&nd Abramowitz and Stegun
(1965, Chapter 19 Using this integral the probability of failure
can be obtained from E@81) as

uv/2—1e—lJ«1Ue_M2U2/2d u= (Mz)_V/AF(V/Z) eMiMuzD—v/Z(

%) (86

Pf ~ (I)(— B’)e“°+“§/4“2(26 \’E)_V/ZD_U/2<
V2

Pearson’s Approach

Evaluation Using Exact Integral

The PDF ofU using Pearson’s approximation is given in E8pb).
Using this, from Eq.(25) the probability of failure can be ap-
proximated as

z; - _a_ _ \WI2-1 - (u-)/20
Pt~ GO 2) fo (- B - u)(u =) e Y2y
(87

A closed-form expression of this integral is in general not pos-

First-Order Taylor Series Expansion of In[®(—f —u)]

An approximation to the random variablé using Pearson’s ap-
proach is given in Eq:62). The moment generating function Of
can be obtained as

E[e 506 = e75Y(1 + 250) /2 (88)

An approximation of®(—-B-u) using a first-order Taylor series
expansion of Ipd(-p-u)] about the most the most probable
point u* is given in EQ.(47). Using this we have

Pi =~ ®(- B')E[e™ eM] (89)

wherem is given by Eq.(70). This expectation can be evaluated
using the moment generating function in E§8) and the final
result can be simplified to

B(v - 2))‘“’2

Pf ~ (I)(_ Br)e(lIZ)(v—Z—(u*—'y)lﬁ)<
u*—ry

(90)

Example 2. Comparison of Approximate Probability Density
Functions

The accuracy ofP; obtained using an approximate PDF Uf
depends on how well the true PDF of the quadratic fddnis
approximated. For this reason it is useful to compare the thtee
type approximations ofJ, namely, the mean value approxima-
tion, Patnaik’'s approximation and Pearson’s approximation, with
Monte Carlo simulation results. Fig. 5 shows the probability den-
sity function and the moment generating functiorlbfor Case 1
described in Example 1. The histogram Wfis obtained from
3,000 sample Monte Carlo simulation and has been scaled to have
unit area. The moment generating function has been obtained by

. . U . . . .
directly calculating the mean @& . Patnaik’s approximation is
the best for this case. Both the mean value and Pearson’s approxi-
mations do not yield very accurate results. Pearson’s approxima-
tion becomes worse in the lower tail of the PDF and in the higher
range(s>3) of My(-9).

The probability density function and the moment generating
function of U for Case 2 described in Example 1 is shown Fig. 6.
Unlike the previous case, Pearson’s approximation provides the
best fit, followed by Patnaik’s approximation. The mean value
approximation shows the greatest divergence from the simulation
results. From the results obtained in this example we conclude
that when the number of random variables is small Patnaik’s ap-
proximation should be used, and when the number of random
variables is large, Pearson’s approximation should be used. In
either case, both newly suggested approximations improve upon
the mean value approximation.

Example 3. Failure Probability Using Exact Integration

In this exampleP; obtained using the threg? type approxima-
tions of U, namely, the mean value approximation, Patnaik’s ap-
proximation, and Pearson’s approximation are compared with
Monte Carlo simulation, Breitung’s formula in Eq26) and(30)
derived by Hohenbichler and Rackwi{d4988. A closed-form
exact expression dP; using x2 type approximations can be ob-
tained only in special cases. In general E@Y), (78), and(87)
have to be evaluated numerically over a finite interval. Efficient
algorithms for one dimensional numerical integration are widely
available(for example the function “quadl” iMATLAB®). For

the numerical examples considered here it was observed that the

sible and it has to be evaluated numerically by considering a finite integral converges to a fixed value wher 15.

interval. To obtain a closed-form expression, a first-order Taylor
series expansion of [®(-p—u)] is considered.

Fig. 7 shows probability of failurénormalized by dividing
with ®(-B)) for Case 1 with values g8 ranging from 0 to 5P;
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Fig. 5. Approximations of central quadratic form in Gaussian
random variabled)=yTAy, y ~N,_1(0p_1,1 ,-1). Case(1): n-1=10,

Fig. 6. Approximations of central quadratic form in Gaussian
trace(A)=10.

random variabled)=yTAy, y ~N,_1(0n_1,11-1). Case&(2): n-1=50,

trace(A)=5.
using Patnaik’'s approximation produces the best result for this
case. Both the mean value approximation and Pearson’s approxi- o
mations underestimate; and are quite far from the exact value. - ) S Breitung
) : . : : : -=++ Hohenbichler & Rackwitz
Pearson’s approximation is worse, especially for higher values - - Mean value approximation
of B 107 :‘; ...... -0 Patnaik’s approximation
. . . . AR - R T — P ’ imati

Probability of failure for case 2 with values pfranging from o . et SOV o et oay e
0 to 5 is shown in Fig. 8. Unlike the previous ca$®,using .. __ ° 8 g :'fzf’:""’-‘%-z
Pearson’s approximation becomes the best, followed by Patnaik's ;5 } TTeeeal e '“3‘“‘:‘*‘3\'%?&5

approximation. EspeciallyP; using Pearson’s approximation is
very accurate over the complete range (of The mean value
approximation consistently underestimaBsand turns out to be 10°}
the worse in this case.

It is useful to understand as to why Pearson’s approximation
works so well for high values af and less so otherwise. The key 10°}
to understanding this feature lies in the nature of the approximate
PDF. For the calculation of failure probability the lower tail of the
PDF ofU is very important becaud; is usually very small. On 10
closer inspection of the plots of the PDF in Figga)sand &a) it
can be noticed that in the lower tail Pearson’s approximation is ) _ N . ) . )
not very good whem is small and very good whemis high. This Fig. 7. _ Normalized failure probability using exact integration with
analysis suggests that in order to get a good approximation to the2PProximatepy(u). Case(1): n-1=10, tracg(A) = 10.

P, /(-B)

~10
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---- Breitung - Breitung
+=+ Hohenbichler & Rackwitz k +=+ Hohenbichler & Rackwitz
= = Mean value approximation 10”' 1 = = Patnaik’s approximation (linear)
S 0 Patnaik’s approximation -0 Patnaik’s approximation (quadratic)
1072} "\\ = Pearson’s approximation - ~—— Pearson’s approximation
~ ' B Exact (MCS) 10'2‘[7 ';\T - 8__Exact (MCS)

Fig. 8. Normalized failure probability using exact integration with  Fig. 9. Normalized failure probability using approximate integration
approximatepy(u). Case(2): n-1=50, trace/A)=5. and approximatgy(u). Case(1): n-1=10, tracg/A)=10.

failure probability using an approximate PDF, it is necessary that

the approximate PDF should fit the lower tail of the PDF accu- Sults. The results are especially good when the number of random

rately. variables is large. This fact is promising because in real-life struc-
Recently Zhao and On¢1999a, b have consideredP; ob- tural reliability problems the number of random variables is ex-

tained from Eq(77) as the benchmark. The results obtained here pected to be quite large.

suggest that this method of benchmarking may yield misleading ~ From the results obtained in these representative examples,

results because in many cases the mean value approximated PDfNd also others not reported here, the following conclusions may

can be grossly inaccurate. As a consequence, even an exact niee drawn:

merical integration using an inaccurate PDF produces an incorrectl. When the number of random variables is sniat 1< 20),

P;, which cannot be used as a basis for comparing the accuracy of ~ Patnaik’s approximation should be used to approximate the

other existing methods. PDF of U and to calculate;.

2. When the number of random variables is lafge 1= 20),
Example 4. Failure Probability Using Approximate Pearson’s approximation should be used to approximate the
Integration PDF of U and to calculateP;. Pearson’s approximation be-

Three methods, namely Patnaik’s pdf with linear and quadratic ~ comes very good fon>50.

approximations of If@(-B-u)] and Pearson’s PDF with linear 3. The mean value approximation is in general inaccurate when
approximation of IpP(—-B-u)], that is, Eqs(79), (86), and(90) compared to the previous two approaches without providing
are considered. Results obtained using these three formulae are any computational advantage.

compared with existing formulae proposed by Breitui§84)

and Hohenbichler and Rackwita988 and with Monte Carlo
simulation. Eqs(79), (86), and(90) are expected to provide most
inaccurate results as in deriving them approximations for both 10
py(u) and ®(-B-u) are utilized. However, the advantage of

using these formulae are that they are simple to use and require 0
little computational effort to evaluat®;. The purpose of this .

----- Breitung
-=-- Hohenbichler & Rackwitz

- ~ Patnaik’s approximation (linear)
0+ Patnaik’s approximation (quadratic)
— Pearson’s approximation

-2 -~

example is to verify if these formulae can at all be used for 10 N 2 Exact (MCS)
practical purposes. 10k

Fig. 9 shows the probability of failure for Case 1 with values a
of B ranging from 0 to 5. The approximations using Patnaik's & |4
PDF produce acceptable results. The linear approximation be- 2~
comes inaccurate for large. The quadratic approximation is 10
quite good for smalB and gives similar accuracy as Breitung’s
and Hohenbichler and Rackwif2988’s formulae for large3. As 10
expected, the approximation using Pearson’s PDF is not good
becausen is small. 10

Fig. 10 shows the probability of failure for Case 2. All three N
approximate formulae produce acceptable results. In parti®ylar O s T 15 2 25 3 35 4 25 5
calculated using Pearson’s PDF with linear approximation of B

In[®(-B-u)] [Eq. (90)] yields a very good result. These results
suggest that even though formul@®), (86), and(90) are derived
using several approximations, they still provide acceptable re-

Fig. 10. Normalized failure probability using approximate
integration and approximagg,(u). Case(2): n—1=50, tracgA)=5.
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Exact Probability Content for Parabolic Failure if Trace(A) is not small. For large using a finite number of

Surfaces terms may result in a negativie; which is obviously incorrect.
For these reasons E(4) should be used only {8 and TracéA)

The exact probability of failure with parabolic failure surface as- are small.

sumption may be obtained by an exact evaluation of the expecta-

tion operation in Eq(25). It can be done in two wayg1) by Series Expansion in Terms ofe™

using the exact probability density function functionldf or (2) There are two main reasons behind the choice bffor a series

by exact representation @(—3—u) in terms of other functions  expansion(1) any “powers series” ie™" is always convergent for

such that the expression for the exact moment generating functionu e R¥, and(2) calculation of the expectation operation involving

in Eq. (27) can be utilized. The method proposed by Tve®90 the powers ofe™ is straightforward as the moment generating

belongs to the first approach. Here the second approach will befunction of U is known exactly.

used to obtain the exact probability of failure. It should be noted ~ For anyu e R* we can define a variablge R* such that

that in this context “exact” means “exact after making the para-

bolic failure surface approximation.” Therefore, errors that occur u=-In(y) (99
due to the parabolic failure surface approximation itself cannot be or
improved. _

v=g" (100
Series Expansion Methods Sinceu=0 impliesv=1, we are interested in the Taylor series of

d(—-B+In(v)) aroundv=1, which can be expressed as

Power Series Expansion ® s
The function®(-B—-u) can be expanded as an infinite power D(-B +In() = D(-B) + ¢(B) D, —(v - D¥ (101)
series inu. Expanding®(—B-u) in a McLaurin series provides o1 K

2“‘: gt 1 where

B-B-0) =D~ B) + S S (= B~ ]

=~ duktt K+ 1)! d~

0 e+ 1) i6(B)= 5 7@ (- B+ W), (102
(92) v

Calculating the generakth order derivative of®(-p-u), the
above equation can be expressed as

The expression 08, valid for all values ofk is defined by Eq.
(158) in the Appendix. Substituting from Eq. (100), Eq. (101
can be rewritten as

d(-B-u)=Dd(-p)- By, UK 92 .

( B U) ( B) cP(B)g} kU ( ) CI)(— B _ U) - (I)(_ B) + ('P(B)E k_lk(e u_ 1)k (103)

k=1 ™

where .
_ Now construct a function

(- D*2?H,(BI\2) P

= ) ©9 = TEEZD 2R (104
¢(B)

and H,(-)=Hermite polynomial of ordek (see Abramowitz and

Stegun 1965, Chapter 22 for discussions on the Hermite polyno-WhICh has the following limiting properties:

mials). Using Eq.(92), the probability of failure can be obtained lime(u)=0 (105
from Eq.(25) as u=0
% and
P = E[®(- B - U)]=D(- B) — o(B) X b ME™  (99) _ O(- B)
k=0 lime(u) =- (106
U ¢(B)
where . .
From Eqgs.(103) and(104) it is obvious that
MY = E[UF] (95) .
7
A method to obtain moments of arbitrary order of the quadratic e(u) =2, k—:((e'“— 1)k (107
form U is given in Mathai and Provos$i992, Section 3.2bThe k=1 ™
first three moments are given by Conditions(105) and(106) must be satisfied by this series expan-
D) = TracdA 96 sion. Condition(105) is naturally satisfied because |jnye™=1.
My raceA) (%6) To satisfy conditior{106) we propose an approach by considering
that for all tical th i t be trun-
M{JZ):ZTracéAZ) +[TracdA)T 97) at for all practical purposes the series EJ7) must be trun

cated. Retaining a finite number of terms, sayEq.(107) can be

approximated as
M = 8TracéA®) + 6TracéA?) TracdA) +[TracdA)]®

m-1

) S
98 =3 K-+ REt-nm (108
The expression in Eq94) is exact if an infinite number of terms k=1 )
are retained in the series. The series is convergent if ThAaeel This expression will become exact whem- . The aim here is

and it is observed that the rate of convergence is poor, especiallyto modify the last term so that conditigh06) is satisfied. Taking
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the limit u—o in Eq. (108), from Eq.(106) the required condi-
tion can be expressed as

m-1
ﬁ( — k 8m _ m— _ (I)(_ B)
glk!( Y +m!( V7= o(B) (109
or
P-B) ' b
— _1\(m-1y| =~ M/ K 1\k
dpm=m! (- 1) <<P(B) +k§1k!( 1)) (110

Truncating the series in the left-hand side of EtP3) after the
mth term and substituting this expression&y, it is hoped that
the left-hand side of Eq.103) will approach to exactb(—--u)

for large values om. Numerical results suggest that the conver-

Q= gz<k—“) (117)

L L
where the functiorZ(w):R—R is given by
e*(w cogwl) + p sin(wl)) - N d(-B-L)-D(-B)
e+ w? o®(-B)

I(w) =
-0%2
0d(-p)

Taking the expectation of Eq113) and substitutingp(u) from
Eq. (115 one has

Pr=d(- B)(Hl 1t A= akE[Siﬂ(kTﬂU)D

k=1

RiePP(-B-L+iw) - P(-B+iw)} (118

gence of this series is much better than the powers series ap-

proach described in the previous section. Note that
< (K
El(e"-1"=E| X (r )(e‘“)f(— D!
r=0
‘ k
=> (- 1)“(Ir >||| mt 2AY2 (11D
r=0

Using this, the probability of failure can be obtained by taking the
expectation of Eq(103) as

® k
d k
Pr=0(-B)+(B) > > (- 1)“(r >|ln_1+2rA|‘”2

k=1 k! r=0

(112
Fourier Series Method
We expressb(-f-u) as
O(-p-u)=d(-B)(e™ - p(u) (113
where
e P(=B-U)
p(u)y=e™ —<I>(— 8 (114

and w=¢(B)/P(-B), which is similar to that derived by Hohen-
bichler and Rackwit£1988. The aim here is to exprepgu) by a
Fourier sin series

- kmu
=X aksin<l> (115

k=1 L
where (0,L) is the domain over which it is required to express
®d(-B-u) by a Fourier series. For numerical calculations it is
sufficient to considelL=5m as beyond this limitb(-g-u) is
practically zero for all values op. For largep even smaller
values ofL may be sufficient. The Fourier coefficiendg are

given by
2 (- kmu
ak:EL p(u)sm(—L )du (116

The above coefficients can be obtained in a closed-form by taking

the imaginary part of the integrdlyp(u)g““du (with w=km/L)
considered in Eq(146) in the Appendix. After some algebra, it
can be shown that

(119

For anyw € R, from the moment generating function in E@7)
we can have

E[sin(wU)] = J{E[E°VT} = 3{]ll n-y - 2i0A[™3 (120
Using this foro=kw/L, Eq. (119 provides
~ ~ ~ w —1/2_ ~ - N
Pr=0(=B) |ln-1 = 25— A D( B%aw
{ ke —1/2}
XY= 20 TA (121

The second part of the right-hand side of this equation can be
viewed as a correction to the Hohenbichler and Rackwitz’s for-
mula in Eq.(30).

Fourier Sin Transform Method

This method is similar to the Fourier series method except that the
function p(u) is expressed in terms of a Fourier sin transform
rather than a Fourier sin series. Thus, in place of the Fourier series
in Eg. (115 we now have the Fourier integral

5 [*
p(u) = —f p(w)sin(wu)dw (122
TJo
wherep(w) is defined as
f)(m):f p(u)sin(wu)du (123
0

Using Eq.(147) in the Appendix and after some simplifications
the preceding integral can be obtained in a closed form as

2 212

% L &
oW+ o)  od(-p)

plw) =~ R{ePD(-B -iw)}
(1249
Taking the expectation of Eq113) and substitutingp(u) from
Eqg. (122 one has
— -1/2 2 ) -~ H
Py=®(=B)| lps+ A= = | f(0)ElsinoU)]do
0

(125

Substituting p(w) from Eg. (124 and the expression of
E[sin(wU)] from Eq.(120) we have
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-2 o (= 24 (— 10" —— r . . r 3
Pf = CI)(_ B) I -1t chqz(_ﬁ))A + _f ( M( 2(+ Bz)) - g?l::el:lillagichler&Rackwitz
B TJo VOl ® - - Power series
=1 -0 Fourier series
~0%2 ) 10°F — Fourier transform
- R{e™PD(= B ~iw)} | Il -1~ 2ZiwA[ M} dw 2 Exat MCS)

(126)

The second part of the right-hand side of this equation can be
viewed as a correction to the Hohenbichler and Rackwitz’s for-
mula in Eqg.(30). Based on an earlier work of Rig&980), Tvedt
(1990 obtained the probability of failure exactly using an integral
in the complex domain. Like Tvedt's result, E4.26) is also an
exact expression fdP;. Because Eq126) is an integral over the
real domain, all well known techniques for the numerical evalu-
ation of one dimensional real integrals can be directly used to

obtain P;. 0 05 1 15 2 25 3 35 4 45 5
p

Example 5. Exact Failure Probability Using Parabolic s

Failure Surface Approximation . _ . o R B Breitung

In this example the probability of failure obtained using the three r= ;lohenbicpler&Rackwitz

exact methods, namely, series expansion in terme‘pfFourier 10° |- o Founer copies

series method, and Fourier sin transform method, are compared — Fourier transform

1l

with Monte Carlo simulation, Breitung’s formula in Eq26) and
(30) derived by Hohenbichler and Rackwitz988. Formulae for
P; corresponding to these three methods are given in @49,
(121), and(126). Fig. 11 shows the probability of failuf@ormal-
ized by dividing with®(-g)] and corresponding relative error for
Case 1 with values db ranging from 0 to 5. The series expansion
formula in Eq.(112) with 15 terms and the Fourier transform
integral in Eq.(126) with an upper limit of 5 yield very accurate ;
results. The Fourier series method works well for higher values of 107k
B, but less so for the lower values.

It should be noted that these results are exact only in a math- ) . . )
ematical sense and numerical methods are required for practical 0005 1 15 2z 25 3 35 4 a5 s
implementation of these formulae. Accuracy of the numerical re- B
sults obtained using these formulae depend on several factors, for
examplei(1) the number of terms retained in the series expansion Fig. 11. Failure probability and relative error using exact methods,
Eq. (112); (2) the domain of the integration used to evaluate the n—1=10, trace(A)=10
Fourier coefficients given by Eq116); (3) the number of terms
retained in the Fourier series H421); (4) the method of numeri-
cal integration, the selection of a finite upper limit in place of an z=y,-y'Ay €R (128
infinite limit in the integral Eq(126); and(5) the computation of - .
cumulative normal dis?ributign with a complex argug"lent. In con- From the ce_ntral "”"_"t theorem '.t Is expected that WmEHO.O the
trast to the approximate formulae derived in the previous sections,random .varlablg will gsymptotlcally app rogch a Qaus&an ran-
here the final results will depend on the details of the numerical dom variable. D|scus§|ons on _asymptotlc d|str|but|on_ of quadratic
methods selected. From the nature of these formulae, it is alsoforms may be foqnd in Mathai and Provc(3992., Sgctlpn 4.60
obvious that a greater numerical effort provides more accurate Here one of the §|mplest forms of asymptotic distributioa will
results. Computational cost can be prohibitively expensive espe-be used to obtaify.

fexact

OQ

Relative error: le/ P
=

cially when the dimension oA is large and high accuracy is We start with the moment generating functionzof
required. Nevertheless, as an alternative to Monte Carlo simula- _ _ y-syTAY
tion, these formulae can be used as a benchmark. M.(s) = E[e*] = E[e™ ] (129

Becausgy, andy'Ay are independent random variables this equa-
tion reduces to
Failure Probability Using Asymptotic Distribution .
M(s) = E[en]E[e™ ] (130
We consider the case when the number of random variables is L .
Considering the eigenvalues Afwe have

very large, that is, when asymptoticalty— . From Egs.(22)

and(23) the probability of failure can be rewritten as n-1
. M,(9) = &2 ] (1 + 25897 (131)
9 ] k=1
P; =~ Proh .— < 0| =Projz= ] (127
f Vgl

Now construct a new random varialge z/ Vn. The moment gen-
where erating function ofg is given by
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n-1

Mq(9) = M(s/\m) =2 (1 + 253/ 2 (132)
k=1
From this
1n—1
In(M(s)) = s¥2n - EE In(1 + 2sa/yn)
k=1
1n—l _ _
=<%2n- EE 2sa/Vn-sX(2a/\n)42
k=1
+s3(2a/\Vn)¥3 -+ (133
provided
|2sg| <1, fork=1,2,---,n-1 (134

Consider a case whea, and n are such that the higher-order
terms ofsvanish asn—«, i.e., we assuma is large such that the
following conditions hold:

n-1

> (2a /)22 < =
k=1

or

2
aTrace{Az) < (139
and
n-1
> (2a/\Vn)'Ir — 0
k=1
or

2I’
—7-TracdA") — 0, O r=3 (136
n"“r
Under these assumptions, the series in(#83) can be truncated
after the quadratic term so that

n-1

In(M(s) = $/2n - %2 s(2a/Vn) - 2(2a/\n)%/2
k=1

— TracdA)s/\n+ (1 + 2TracéA?)s2n (137)

Therefore, the moment generating functionzqfq\fﬁ can be ap-
proximated by

MZ(S) ~ e—Trace{A)s+(1+2TraceA2))32/2 (138)

From the uniqueness of the Laplace transform pair it follows that
when conditiong(134)—(136) are satisfiedz asymptotically ap-
proaches a Gaussian random variable with medmacdA)) and
variance(1+2 Trac¢A?)), that is

z=N;(- TracéA), V1 + 2Trac€éA?)) whenn — o (139

Using the PDF ofz, the asymptotic probability of failure can be
obtained from Eq(127) as

P, q)(_ B + TracdA)

V1 + 2TracéA?)
Like Breitung’s result in Eq(26), this is another asymptotic re-
sult. Here the asymptotic behavior whenr-, instead of
— oo, is considered. If the failure surface is linear or close to
linear then Tracg\)=TracdA?) —0, and it is easy to see that Eq.

) whenn — « (140

(140 reduces to the classical FORM formuR=®(-B). In
many real-life problems the number of random variables is ex-
pected to be large. In such situations this asymptotic result may
turn out to be useful.

Minimum Value of n Required for the Accuracy of the
Asymptotic Approach

Here we aim to derive a simple expression for the minimum value
of n which is sufficient for a desired accuracy of the asymptotic
distribution method. Sincey, e R* Ok, condition(134) can be re-
written as

1
< —
2 maxay)

Regarding the truncation of E(L33) after the second-order term,
assume that there exist a small real numbsuch that

s (141

1/ 2s\"
F(:) TracdA")<e O r=3 (142

vn
This ensures that the error in truncating the series(Eg§3) is
small. Assuming equality in Eq141) and substitutings in Eq.
(142 one obtains

gri(é)rTrace(A‘) < (143
r n2\ 2 maxay) ¢
or
1 (%Trace{A’))2
n>-—|\—— | Or=3 14
(r2e?\ maxay) (149

Since A=positive definite matrix, the critical value of is ob-
tained forr=3. Therefore, the minimum value of can be ob-
TracdAd)

tained from
)
> —
§9¢2\ maxay)

The following points may be observed from this expressian:

the minimum number of random variables required for a desired
accuracy from the asymptotic distribution approach would be
more if e (the erroj is considered to be smalas expectexl (2)
ne1/€%3, and(3) the convergence would be better if the maxi-
mum eigenvalue oA is large compared to the other eigenvalues.

(145

Example 6. Failure Probability Using Asymptotic

Distribution

In this example probability of failure obtained using the
asymptotic Gaussian distribution is compared with both Brei-
tung’s asymptotic result and the formuld0) derived by Hohen-
bichler and Rackwitz1988. Fig. 12 shows asymptotic probabil-
ity of failure (normalized by dividing withb(-p)) for values off3
ranging from O to 5. It is assumed that 1=100 and Trad@)
=1.5. The eigenvalues & are spaced in a cubic mann@s in
Example 3. For this problem, the minimum number of random
variables required for the applicability of the asymptotic distribu-
tion formula can be obtained from Egl45. Consideringe
=0.001, it can be shown from Eq145 that n>231 orn
—1>230. Although this condition is not satisfied here, the results
obtained from this approach is acceptable, especially for lower
values off3. This numerical example also shows that the condition
derived in Eq.(145) is only a sufficient condition and not a nec-
essary condition.
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10° Taylor series of
---- Breitung In[®(-8 - u))
<=-- Hohenbichler & Rackwitz about u = 0
~.. ~ ~ Asymptotic distribution result
S~ o Exact (MCS) Least-square

P,/®(-B)
=

Approximations
of ®(—3 — u)

method Using Patnaik’s

approximate pdf

Optimal point
expansion method

Using Pearson’s
approximate pdf

Using numerical
integration
Using first-order

Taylor series of
In[®(~5 - u)|

Non-asymptotic
approximations Mean value
approximation

Approximations| Patnaik’s x? type
of pdf of U approximation Using second-order
Taylor series of

In{®(—0 —u)}

Fig. 12. Asymptotic failure probabilityn—1=100, tracgA)=1.5

4.5

Using numerical
integration

Pearson’s
approximation

Results obtained from the asymptotic analysis improve when
the number of random variables becomes large. Fig. 13 shows
asymptotic probability of failure fom-1=250 and Trad®)
=1.5. For this case the condition in E{.45) is satisfied since
n—-1>230. As expected, asymptoti match very well with the

Monte Carlo simulation result for this case.

Summary and Conclusions

Using Hrst-order
Taylor series of

In [&(~8 - u)]

Power series
expansion
Series expansion
in terms of e

Series expansion
methods

Fourier series
method

Fourier sin
Asymptotic transform method
Method

Fig. 14. Summary of methods proposed for determination of failure

Exact
methods

Probability of failure after approximating the failure surface by a Probability using parabolic failure surface approximation

parabolic hypersurface in the neighborhood of the design point

has been considered. It is assumed that the basic random variables

are Gaussian. Several methods to obtain the probability of failure practical purposes. These methods require very little numerical
based on these assumptions have been proposed. The proposetfort and produce excellent accuracy over a wide range of reli-

methods can be broadly grouped intby nonasymptotic approxi-
mate methodg2) exact methods, an@) asymptotic distribution

ability indices and number of random variables. When the number
of random variables becomes large further simplifications are pos-

methods. Further divisions of each of these methods are summasible. One can either use the approximate pdf using Pearson’s
rized in Fig. 14. Table 2 summarizes the main results of the paper.method or the asymptotic formula. The new asymptotic formula is

From the numerical examples it is shown that the accuracy pro-simple and numerical results suggest that it produces excellent
vided by the optimal point expansion methods is sufficient for accuracy when the asymptotic conditions are met. Some exact

formulae for the failure probability have been derived. Although
the computational cost is high for the exact methods, like Monte

10 Carlo simulation, they can be used as a benchmark. The formulae
""" Breitung ) derived here provide exact or accurate resafter making the
. » =+ Hohenbichler & Rackwitz . . . .
.~ - - Asymptotic distribution result parabolic failure surface assumption. Fundamental errors associ-
[ Tl 2_Exact (MCS) ated with the parabolic failure surface assumption itself cannot be
10" “eal S improved using the proposed methods. Further research is needed
Pral e to extend these methods to obtain failure probability estimates
Tl N associated with general quadratic failure surfaces with non-
< P N Gaussian basic random variables.
g 10 o TN
A ‘\n\ ~ \\
[N ~ <
B ~
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Table 2. Summary of Formulae for Determination of Failure Probability Using Parabolic Failure Surface Approximation

Method Ps Remarks

Asymptotic, 3 — o (Breitung 1984. D(-B)||I +2BA[72 Works well when the

asymptotic condition is met.

A 1. Taylor series of IfP(-B-u)] O(-p)I +2uA| 12 Works well whenp is large
aboutu=0 (Hohenbichler and Rackwitz 1988 and TracgA) is small.
Least-square approximation cyl|l +2c,A|? Works well especially for small
of d(-g-u). B

Accuracy is independent of the
probabilistic characteristics

of U.
3. Optimal point expansion O (—m)e |l +2nA[[TH2, In terms of cost effectiveness,
based on Patnaikfs and n=(v—2/u*—y - 1/9)/2_ For Patnaik's these are the bes'_[ methods. For
Pearson's approximation for approximationy=0 small n use Patnaik's
the PDF of a quadratic form. approximation, for large use

Pearson‘s approximation.

B 1. Numberical integration using J50(-p-uw1/6 pxz(u/e)du Works very well for large
Patnaik's approximate PDF. v smalln.
2. Patnaik's approximate PDF (D(_Br)e(l/2)(v—2—u*/9)(e(v_z)/u* )‘“’2 Accuracy is poor for smalh
with first-order approximation and large. Works reasonably
of In[®(-B-u)]. well otherwise.
3. Patnaik‘s approximate PDF @(—B’)e“O"'*i/“M(Ze @E)-v/zx D-vlz(ul/ \u_z) Achieves similar accuracy to
with second-order approximation of{th(-g—-u)]. exact integration method with

Patnaik's approximate PDF.

4. Numerical integration using J3®(-p-u)1l/e pxz(u—y/ﬁ)du Accuracy is very poor for

smalln
and largeB. Works very well
for largen for any B.

Pearson‘s approximate PDF.

5. Pearson's approximatee PDF _Q’ _ —(*— — w_y )2 Accuracy is poor for smailh
with first-order approximation PR )exp(v 2/2- V)/Ze)(e(v 2)/u V) and largeB. For largen works
of In[®(-B-u)]. very well.

C 1. Power series expansion. O(-B)-9(B) b E[UK] Accuracy is very poor,
especially when Tracéd)
large.

2. Series expansion in the powerseof. k Accuracy is good for smal
P P ®(_B)+@(B)Ef:18k/k!Erzo(_l)k_r(r ”I +2rA“_1/2 and Traé/e(A)g_ Otherwise g
requires many terms.
3. Fourier series expansion. DBl +2p A 2= D(-B)Z |1 - 2ikm /LA 2 Like the previous method, but

requires more computation,
especially ifA is a large
matrix.
4. Fourier sin transform. _ ~1/2 o 24y 2, 2 Numerical integration over a
CER+2uA] +2/_wf°(M o B)/w(p o) finite interval is required.
—ex;{—wz/z/w)%{e"ﬁ‘”QJ(—B—im)})j”l ~2ioA[dw Numerically inefficient for
largen and .

D Asymptotic,n— o, Works very well if the
asymptotic conditions in

Eqgs. (135 and(136) are satisfied.

ol- B+TracdA) / \s’l+2TraceéA2))

Appendix. Some Mathematical Details Used in the 1 15,
Paper f (=B -uedu=—0(-p-u) -~ Zp(-g-u+a)

Some Integrals Involving  ®(-) (146
A few useful indefinite and definite integrals involving the cumu-
lative normal distribution functiorb(-) are derived here. These This result is derived using integration by parts. The Laplace
integrals specifically arise in reliability problems and may not be transform of®(-g-u) can be obtained by substitutireg=-s in
found readily in the standard tables of integrals. First consider the EQ. (146). Taking the appropriate limits and noting thé(—)
indefinite integral =0 one obtains
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L[®(-B-u);s]= f (- B -u)e™du
0
_} _ _1 S2I2+By(— @ —
= S<I>( B) < O(-p-s) (147

The Laplace transform af ®(-g—u)=(d/3s) L[P(-B—u);s]. So
using Eq.(147) we have
)}

(149

f udb(-B - u)e‘S”du———{ ~P(-p) - - e52/2+s[3q)

0

- S_];(D(_ B) <1 + = _>e52/2+s[3

1
XP(-p-9)-_oB+9

This formula can be generalized for any integeais

f u'd(- B -uesdu
0

__vi}_ _} 12+SBFy(— R —
=(-1) dsv{sq’( B) sesz (- s)} (14%)

_V_! ) (— vi 152/2+s;3 _n_
-qu’( B)-(-1) ds”{se (-8 S)} (14%)

Assumingf,;=1/s, f2:e35+52’2, andf;=d(-B-s) for any integer
we can derive the following generalized derivatives:

p_d1
fl=—==(- 1)

ds's (150

SJ+1

[ir2]

esB+52/2 _ esB+52/22 j :

f(i) —
2 - 2k)!

2B +9)7* (15D

i

—d <I>( B-9 =(-1)2U V2 +9H; <—B+23>
J
(152

The second part of Eq.14%) can be obtained by successive
application of the Leibnitz’ rule of general differentiation of a
product as

vovrg

{flfzfs} >

=-r
( )( ‘ 1>f§“”f‘£2>f§"ff2> (153
r1=0r,=0 51 2

Using this, from Eq(14%) we have

[

|
U'd(- B - u)eSidu= sf+1<1>(— B) -

2E(]

r1=0r,=0
'l)_rl [
X( ) )f(l'l)féfz)fgv (154

wherefi(j) fori=1, 2, 3 are given by Eq150—<152). Although

Coefficients &, in Eq. (101)

Before deriving the coefficients explicitly first consider the for-
mula for the kth derivative of a composite function. Suppose
f(x)=F(y) and y=¢(x). Then, from Gradshteyn and Ryzhik
(1994, Section 0.43we have

i ka(x) E—}F“)(y) (155
where
U= E( )( 1)y Tg‘yl f (156
From Eq.(102 we have
1
Oy = —® (F(v))l,=1 (157)

o(B) dv*

where F(v)=—-B+In(v). This derivative can be obtained using
Egs.(155 and(156) as

O = (158

q;(B E ar(k)q)(n( B)

where

PU(- B)‘—‘D( B +X)|xeo = (= 27020 (B)H; 1( %)
\“\‘
(159
It may be shown that the constamt$¥ are the coefficients asso-
ciated withx! in the polynomial expression of
I'(x+1)
I'ix-k+1)

Using this relationships the first ten terms can be explicitly ob-
tained as

this is the exact expression of the integral, it becomes increasingly

complicated for largev. In such cases numerical integration over
a finite domain may be preferable.

8,=1 (160

8= —1+P (161
d3=1-33 +p?2 (162

5,=83 —6p%+ B3 (163
ds=—8-2(B + 2932 - 108° + p* (164
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85 =60 + 343 — 13532+ 7533 — 1534 + p° (169

d;=-394+ 12@ + 619P2? - 5253° + 16(B* - 218° + p°
(166)

dg=2,632-2,518 — 2.63B%+ 3,6543° - 1,54B* + 301B°
-283°+p’ (167)

d¢=— 18,542 + 28,008 + 7,582 - 25,704° + 14,46B*
-3,78B°+ 51335 - 3637 + 8 (169

810= 138,870 - 285,778+ 36,902 + 181,04(5 - 137,025
+45,38° - 8,198 + 83437 — 4538 + p° (169

Notation

The following symbols are used in this paper:

A = a symmetric matrix containing firgh—1)
X (n—=1) block of A;

A = transformed and scaled Hessian matrix
defined in Eq(19);

a = jth eigenvalue of\;

b, = constants in power series expansion of
O(-B-u);

C = space of complex numbers;

c;,C, = real scalar constants in least-square

approximation of®(—-u);

D_, = parabolic cylinder function;
diagdv] = diagonal matrix containing vectarin
diagonal,

E[-] = expectation operator;
g(x) = failure surface in space of basic
variables;
9(x) = quadratic approximation of failure
surface;
Hy(x*) = Hessian matrix ofy(x) evaluated ak*,
[Hg(x*)Tij= (P9(X)/ 3%:%;) |=x+
H.(-) = Hermite polynomial of ordek;
I, = unit matrix of orderk;
Z(w) = function of w defined in Eq(118);
J(-) = imaginary part of(-);
i = unit imaginary number,=-1;
[j/2] = integer part ofj/2, for exampld 3/2]=1,
[5/2]=2,[6/2]=3 etc;
(',‘) = binomial coefficients;
L = upper limit of integral in Fourier coefficients
of (=B -u);
L[f(u);s] = Laplace transform of functiofi(u) in s,
LLf(uw);s]=[of(we™dy,
My(s) = moment generating function &f;
M{J = jth raw moment of quadratic forrd;
m = number of terms in series expansion®f-f
-u) ineY;
Np(m, ) = n dimensional Gaussian random vector with
meanm € R" and covariance matri¥
= Rnxn;

n = number of basic random variables;
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p(x)
Proq -]
pu(u)
P2
PDF

= probability of failure;

probability density function ok;
probability of the event);
probability density function ofs;
probability density function o>
probability density function;

= scaled random variable used for asymptotic

distribution;

orthogonal transformation matrix defined in
Eq. (15);

space of real numbers;

= space of positive real numbers;
= real part of(-);
= a scalar complex variable;

matrix of eigenvectors ofi4(x*);

= trace of matrix(-);
= quadratic formy"Ay in standard Gaussian

random variables;
real scalar variable for values of
randomvariableJ;

= optimal expansion point;

variance of(+);
basic random variables;
design point;

= n-1 dimensional uncorrelated Gaussian

random vector;

n dimensional uncorrelated Gaussian random
vector;

standard Gaussian random variable it
coordinate;

random variable used for asymptotic
distribution;

unit vector to the design point;

Fourier coefficients;

Hasofer and Lind reliability index;
modified reliability index,3’ =p +u*;
Gamma function;

= translation constant in Pearson’s approximate

pdf;

constants in series expansion®f--u) in
e

constants in series expansionQf

small real number;

= error term in series expansion ®{—3-u) in

ey
error in least-square approximation;

= ratio (B+u*)/®(=(B+u*));
= multiplication constant in Patnaik’'s and

Pearson’s approximate probability density
functional;

jth principal curvature of failure surface at
design point;

= kth eigenvalue of Hessian matrby(x*);

ratio ¢(B)/®(-);

degrees of freedom fog? probability density
functional;

error term in Fourier series expansion®f

—-B-uw);

= Fourier sin transform of(w);

standard Gaussian cumulative distribution
function;



() =

standard Gaussian probability density

function;
X% = x? random variable with degrees of
freedom;
{ = objective function for least-square
approximation;
o = real scalar variable used in Fourier series
expansion;
V4(x) = gradient vector ofg(x); {V4(x)}
=9g9(X)/ Ix;;
(9T = matrix transpose;
()9 = jth order derivative of-);
|| = I, norm of a vector;
|l = determinant of a matrix;
~ = approximately equal to;
0 = for all;
e = belongs to;
— = maps into;
« = proportional to;
— = approaches to;
~ = distributed as; and
= = approximately distributed as.
References

Abramowitz, M., and Stegun, |. A(1965. Handbook of mathematical
functions, with formulas, graphs, and mathematical tabBsver,
New York.

Breitung, K. (1984). “Asymptotic approximations for multinormal inte-
grals.” J. Eng. Mech. 11Q3), 357-366.

Breitung, K. (1989. “Asymptotic approximations for probability inte-
grals.” Probab. Eng. Mech.4(4), 187-190.

Breitung, K.(1993). “Probability approximations by log likelihood maxi-
mization.” J. Eng. Mech. 1173), 457-477.

Breitung, K.(2002. “Asymptotic methods in reliability.’"Proc., 3rd Int.
Conf. on Mathematical Methods in Reliability Methodology and Prac-
tice, H. Langseth and B. Lindqvist, eds., Trondheim, Norway, 3—6.

Breitung, K., and Richter, W. D(1996). “A geometric approach to an

asymptotic expansion for large deviation probabilities of Gaussian

random vectors.J. Multivariate Anal, 581), 1-20.

Cai, G. Q., and Elishakoff, 1(1994). “Refined second-order reliability
analysis.”Struct. Safety 14(4), 267—-276.

Der Kiureghian, A., and de Stefano, NL991). “Efficient algorithm for
second order reliability analysis.J. Eng. Mech. 11712), 2904—
2923.

Der Kiureghian, A., Lin, H.-Z., and Hwang, S.{1.987). “Second-order
reliability approximations.J. Eng. Mech. 1138), 1208-1225.

Ditlevsen, O., and Madsen, H. ©@1996. Structural reliability methods
Wiley, Chichester, West Sussex, U.K.

Fiessler, B., Rackwitz, R., and Neumann, H(1B79. “Quadratic limit
states in structural reliability.J. Eng. Mech. Diy. 1054), 661-676.

Gradshteyn, I. S., and Ryzhik, |. Ni1994). Table of integrals, series and
products 5th Ed., Academic, Boston.

Hasofer, A. M., and Lind, N. C(1974. “Exact and invariant second
moment code format.J. Eng. Mech. Div. 10Q1), 111-121.

Hohenbichler, M., and Rackwitz, R1988. “Improvement of second-
order reliability estimates by importance sampling.”Eng. Mech.
14(12), 2195-2199.

Hong, H. P.(1999. “Simple approximations for improving second-order
reliability estimates.”J. Eng. Mech. 1255), 592-595.

Johnson, N. L., and Kotz, $1970. Distributions in statistics: Continu-
ous univariate distributions-2, The Houghton Mifflin Series in Statis-
tics, Houghton Mifflin, Boston.

Kdylluoglu, H. U., and Nielsen, S. R. K1994). “New approximations for
SORM integrals.”Struct. Safety 134), 235—-246.

Madsen, H. O., Krenk, S., and Lind, N. (1986). Methods of structural
safety Prentice-Hall, Englewood Cliffs, N.J.

Manohar, C. S., and Gupta, @003. “Modeling and evaluation of struc-
tural reliability: Current status and future direction&esearch re-
views in structural engineeringK. S. Jagadish and R. N. lyengar,
eds., Golden Jubilee Publications, Indian Institute of Science, Banga-
lore, India.

Mathai, A. M., and Provost, S. B1992. Quadratic forms in random
variables: Theory and application®larcel Dekker, New York.

Melchers, R. E(1999. Structural reliability analysis and predictigr2nd
Ed., Wiley, Chichester, West Sussex, U.K.

Naess, A.(1987. “Bounding approximations to some quadratic limit
states.”J. Eng. Mech. 11310), 1474-1492.

Patnaik, P. B(1949. “The non-centraly? and f-distributions and their
applications.”Biometrika 36, 202—232.

Pearson, E. S1959. “Note on an approximation to the distribution of
non-centraly?.” Biometrikg 46, 364—364.

Polidori, D. C., Beck, J. L., and Papadimitriou, @999. “New approxi-
mations for reliability integrals.J. Eng. Mech. 1254), 466—475.
Rice, S. 0.(1980. “Distribution of quadratic forms in normal variables-
Evaluation by numerical integrationSIAM (Soc. Ind. Appl. Math.) J.

Sci. Stat. Comput.1, 438—448.

Rosenblatt, M(1952. “Remarks on a multivariate transformatiomhn.
Math. Stat, 23, 470-472.

Thoft-Christensen, P., and Baker, M. 982. Structural reliability
theory and its applicationsSpringer, Berlin.

Tvedt, L. (1990. “Distribution of quadratic forms in normal space: ap-
plication to structural reliability.’J. Eng. Mech. 1166), 1183-1197.

Zhao, Y.-G., and Ono, T19993. “New approximations for SORM: Part
1.” J. Eng. Mech. 1251), 79-85.

Zhao, Y.-G., and Ono, T1999h. “New approximations for SORM: Part
2."J. Eng. Mech. 1251), 86-93.

JOURNAL OF ENGINEERING MECHANICS © ASCE / DECEMBER 2004 / 1427



