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Abstract

Linear dynamic systems must generally be expected to exhibit non-proportional damping. Non-
proportionally damped linear systems do not possess classical normal modes but possesscomplex modes.
In this paper we analyze the complex modes and complex natural frequencies arising in multiple degree-
of-freedom non-proportionally damped discrete linear stochastic systems. Second-order statistics of the
complex eigenvalues and eigenvectors are presented by assuming the randomness of the system to be so
small that the first-order perturbation approach is valid. The proposed method is illustrated by consid-
ering numerical example based on a linear array of damped spring-mass oscillators. It is shown that the
approach can predict the statistics of complex eigenvalues and eigenvectors with good accuracy when
compared with independent Monte Carlo simulations.

Keywords: Complex modes, non-proportionately damped, discrete linear stochastic systems, spring-mass
oscillators.

1 Introduction

Dynamics of linear systems with statistical parameter uncertainties is currently an active area of research.
The primary concern here lies in the probabilistic modelling of the uncertainties in specifying elastic,
mass and damping properties of the structure. Problems of undamped linear deterministic structural
dynamics have been extensively treated in the existing literature using classical modal analysis. Now,
classical modal analysis has also been generalized to deal with undamped stochastic systems. Over the
years many efficient methods have emerged to solve the so calledrandom eigenvalue problemsthat
arise in the dynamics of undamped stochastic systems. Several review papers have appeared in this field
which discuss the current as well as the earlier works[3,8,9].

It is well known that if the damping is ‘proportional’ then classical modal analysis also holds for
damped systems. Conditions for existence of classical normal modes were derived by Caughey and
O’Kelly [5] . It must be noted that proportional damping or ‘classical damping’ is purely a mathematical
abstraction. There is no physical reason or mathematical basis for why a general system should behave
like this. If the damping is not proportional then linear systems possesscomplex modesinstead of
real normal modes. Apart from the mathematical consistency, practical experience in modal testing
also shows that most real life structures possess complex modes. As Sestieri and Ibrahim[13] have
put it ‘. . . it is ironic that the real modes are in fact not real at all, in that in practice they do not
exist, while complex modes are those practically identifiable from experimental tests. This implies that
real modes are pure abstraction, in contrast with complex modes that are, therefore, the only reality!’
However, consideration of complex modes in stochastic structural dynamics has not been considered
till now.
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Central theme to this paper is the analysis of the complex modes in the dynamics of non-proportionally
damped discrete linear stochastic systems. Due to the non-proportional nature of the damping, eigen-
values become complex random variables and eigenvectors become complex random processes. This
fact makes the analysis quite different from the traditional random eigenvalue problems arising in the
analysis of stochastic undamped systems where the random eigensolutions remain real. The complex
eigen-analysis, however, may be performed by extending the currently available techniques of random
eigenvalue problems in conjunction with thefirst-order formulation of the equations of motion. The
first-order or state-space formalism, although straightforward, requires significant numerical effort to
obtain statistics of the eigensolutions as the size of the problem doubles. Moreover, this approach also
lacks some of the intuitive simplicity of the traditional ‘N -space’ based modal analysis method of ran-
dom structural systems.

For these reasons, in this paper an approach is proposed to obtain the statistics of complex eigen-
values and eigenvectors inN -space. It is assumed that the randomness is small so that the first-order
perturbation method can be applied. Attention is restricted to the second-order statistics of the com-
plex eigensolutions. In Section 2, we briefly discuss the requisite mathematical background on linear
multiple-degree-of-freedom discrete systems needed for further derivations. Derivatives of complex
eigenvalues and eigenvectors are derived in Section 3. These expressions are employed in Section 4
to obtain the mean, autocorrelation and crosscorrelation of complex eigenvalues and eigenvectors. The
results are expressed in terms of the covariance matrices of the system properties. In Section 5 the pro-
posed method is applied to a non-proportionally damped random eight-degree-of-freedom system and
the results are verified by an independent Monte Carlo simulation.

2 Background

The equations of motion describing the free vibration of a linear, damped discrete system withN

degrees-of-freedom are

M ¨

u(t) + C˙

u(t) + Ku(t) = 0, (1)

whereM , C andK ∈ R

N×N are the mass, damping and stiffness matrices respectively.u(t) ∈ R

N is the
vector of generalized coordinates andt ∈ R

+ denotes time. It is assumed that all the system matrices
are symmetric. We consider randomness of the system matrices of the following form:

M = M + δM , C = C + δC, and K = K + δK . (2)

Here,(•) andδ(•) denotes the nominal (deterministic) and random parts of(•) respectively. Without any
loss of generality it may be assumed thatδM , δC andδK are zero-mean random matrices. We further
assume that the random parts of the system matrices are small and also they are such that

1. the symmetry of the system matrices is preserved,
2. the mass matrixM is positive definite, and
3. C andK are non-negative definite.

Note that no assumptions on the type of randomness, (for example Gaussian) is assumed at this stage.
For the sake of generality we also consider that the elements of all the random matricesδM , δC andδK
are correlated to each other. The eigenvalue problem associated with (1) can be represented by
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s

2
j

Mu
j

+ s

j

Cu
j

+ Ku
j

= 0, (3)

wheres

j

∈ C is thej th eigenvalue andu
j

∈ C

N is thej th eigenvector. There are 2N eigenvalues and
eigenvectors appearing in complex conjugate pairs. For convenience we arrange the eigenvalues as

s1, s2, · · · , s

N

, s

∗

1, s

∗

2, · · · , s

∗

N

. (4)

The aim of this paper is to obtain second-order statistics of the firstN eigenvalues and eigenvectors.
If the system matrices are deterministic, several methods exist to obtain the eigensolutions. These

methods mainly follow two routes, the state-space methods and methods in configuration space or
‘N -space’. The state-space methods[10] although exact in nature, requires significant numerical effort
to obtain the eigensolutions as the size of the problem doubles. Moreover, this approach also lacks
some of the intuitive simplicity of the analysis based on ‘N -space’. For these reasons the determina-
tion of eigenvalues and eigenvectors inN -space is very much desirable. Recently Adhikari[1] proposed
a Neumann series based method in which the complex eigenvectors of non-conservative systems are
expressed as a series in the corresponding undamped eigenvectors. This method can be used to obtain
the complex eigensolutions up to any desired level of accuracy without using the state-space formalism.
This motivates us towards developing procedures to obtain the statisctics of complex eigensolutions of
stochastic linear systems inN -space. Our method is based on the derivatives of complex eigensolu-
tions.

3 Derivatives of Complex Eigensolutions

In a recent paper, Adhikari[2] has derived first-order derivatives of complex natural frequencies and mode
shapes. In the context of structural dynamics, the natural frequenciesλ

j

are defined ass
j

= jλ

j

. Here
we slightly modify the approach outlines in Adhikari[2] to obtain first-order derivatives of the complex
eigensolutions.

Suppose the system matrices are functions of some variableα so thatM , C, K ≡ M , C, K(α). For
notational convenience rewrite (3) as

F
j

u
j

= 0, (5)

where theregular matrix pencil

F
j

≡ F(s

j

, α) =

[

s

2
j

M + s

j

C + K
]

∈ C

N×N

. (6)

Differentiating (5) with respect toα one obtains

∂F
j

∂α

u
j

+ F
j

∂u
j

∂α

= 0, (7)

where
∂F

j

∂α

may be obtained by differentiating (6) as

∂F
j

∂α

=

∂

˜F
j

∂α

+

∂s

j

∂α

G
j

. (8)
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Here the terms
∂

˜F
j

∂α

andG
j

are defined by

∂

˜F
j

∂α

= s

2
j

∂M
∂α

+ s

j

∂C
∂α

+

∂K
∂α

G
j

= 2s

j

M + C.

(9)

Premultiplying equation (7) byuT

j

one obtains the scalar equation

uT

j

∂F
j

∂α

u
j

+ uT

j

F
j

∂u
j

∂α

= 0. (10)

Taking the transpose of (5) and postmultiplying by
∂u

j

∂α

it may be shown that the second term of the

above equation vanishes. Now, substituting
∂F

j

∂α

from (8) into (10) we obtain

∂s

j

∂α

= −

uT

j

∂

˜F
j

∂α

u
j

uT

j

G
j

u
j

. (11)

Sestieri and Ibrahim[13] have shown that the expression of the denominator for the above equation, that is

uT

j

[

2s

j

M + C
]

u
j

=

1

γ

j

(say) (12)

is the normalization constant for thej th complex mode. There are several ways in which the normaliza-
tion constants can be selected. The one that is most consistent with traditional modal analysis practice
is to chooseγ

j

= 1/2s

j

. Observe that this degenerates to the familiar mass normalization relationship
uT

j

Mu
j

= 1 when the damping is zero. It should be noted thatγ

j

will be assumed constant and should
not vary with the parameters. Now, combining (9), (11) and (12), the expression for the derivative of the
j th complex eigenvalue can be expressed as

∂s

j

∂α

= −γ

j

uT

j

[

s

2
j

∂M
∂α

+ s

j

∂C
∂α

+

K
∂α

]

u
j

. (13)

To obtain the derivative of the eigenvectors it is required to convert the equations of motion into the
state-space form and then relate the results to the eigenvectors of the second-order system. Following
Adhikari[2] we have

∂u
j

∂α

=

2N

∑

k=1

a

(α)

jk

u
k

(14)

where

a

(α)

jk

= −

γ

j

s

j

− s

k

uT

k

[

s

2
j

∂M
∂α

+ s

j

∂C
∂α

+

∂K
∂α

]

u
j

∀k = 1, 2, . . . , 2N, 6= j

and a

(α)

jj

= −

γ

j

2
uT

j

[

2s

j

∂M
∂α

+

∂C
∂α

]

u
j

.

(15)
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Note that because the eigensolutions appear in complex conjugate pairs, in the above equationss

k

=

s

∗

(k−N)

, u
k

= u∗

(k−N)

andγ

k

= γ

∗

(k−N)

for k > N .

Equations (13)–(15) completely define the derivatives of the complex eigenvalues and eigenvectors
with respect to an arbitrary parameterα. Observe that in the limit whenC = 0 these expressions reduce
to the corresponding expressions for undamped systems derived by Fox and Kapoor[7] . Derivatives with
respect to elements of the system matrices can be obtained from these equations by substitutingα = K

rs

,
α = C

rs

andα = M

rs

. Using these substitutions, from (13) we have

∂s

j

∂K

rs

= −γ

j

(

U

rj

U

sj

)

, (16)

∂s

j

∂C

rs

= s

j

∂s

j

∂K

rs

, (17)

and
∂s

j

∂M

rs

= s

2
j

∂s

j

∂K

rs

. (18)

Consider the derivative of thelth element of thej th eigenvector, denoted byU
lj

. In (14), utilizing the
above substitutions and using (15) one obtains

∂U

lj

∂K

rs

= −γ

j

2N

∑

k=1
k 6=j

(U

rk

U

sj

)

s

j

− s

k

U

lk

, (19)

∂U

lj

∂C

rs

= −γ

j

2
(

U

rj

U

sj

)

U

lj

+ s

j

∂U

lj

∂K

rs

, (20)

and
∂U

lj

∂M

rs

= −γ

j

s

j

(

U

rj

U

sj

)

U

lj

+ s

2
j

∂U

lj

∂K

rs

. (21)

Next, these relationships are utilized to obtain the statistics of the eigensolutions.

4 Statistics of Complex Eigensolutions

Collins and Thomson[6] were possibly the first to derive the expressions for statistics of undamped
eigenvalues and eigenvectors of multiple-degrees-of-freedom systems using the first-order perturbation
method. Later, several authors, for example Bucher and Brenner[4] , Ramu an d Ganesan[11,12] have used
similar approaches. Applicability of the method relies on the fact that the randomness of the system
matrices is small. In this section we generalize these results to the case of complex eigensolutions arising
in non-classically damped systems.

Consider(s̄
j

,

¯u
j

) to be thej th eigensolution pair for the nominal system corresponding to (1), that
is, s̄

j

and ¯u
j

satisfy the deterministic eigenvalue problem

s̄

2
j

M ¯u
j

+ s̄

j

C ¯u
j

+ K ¯u
j

= 0. (22)

The method proposed by Adhikari[1] may be used to obtain̄s
j

and ¯u
j

in N -space. If the random
perturbations of the system matrices are small,s

j

can be approximated by a first-order Taylor expansion as
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s

j

= s̄

j

+

N

∑

r=1

N

∑

s=1

∂s

j

∂K

rs

δK

rs

+

N

∑

r=1

N

∑

s=1

∂s

j

∂C

rs

δC

rs

+

N

∑

r=1

N

∑

s=1

∂s

j

∂M

rs

δM

rs

. (23)

An important conclusion emerging from the above expression is that, when the system has sufficient
degrees of freedom so that there are enough terms in the above summation, thecentral limit theorem
assures that both real and imaginary parts of the random component ofs

j

would be Gaussian even if
δK

rs

, δC

rs

andδM

rs

are non-Gaussian. Thus, randomness of the system property matrices may be
modelled by Gaussian random variables provided that the conditions for physically realistic systems
outlined in Section 2 are satisfied. Assuming the randomness to be Gaussian and taking the expectation
of (23), it is clear that

〈s

j

〉 = s̄

j

(24)

because〈δK
rs

〉 = 〈δC

rs

〉 = 〈δM

rs

〉 = 0. Equation (24) indicates that the mean of the complex eigen-
values is the same as that of the undamped eigenvalues. Since the system matrices are real, from (23),
the covariance between two complex eigenvalues may be obtained as

cov(s
j

, s

k

) = 〈(s

j

− s̄

j

)〉〈(s

k

− s̄

k

)

∗

〉 =

N

∑

r=1

N

∑

s=1

N

∑

p=1

N

∑

q=1

[

∂s

j

∂K

rs

∂s

∗

k

∂K

pq

cov(K
rs

, K

pq

)

+

∂s

j

∂C

rs

∂s

∗

k

∂C

pq

cov(C
rs

, C

pq

) +

∂s

j

∂M

rs

∂s

∗

k

∂M

pq

cov(M
rs

, M

pq

)

+ 2
∂s

j

∂K

rs

∂s

∗

k

∂C

pq

cov(K
rs

, C

pq

) + 2
∂s

j

∂C

rs

∂s

∗

k

∂M

pq

cov(C
rs

, M

pq

)

+ 2
∂s

j

∂M

rs

∂s

∗

k

∂K

pq

cov(M
rs

, K

pq

)

]

. (25)

At this stage it is useful to express the results in matrix form. Construct the vectors

s = {s1, s2, · · · , s

N

}

T

∈ C

N and δκ = vec(δK) ∈ R

N

2

where the operation vec(•) denotes a new (large) vector by staking consecutive columns of(•).
Similarly, δC andδM can also be defined. Now, rewrite (23) forj = 1, 2, · · · , N as

s−

¯s = Ds







δK

δC

δM







. (26)

In the above equation,Ds, the matrix containing derivatives ofs

j

with respect to elements of the system
matrices is given by

D

T

s =















∂s1

∂K

∂s2

∂K

· · ·

∂s

N

∂K

∂s1

∂C

∂s2

∂C

· · ·

∂s

N

∂C

∂s1

∂M

∂s2

∂M

· · ·

∂s

N

∂M















∈ R

3N

2
×N

, (27)
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where
∂s

j

∂K

≡ vec
(

∂s

j

∂K

rs

)

∈ R

N

2
for some fixedj . Similarly

∂s

j

∂C

and
∂s

j

∂M

can also be defined. Thus,

the matrixDs can be calculated by applying (16), (17) and (18) for the nominal system. Now, from
(26), the covariance matrix of the eigenvalues,6s, is obtained as

6s = 〈(s−

¯s) (s−

¯s)∗
T

〉

= Ds

〈







δK

δC

δM













δK

δC

δM







T

〉

D

∗

T

s = Ds6kcm

D

∗

T

s . (28)

Here,6
kcm

∈ R

3N

2
×3N

2
, the joint covariance matrix ofM , C andK are defined as

6

kcm

=





〈δKδK

T

〉 〈δKδC

T

〉 〈δKδM

T

〉

〈δCδK

T

〉 〈δCδC

T

〉 〈δCδM

T

〉

〈δMδK

T

〉 〈δMδC

T

〉 〈δMδM

T

〉





. (29)

Statistics of the eigenvectors can be obtained following a similar procedure as the eigenvalues. For
small random perturbations of the system matrices,u

j

can be approximated by a first-order Taylor
expansion and consequently we have

u
j

−

¯u
j

= Duj







δK

δC

δM







. (30)

In the above equation,Duj , the matrix containing derivatives ofu
j

with respect to elements of the
system matrices, is given by

D

T

uj
=















∂U1j

∂K

∂U2j

∂K

· · ·

∂U

Nj

∂K

∂U1j

∂C

∂U2j

∂C

· · ·

∂U

Nj

∂C

∂U1j

∂M

∂U2j

∂M

· · ·

∂U

Nj

∂M















∈ R

3N

2
×N

, (31)

where
∂U

lj

∂K

≡ vec
(

∂U

lj

∂K

rs

)

∈ R

N

2
for some fixedl, j . Similarly

∂U

lj

∂C

and
∂U

lj

∂M

can also be defined. Thus,

the matrixDuj can be calculated by applying equations (19), (20) and (21) for the nominal system.
Applying equation (30) for thej th andkth set, the covariance matrix ofj th andkth eigenvectors,6uj uk

is obtained as

6uj uk = 〈

(

u
j

−

¯u
j

)

(u
k

−

¯u
k

)

∗

T

〉 = Duj 6kcm

D

∗

T

uk
. (32)

5 Numerical Example

An eight-DOF system consisting of a linear array of spring–mass oscillators and dampers is considered
to illustrate a possible use of the expressions developed so far. Figure 1 shows the model system.
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Fig. 1 Linear array of 8 spring–mass oscillators; nominal system:m

u

= 1 Kg, k

u

= 10 N/m andc
u

= 0.1 Nm/s.

Eight masses, each of nominal massm

u

= 1 kg, are connected by springs of nominal stiffnessk

u

=

10 N/m. The masses corresponding to the second to sixth units have viscous dampers with nominal
value c

u

= 0.1 Nm/s connected to the ground. It is assumed that the mass, stiffness and damping
associated with all the units are random. Randomness associated with each unit has the following form
m

u

j

= m

u

(

1 + ε

m

j

g

j

)

, k

u

j

= k

u

(

1 + ε

k

j

g

j

)

andc

u

j

= c

u

(

1 + ε

c

j

g

j

)

. Hereg

j

, ∀j are assumed to
be uncorrelated, identically distributed, zero-mean, unit-standard-deviation Gaussian random variables
(N(0, 1)). For this assumption, the joint covariance matrix6

kcm

, defined in (29), becomes a diagonal
matrix. Numerical values of the ‘strength parameters’,ε

m

j

, ε

k

j

andε

c

j

are assumed to be 0.1, that is,
we consider 10% randomness for all the parameter values.

Fig. 2 (a) Absolute value of mean of complex natural frequencies. (b) Standard deviation of complex natural
frequencies.X-axis: Mode number; ‘—’ analytical; ‘-.-.-’ MCS
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Figure 2(a) shows the absolute values of the mean of the eigenvalues corresponding to the eight
modes of the system. Because the random variables describing the system properties are assumed to be
Gaussian, the mean values are the same as the nominal values (see equation (24)). In the same figure,
the mean values obtained from the proposed theory are compared with the results obtained from an
independent Monte Carlo simulation (MCS) using 500 samples. Observe that both the curves follow
each other very closely. Figure 2(b) compares the standard deviation of the complex natural frequencies
obtained from (28) with that obtained from the MCS. Again, observe that the results obtained from the
formulation developed in this paper match those of the numerical simulations with excellent accuracy.

Now we turn our attention to the complex modes of the system. Figure 3 shows the mean value of the
real parts of the eight complex modes. Analytical results and those obtained from MCS are compared
in this figure. Complex modes are calculated using Adhikari’s method[1] and normalized according to
(12) with γ

j

= 1/2s

j

. The standard deviation of the modes obtained using (32) withj = k, and those
calculated from MSC are shown in Fig. 4. From these two figures, observe that the mean and standard
deviation of the complex modes obtained from the analytical method proposed in this paper match
excellently with the corresponding results obtained from MCS. It is useful to understand the results in
the light of amount of the damping present in the system. TheQ-factors, defined asQ

j

= =(s

j

)/2<(s

j

),
for the eight modes corresponding to the nominal system are obtained as 12.8162, 35.9982, 63.2519,

Fig. 3 Real part of mean of the complex modes,X-axis DOF; ‘—’ analytical; ‘-.- -’ MCS
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Fig. 4 Standard deviation of the complex modes.X-axis-DOF; ‘—’ analytical; ‘-.-.-’ MCS

74.8700, 89.2225, 109.5776, 98.9754, and 72.7037 respectively. These low values ofQ-factor indicate
that the damping of the system is high. Thus, the method developed here can be applied to systems with
high non-proportional damping.

In the simulation study, it was observed that for some cases the system matrices becomenegative
definite, which is in a way non-physical. This fact arises due to the non-bounded nature of the Gaussian
random variables. For the simulation results shown in Figs. 2 to 4, we have removed the samples
corresponding to such non-physical cases. Although the probability of such occurrence is low because
the randomness is assumed to be small, nevertheless, it indicates that, in general, Gaussian random
variables are not physically realistic for modelling randomness of the system properties. To avoid this
problem, a (bounded) non-Gaussian model should be used.

6 Conclusions

An approach has been proposed to obtain the statistics of complex eigenvalues and eigenvectors of non-
proportionally damped linear stochastic systems. The proposed method does not require conversion of
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the equations of motion into the first-order form. It is assumed that the randomness is small so that the
first-order perturbation method can be applied. Attention is restricted to the second-order statistics of
the complex eigensolutions. The mean of the complex eigensolutions turned out to be the same as the
corresponding deterministic values. The covariance matrices of the complex eigensolutions are expressed
in terms of the covariance matrices of the system properties and derivatives of the eigensolutions with
respect to the system parameters. The proposed method was applied to a non-proportionally damped
random eight-degree-of-freedom system and the results were verified by an independent Monte Carlo
simulation. It was shown that the method works well even when the damping is quite high.
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