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a b s t r a c t

Polynomial chaos solution for the frequency response of linear non-proportionally
damped dynamic systems has been considered. It has been observed that for lightly
damped systems the convergence of the solution can be very poor in the vicinity of the
deterministic resonance frequencies. To address this, Aitken's transformation and its

sequences defined by the first two moments of the responses, and this process
significantly accelerates the polynomial chaos convergence. In particular, a 2-dof system
with respectively 1 and 2 parameter uncertainties has been studied. The first two
moments of the frequency response were calculated by Monte Carlo simulation,
polynomial chaos expansion and Aitken's transformation of the polynomial chaos
expansion. Whereas 200 polynomials are required to have a good agreement with Monte
Carlo results around the deterministic eigenfrequencies, less than 50 polynomials
transformed by the Aitken's method are enough. This latter result is improved if a
generalization of Aitken's method (recursive Aitken's transformation, Shank's transforma-
tion) is applied. With the proposed convergence acceleration, polynomial chaos may be
reconsidered as an efficient method to estimate the first two moments of a random
dynamic response.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The modelling of uncertain structures is a research field that has rapidly developed recently. A common objective is to
estimate the statistics of the stochastic response of a structure. The oldest method is Monte Carlo simulation (MCS) [1–4],
which has the drawback of very slow convergence. This problem becomes even more pronounced for structural dynamic
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problems, where response statistics is required for various time instants and frequency ranges [5,6]. For efficient
computation of the response statistics, an approach to obtain some kind of response surface in the space of random
parameters is necessary. There are two broad ways of obtaining response surfaces. Perturbation based methods (lower-order
Taylor approximation) [7] and the Neumann expansion method, [8,9] are generally computationally efficient, however,
depending on applications, may not give accurate results if the uncertainties are large. Polynomial Chaos (PC) expansion
[10–12], High Dimensional Model Reduction (HDMR) [13–15] and Gaussian Process (GP) Emulators [16–18] have been
developed for any level of uncertainty. Consequently these latter approximations have gained significant interest in recent
years. This paper concerns Polynomial Chaos Expansion (PCE) for multi-degree of freedom damped dynamic systems with
multi-parametric uncertainties.

Polynomial Chaos Expansion belong to the class of spectral methods where a Galerkin type of error minimization
approach is generally employed in the space of random variables. Computation cost of the approach can be high if number
of random variables are high. Several novel approaches have been developed to address the issue of computational cost, see
for example [19–23]. In addition to the computational cost arising due to large random dimension, the issue of convergence
of the series can be of concern in certain cases. Field and Grigoriu [24,25] studied the convergence properties of this PCE.
Recently Keshavarzzadeh et al. [26] proposed a transformation approach to enhance the convergence of PCE in the context
of elliptic problems.

Recent work [27,28] has showed that the convergence may be very slow when the statistics of the response is estimated
by PCE for dynamic problems. Other studies [5,6] also show that care must be taken while directly extending concepts,
results and computational methods based on static problems to dynamic problems. In particular, very slow convergence
occurs for the response of a dynamical system submitted to harmonic forces around some critical frequencies (e.g.
eigenfrequencies, critical rotating speed in rotordynamics) that are of great interest in the design of structures where large
oscillations may arise. Hence the acceleration of the convergence of the statistics provided by a PCE is of great interest.

The Padé approximant [29,30] method is one of the most popular procedures to accelerate the convergence of a
sequence defining a function. However, using the Padé approximant expression will produce a rational function of a random
variable, which makes the analytical derivation of the moments of the response difficult. An alternative approach to tackle
this problem is to work directly on the moments evaluated from the PC expansion; from the moments, it is possible to
define sequences whose convergence may be accelerated. Several acceleration methods exist [29,31], such as Aitken's
method, the recursive Aitken's method, and Shank's method [26]. The aim of this paper is to understand how these methods
perform in the case of steady-state response of non-proportionally damped dynamic systems. A frequency-domain
approach is adopted.

First the steady-state response of a random dynamical system with multiple random variables is obtained by a PCE; this
is an extension to the case presented in [27], which involved a single random variable only. Then a dynamical system with a
single random variable is studied to highlight the specific features due to the use of a PCE. In Section 3 Aitken's method is
presented. Finally the methods developed in this paper are illustrated with two degrees of freedom uncertain linear
dynamical system with one and two random variables. Both intrusive and non-intrusive methods have advantages and
drawbacks. The non-intrusive approaches, such as black box methods, do not require any change in the standard structural
mechanics codes, but they require a high number of function evaluations. The intrusive methods are closer to the initial
problem, but require modification of standard codes. An intrusive method is used in this study to determine the PCE
coefficients to address the modification of the initial problem.
2. Response of a random dynamical system

Consider an n degrees of freedom (dof) dynamical system described by its mass, damping and stiffness matrices, M, C
and K. The forces acting on this system are described by force vector FðtÞ, and xðtÞ denotes the response vector, which is a
solution of

M €xðtÞþC _xðtÞþKxðtÞ ¼ FðtÞ (1)

The stiffness matrix is assumed to be uncertain and given by

K¼KðΞÞ ¼K0þ
Xr

i ¼ 1

ξiKi (2)

where Ξ ¼ ðξ1;…; ξrÞ and ξi is a zero-mean random variable. K0 is the deterministic part of the stiffness matrix and Ki (i40)
is the stiffness matrix associated with the random variable ξi.

In this study the mass and damping matrices and the force vector are assumed to be deterministic. However, this is not a
restriction and the following may be derived similarly with random mass and damping matrices, and a random force vector.

The solution of Eq. (1) is random and may be expanded in terms of the PC basis fΨ jðΞÞ: jANg [10] as

xðt;ΞÞ ¼
X1
j ¼ 0

YjðtÞΨ jðΞÞ (3)
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The elements of the PC basis are obtained from an orthogonal polynomial set fPjðξÞ: jANg, where j is the order of PjðξÞ. Thus

Ψ JðΞÞ ¼ ∏
r

i ¼ 1
PJi ðξiÞ (4)

where
Pr

i ¼ 1 Ji is the order of ΨJ, J may be either a multi-index (J1;…; Jr) or a single index defined from the multi-index
(J1;…; Jr) through a mapping; the inner product to define orthogonality is

〈i; j〉¼
Z

⋯
Z

Ψ iðΞÞΨ jðΞÞpðΞÞ� �
dξ1…dξr (5)

where pðΞÞ is the joint probability density function associated with the random variables.
In the following Pj is the Hermite polynomial, Hj, and ξi is a normally distributed random variable. However, the following

results may also be obtained for uniform random variables and Pj¼Lj, i.e. the Legendre polynomials.
For the numerical study, Eq. (3) has to be truncated to a finite number of terms, Pþ1, which is given by ðmþrÞ!=ðm!r!Þ

where m is the chaos order. Truncating the infinite expansion, gives the approximation of xðt;ΞÞ as

xPðt;ΞÞ ¼
XP
j ¼ 0

YjðtÞΨ jðΞÞ (6)

In the following, the exponent P is dropped for the sake of simplicity.
Substituting x from Eq. (6) into Eq. (1), gives

XP
j ¼ 0

Ψ jðΞÞ M €Y jþC _Y jþKYj

� �
¼ F (7)

The intrusive method is applied. So from Eq. (2) and the orthogonal properties of the polynomials, Eq. (7) becomes

〈0; i; i〉 M €Y iþC _Y iþK0Yi

� �
þ

XP
j ¼ 0

Xr

k ¼ 1

〈k; i; j〉KkYj ¼ δ0iF for i¼ 0…P (8)

where δij is the Kronecker delta and

〈k; i; j〉¼
Z

⋯
Z

ξkΨ iðΞÞΨ jðΞÞpðΞÞ� �
dξ1…dξr (9)

with ξ0 ¼ 1.
Define

AkARðPþ1Þ�ðPþ1Þ with Ak½ �ij ¼ 〈k; i; j〉 (10)

~M ¼ A0 � MARnðPþ1Þ�nðPþ1Þ (11)

~C ¼ A0 � CARnðPþ1Þ�nðPþ1Þ (12)

~K ¼
Xr

k ¼ 0

Ak � KkARnðPþ1Þ�nðPþ1Þ (13)

Y¼ ½Y>
0 Y>

1 … Y>
P �> ARnðPþ1Þ (14)

~F ¼ ½F> 0 0 … 0�> ARnðPþ1Þ (15)

where � denotes the Kronecker product, ½��> is the transpose of ½��, and ½��ij is the (i,j)th element of ½��. Accordingly the
components of the PC expansion satisfy

~M €Yþ ~C _Yþ ~KY¼ ~F (16)

Hence, the PC-components are the solution of an nðPþ1Þ dof dynamical system that will be referred to as the PC-system.
Thus the PCE has transformed the study of an uncertain dynamical system into the study of a deterministic dynamical
system of larger size. The PC-system has resonant frequencies that will be referred to as PC-resonances. As a consequence
the moments of the steady-state response to a harmonic force derived through PCE show peaks related to these PC-
resonances.

The existence of PC-resonances has already been demonstrated for a dynamical system with a single random variable in
[27] and two degrees of freedom. In Section 4, an example with multiple random variables will be given to illustrate the
issue related to the PC-resonances and to give an approach to obtain a solution.

In the following the force vector is assumed to be harmonic, i.e. FðtÞ ¼ F0eiωt , and the steady-state response of the
dynamical system is then xðtÞ ¼Xeiωt , where i¼

ffiffiffiffiffiffiffiffi
�1

p
. X is the solution of

�ω2Mþ iωCþK
� �

X¼ F0: (17)
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As K is a random matrix, X is a random vector, which can be described by its polynomial chaos expansion to estimate the
first two moments of X as

Xðω;ξÞ ¼
XP
i ¼ 0

YiðωÞΨ iðξÞ (18)

Then the components of the PC expansion satisfy

�ω2 ~Mþ iω ~Cþ ~K
� �

YðωÞ ¼ ~F0 (19)

Jacquelin et al. [27] and Sinou and Jacquelin [28] showed that hundreds of PC coefficients may be required to obtain an
accurate response prediction for a single random variable: this highlighted the slow convergence of a PCE with Hermite
polynomials. Consequently, it is of great interest to accelerate the convergence of a PCE.
3. Convergence acceleration of a PCE: Aitken's transformation and its generalization

The objective is to estimate the first two moments of the response from several predicted responses evaluated with a
relatively low PC order. Suppose that Xnðω;ξÞ denotes the approximation of Xðω; ξÞwith a PCE of order n, andMði;nÞðωÞ is the
corresponding ith moment, for i¼1 or 2. The PCE may be used in several ways to calculate the first two moments of the
response. First, a Monte-Carlo simulation (MCS) can be applied to Eq. (18) to estimate the probability density function and
then to evaluate the statistics of the response. Such an MCS is much faster than an MCS applied directly to the dynamical
equation (17). Second, the PC coefficients can provide a direct estimation of the first two moments of the response (see [10]
or Eqs. (27) and (28)). Hence, for a given i, Mði;nÞðωÞ defines a sequence whose convergence can be accelerated.

Several acceleration methods exist, such as Aitken's method, the recursive Aitken's method, and Shank's method (which
is a generalization of Aitken's method) [29]. These methods are all closely related to the Padé approximants.

As the methods are suitable for every moment, for the sake of simplicityMði;nÞðωÞwill be denotedMn. The moments of an
FRF obtained with a PCE are a slowly convergent sequence especially around the resonance frequencies. Hence the objective
is to accelerate the moment convergence.
3.1. Aitken's transformation

Aitken's transformation [31] nonlinearly transforms a sequence fMng into a sequence fZng given by

Zn ¼
MnMnþ2�ðMnþ1Þ2
Mnþ2�2Mnþ1þMn

(20)

The new sequence fZng converges toward the same limit as fMng but more quickly. This method requires the determination
of Xnþ1ðω; ξÞ and Xnþ2ðω;ξÞ and their moments, in addition to Xnðω; ξÞ and its moments.
3.2. Recursive Aitken's transformation

This transformation applies Aitken's transformation several times. Hence, the sequence fZng is transformed into a new
sequence f2Zng given by

2Zn ¼
ZnZnþ2�ðZnþ1Þ2
Znþ2�2Znþ1þZn

(21)

where f2Zng converges quicker than fZng, which may be denoted f1Zng.
More generally, Aitken's transformation may be applied kþ1 times (kZ1) to obtain the sequence fðkþ1ÞZng as

ðkþ1ÞZn ¼ kZnkZnþ2�ðkZnþ1Þ2

kZnþ2�2kZnþ1þkZn
(22)

To determine ðkþ1ÞZn requires knowledge of Xiðω; ξÞ and Mi for i¼ n;…; ðnþ2ðkþ1ÞÞ.
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3.3. Shank's transformation

Shank's transformation is an extension to Aitken's transformation, and involves more elements of the initial sequence
than Aitken's transformation. Thus the kth Shank's nonlinear transformation, ek, is

ek Mnð Þ ¼

Mn Mnþ1 ⋯ Mnþk

Mnþ1 Mnþ2 ⋯ Mnþkþ1

⋮ ⋮ ⋯ ⋮
Mnþk Mnþkþ1 ⋯ Mnþ2k

										

										
Δ2Mn ⋯ Δ2Mnþk�1

⋮ ⋯ ⋮
Δ2Mnþk�1 ⋯ Δ2Mnþ2k�2

								

								

(23)

where Δ2Mn ¼Mn�2Mnþ1þMnþ2. Note that when k¼1, Shanks' transformation reduces to Aitken's transformation. The
knowledge of Mi for i¼ n;…; ðnþ2kÞ is required to determine ekðMnÞ.

4. Application to two degrees of freedom system

MCS and PCE will be used to evaluate the mean and the standard deviation of the response, X, for the discrete spring,
mass and damper system shown in Fig. 1 [27]. In this example, the spring stiffnesses are equal but uncertain, i.e. k1 ¼ k2 ¼ k,
and hence a single uncertain parameter is considered. The stiffness k is assumed to be random and given by

k¼ k 1þδKξ
� �

(24)

Thus, stiffness matrix, K, mean stiffness matrix, K, mass matrix, M and damping matrix, C, are

K¼
k1þk2 �k2
�k2 k2

" #
¼ 2k �k

�k k


 �
; K ¼ k

2 �1
�1 1


 �
;

M¼m
1 0
0 1


 �
; C¼ c

2 �1
�1 1


 �
: (25)

The random stiffness matrix is K1 ¼ δKK. Tables 1 and 2 list the characteristics of the system. The response was calculated for
501 frequencies in the range of 10–35 Hz (Δf ¼ 0:05 Hz).

The components of the PC expansion satisfy Eq. (19), given in this case by

�ω2 ~Mþ iω ~Cþ ~K0þ ~K1

� �
YðωÞ ¼ ~F0 (26)
Fig. 1. A two degrees of freedom system with stochastic stiffness coefficients.

Table 1
The two degrees of freedom system characteristics.

k (N m�1) m (kg) c (N m�1 s�1) δK (%) F01 (N) F02 (N)

15,000 1 1 5 1 0

Table 2
Modal characteristics of the deterministic system.

Eigenfrequencies f (Hz) 12.05 31.54
Damping ratio ξ (%) 0.25 0.66
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Fig. 2. The mean and standard deviation of the response of x1 calculated by PCE (black solid lines) versus MCS (red dotted lines). (a) Mean, P ¼ 2, (b) standard
deviation, P ¼ 2, (c) mean, P ¼ 30, (d) standard deviation, P ¼ 30, (e) mean, P ¼ 50, (f) standard deviation, P ¼ 50. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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The MCS results were obtained with 10,000 samples of the random variable ξ. These results are very close to those
obtained with 4000 samples, and so we can conclude that convergence is achieved. These results will be the reference
results. Fig. 2 shows the first two moments of x1 (mean, x1, and standard deviation, σ1) calculated from the PC components
(see the red dotted line)

x1 ¼ Y0f g1 (27)

σ2
1 ¼

XP
j ¼ 1

j! Yj
� �

1

� �2 (28)

where Yj
� �

1 denotes the first element of Yj.
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4.1. PCE results

The PC expansion is calculated for three PC orders: 2, 30, and 50. The results are plotted in Fig. 2, and they are in a perfect
agreement with the MCS results, except around the resonances. Around the resonances some spurious oscillations arise, the
curves oscillate more as P increases, and the oscillations are located around the deterministic eigenfrequencies given in
Table 2. This illustrates the theoretical development in Section 2; more details on these spurious resonances can be found in
[27]. At first sight, a fast convergence occurs even around the deterministic eigenfrequencies, and the oscillations seem to
vanish for P¼50. However, this is due to the logarithmic scale. Fig. 3 shows the mean response predicted at 12.05 Hz (the
first natural frequency of the deterministic system) on a linear scale for a PC order range from 1 to 500 (thin black solid line).
The response evaluated with MCS is also plotted in Fig. 3 (magenta dashed line); the PC expansion overestimates the
response by 472 percent, 106 percent and 63 percent for P¼2, P¼30 and P¼50 respectively, compared to the MCS response.
Thus even for a relatively high PC order, the results are not very accurate, especially if the objective is to use such a response
to design a structure. For example, a PC order of about 200 is required to have a discrepancy of 10 percent. The same results
can be observed at the second resonant frequency, although the convergence is faster due to the higher damping ratio of the
second eigenmode.

A similar study was performed on the standard deviation of x1 and led to similar results (see Fig. 4). Beyond P¼170 it is
not possible to calculate the standard deviation due to numerical problems with factorial number evaluation. The
discrepancy between the direct PC response and the MCS response is approximately 6.5 percent for P¼170. This example
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Fig. 6. The mean and standard deviation of x1 using the recursive Aitken method and Shank's method. The MCS results are given by the magenta line. For a
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shows that the PC expansion is not efficient around the deterministic eigenfrequencies, and very high orders of PCE must be
used to obtain consistent results.
4.2. Convergence acceleration

Aitken's method was applied to accelerate convergence of the mean responses. ZP requires knowledge of response at PC
orders of P, Pþ1 and Pþ2. To assess the efficiency of this method, ZP is also plotted in Fig. 3 for P¼2 to P¼500 (thick red
solid line); ZP is an estimate of the mean response of x1 excited at the first eigenfrequency. Clearly ZP converges much faster
than the PCE sequence to the MCS response. For example Z50 is as good as the PCE response for P¼200; the discrepancy
with MCS is approximately 10 percent. Fig. 3 shows that the convergence is almost achieved for Z200 as the discrepancy with
the MCS response is lower than 1 percent.

This feature is also observed for the standard deviation. Fig. 4(b) demonstrates the efficiency of Aitken's algorithm as Z20
estimates the standard deviation of the MCS response within 2 percent. The convergence is much faster for the standard
deviation than for the mean.

To highlight the efficiency of Aitken's transformation, the mean and standard deviation of x1 are plotted in Fig. 5 on a
linear scale for a range of frequencies instead of the usual logarithmic scale. Fig. 5a and c shows exactly the same quantities
as Fig. 2e and f: in particular the PC order is the same (P¼50); the discrepancies between PCE and MCS are highlighted with
the linear scale. Fig. 5 shows that the MCS is very well estimated using Aitken's transformation for both the mean and the
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standard deviation, although the mean is slightly overestimated just around the deterministic eigenfrequencies. Note that a
PC order of 50 was used, and hence Aitken's transformation used PC results for orders from 48 to 50.

The recursive Aitken transformation was also applied. The results for the mean of x1 are given in Fig. 6a, where the
transformation was applied one, three and five times. The recursive approach significantly improves the results, and the
discrepancy between the MCS result and 5Zn is lower than 1.5 percent for n¼20. The same conclusion applies to Shank's
transformation (see Fig. 6b). Shank's transformation appears to be less efficient than the recursive Aitken transformation as
the discrepancy between the MCS result and e5ðMnÞ is approximately 5.4 percent for n¼20. Similar results were obtained for
the standard deviation (Fig. 6(c) and (d)) except for that, in this case, Shank's transformation is more efficient than the
recursive Aitken transformation. The discrepancy between 5Zn and the MCS response is approximately 2 percent whereas
the discrepancy between the MCS result and e5ðMnÞ is approximately 0.3 percent for n¼20. Fig. 6(a) and (d) shows a non-
smooth behavior. In fact this is a consequence of the very good convergence acceleration rate. The non-smooth behavior
occurs when consecutive terms in the accelerated sequences are very close, and then Eqs. (22) and (23) have a very small
denominator that leads to the non-smooth behavior.

4.3. Multiple random parameters

It is important to demonstrate the behavior of systems with multiple random parameters is similar to the one described
above. The results for a system with two uncertain parameters are presented. The two degrees of freedom system of Fig. 1
are still considered, but the stiffnesses k1 and k2 are now assumed to be random and independent. Hence

k1 ¼ kð1þδKξ1Þ (29)

k2 ¼ kð1þδKξ2Þ (30)

where ξ1 and ξ2 are two independent normally distributed random variables.
Thus, according to Eq. (2), the mean stiffness matrix, K0, and the random stiffness matrices, K1 and K2, are

K0 ¼ k
2 �1
�1 1


 �
; K1 ¼ δKk

1 0
0 0


 �
; K2 ¼ δKk

1 �1
�1 1


 �
(31)

Similar to Figs. 3 and 4, Fig. 7 gives the mean and the standard deviation of the response. The MCS required 108 runs to
converge; Fig. 7(a) also shows MCS results with 104 and 106 samples. Latin Hypercube Sampling was also tested with 104

samples, and the results was the same as the converged MCS results but required much less computational cost. Again,
Aitken's method proved to be very efficient and to quickly reach the converged MCS value. In fact all the conclusions made
for the convergence acceleration methods for a single random variable, can be made for multiple random variables.

5. Conclusion

The PCE is a very efficient way to estimate the dynamic response of a system, except around the deterministic
eigenfrequencies, where a very high PC order is required. Numerical issues arise in the calculation of the PCE coefficients for
a high PC order, where factorial numbers exceed the computer precision and the systems involve a high number of
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equations. These issues have been solved in [27,28] but the PCE is still not very efficient around the deterministic
eigenfrequencies, where precision is often required.

Aitken's transformation and its generalization were successfully applied to the sequences defined by the first two
moments of the responses, and this process significantly accelerates their convergence. As a consequence, the PCE may be
considered as an efficient method to estimate the first two moments of a random dynamic response when associated with a
convergence accelerator. This paper focuses mainly on a single random variable, but the same procedure can also be applied
to multiple random variables with successive PC-orders, as demonstrated with the final example with two random
parameters.

The mean and the standard deviation may be efficiently derived through an intrusive PCE. However, these first two
moments are not sufficient to provide all the statistics of the response distribution; the probability density function must be
derived. Ongoing research will determine the probability density function of the response.
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