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ABSTRACT
Bayesian techniques have been widely used in finite element model 
(FEM) updating. The attraction of these techniques is their ability to 
quantify and characterize the uncertainties associated with dynamic 
systems. In order to update an FEM, the Bayesian formulation requires 
the evaluation of the posterior distribution function. For large systems, 
this function is difficult to solve analytically. In such cases, the use of 
sampling techniques often provides a good approximation of this 
posterior distribution function. The hybrid Monte Carlo (HMC) method 
is a classic sampling method used to approximate high-dimensional 
complex problems. However, the acceptance rate of HMC is sensitive 
to the system size, as well as to the time step used to evaluate the 
molecular dynamics trajectory. The shadow HMC technique (SHMC), 
which is a modified version of the HMC method, was developed to 
improve sampling for large system sizes by drawing from a modified 
shadow Hamiltonian function. However, the SHMC algorithm 
performance is limited by the use of a non-separable modified 
Hamiltonian function. Moreover, two additional parameters are 
required for the sampling procedure, which could be computationally 
expensive. To overcome these weaknesses, the separable shadow 
HMC (S2HMC) method has been introduced. This method uses a 
transformation to a different parameter space to generate samples. 
In this paper, we analyse the application and performance of these 
algorithms, including the parameters used in each algorithm, their 
limitations and the effects on model updating. The accuracy and the 
efficiency of the algorithms are demonstrated by updating the finite 
element models of two real mechanical structures. It is observed that 
the S2HMC algorithm has a number of advantages over the other 
algorithms; for example, the S2HMC algorithm is able to efficiently 
sample at larger time steps while using fewer parameters than the 
other algorithms.
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1.  Introduction

The f﻿inite element model (FEM) is a method used to construct mathematical models of 
structures.[1,2] Due to the uncertainties and approximations associated with the process 
of constructing finite element models of structures, the analytical results are different from 
those obtained from experimental measurements.[3,4] Thus, for practical purposes, the FE 
model has to be updated. In recent years, the use of the Bayesian framework has shown 
promising results when applied to system identification problems.[4–8] This approach 
allows the uncertainties of the modelled systems/structures to be expressed in terms of 
probability, by representing the unknown parameters as random vectors with a joint prob-
ability density function (PDF). This distribution function is known as the posterior PDF. 
In general, the posterior PDF is not analytically available for sufficiently complex prob-
lems. This is the case for the FEM updating problem, where the parameter search space is 
non-linear and high dimensional.

To cope with this problem, Beck and Katafygiotis [9] employed Laplace’s method of 
asymptotic approximation to estimate the uncertain parameters. In this method, a Gaussian 
approximation is used to predict the posterior PDF. This approach can be computationally 
challenging because of the complications caused by the non-convex optimization required. 
This method is only valid if a large amount of data is available, and convergence may not 
occur if the chosen initial values are too far from the neighbourhood of the high probability 
region.

In problems where the uncertain parameter search space is large and complex, sampling 
techniques can be more useful. Different methods such as multivariate normal sampling 
(MNS),[10] Latin hypercube sampling (LHS) [11] and orthogonal array sampling [12] have 
been employed to find the most probable values of the uncertain parameters. MNS tech-
niques can only be applied for uncertain parameters that have a Gaussian PDF. This method 
is easily implemented when the uncertain parameters are uncorrelated and the covariance 
matrix is a diagonal matrix. However, difficulties may arise when the uncertain parameters 
are correlated, and the accuracy of this method will rapidly decrease. The LHS technique 
was introduced by McKay et al. [11]. In this method, the parameter space is divided into 
subspaces of equal probability and samples are taken from each subspace equally. This 
method is very effective when only one parameter is sampled but becomes more complex 
and computationally expensive when high-dimensional problems are targeted since the 
method has to cover all possible combinations. Haddad Khodaparast [10] applied both the 
Multivariate Normal Sampling and Latin Hypercube Sampling methods to model updating. 
The orthogonal array (OA) sampling [12] method represents a modified version of the LHS 
methods. However, OA sampling produces uniform samples in multiple dimensions while 
the LHS method produces a uniform sampling in one dimension only (LHS is a special case 
of an OA sampler). Unfortunately, the results obtained from the previous three sampling 
algorithms (MNS, LHS and OA) are highly sensitive to the complexity of the system and 
the size of the search space.

In contrast, Markov Chain Monte Carlo (MCMC) methods are established sampling 
methods that can offer a very practical solution to estimate the desired posterior distribution 
function in a reasonable time.[4,7,13,14] The Metropolis–Hastings (M–H) algorithm is the 
most popular MCMC algorithm [15,16] and has been applied in various scientific fields. This 
algorithm generates samples from a target distribution by applying an acceptance–rejection 
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criterion to accept new samples, while a proposed PDF is used to suggest the new sample 
candidate. Geometrically, the proposed PDF constructs a random walk trajectory during 
the search. Unfortunately, the algorithm’s performance becomes poor when the modelled 
system is complicated since the M–H acceptance rate decreases causing a mixing of the 
sampling chain. The M–H algorithm has been employed many times in model updating, 
see [4,7] for more information. Based on the M–H algorithm, Beck and Au [17] proposed 
an adaptive Metropolis–Hastings (AMH) method where instead of drawing samples from 
the target PDF, the samples are obtained from a series of simpler intermediate probability 
density functions (PDFs) that converge to the target PDF. The AMH algorithm was found 
to be useful for problems with flat, very peaked and multimodal target PDFs. However, this 
approach is inefficient for high-dimensional problems since kernel density estimation is 
required for this approach. Another popular MCMC algorithm called the ‘Gibbs sampler’ 
[18] has been used to update structures. This algorithm can be used to generate samples 
from undefined PDFs (see [19]). Ching and Cheng [20] proposed the Transitional Markov 
Chain Monte Carlo (TMCMC) algorithm which is based on the adaptive M–H algorithm. 
This algorithm is more efficient than the AMH method. The TMCMC algorithm can avoid 
the complexities of sampling from a difficult target using a series of intermediate PDFs that 
converge to the target PDF. Moreover, the TMCMC approach has the ability to automatically 
select the intermediate PDFs. The use of the TMCMC algorithm has greatly increased in 
model updating since Muto and Beck [21] applied it to update hysteretic structural models. 
Also, the TMCMC algorithm can be used as a parallel algorithm for more complex problems. 
Unfortunately, the TMCMC algorithm is fundamentally based on the general M–H algo-
rithm where the random walk trajectory is restricted in complex systems. The performance 
of these algorithms decreases with the complexity as well as the size of the modelled system.

Another class of MCMC algorithms, the Hybrid Monte Carlo algorithm, also known as 
the Hamiltonian Monte Carlo (HMS) method, was first introduced in the physics literature 
by Duane et al. [22]. The HMC method has a Molecular Dynamic move trajectory that 
has the ability to deal with large and complicated systems. The HMC method locates high 
probability search regions quicker and with fewer iterations which is not the case with algo-
rithms that have random walk trajectories. The HMC trajectory is guided by the derivative 
of the target log-density probability (the log-posterior derivative).[7,13,23,24] The core 
step of this algorithm is to introduce an auxiliary variable/vector, called the momentum 
vector, to create a new molecular dynamic (MD) system while the uncertain parameter 
vector is treated as the system displacement. The total energy of the new MD system, which 
is called the Hamiltonian function, contains both a potential energy, which is equal to the 
log-posterior, and a kinetic energy based on the momentum vector. The velocity Verlet (VV), 
also called the leapfrog algorithm, is used to evaluate the total energy of this MD system. 
The HMC method was first proposed in model updating by Cheung and Beck [25], who 
successfully updated a linear structural dynamic model with 31 parameters. The Bayesian 
method based on the HMC sampling algorithm successfully characterized the modelling 
uncertainties associated with the underlying structural system (see [25] for more details).

However, the VV integrator does not conserve energy, especially when the time step 
used and/or the system size is considered to be large. To overcome these limitations, a 
modified HMC algorithm based on a modified Hamiltonian function, called the Shadow 
Hybrid Monte Carlo (SHMC), was proposed in [26]. The SHMC is based on the HMC 
method but it uses an approximation of the modified Hamiltonian, also called a Shadow 
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Hamiltonian function, to sample through the phase space in an efficient way. Boulkaibet 
et al. [27] implemented the SHMC to update an unsymmetrical H-shaped structure and 
the GARTEUR SM-AG19 structure. The SHMC technique and the HMC algorithm give 
good updated results. However, the results obtained by the SHMC algorithm for a relatively 
large time step are more accurate than the HMC results; when the time step increases, the 
sampling rate of the HMC decreases which leads to poor algorithm performance. However, 
the SHMC uses a non-separable Hamiltonian function that generates the moments in a 
computationally expensive way. The SHMC method also requires extra parameters to sta-
bilize the rejection cost for both moments and positions while an augmented VV Integrator 
is used to evaluate the shadow Hamiltonian function.[26,27]

In this paper, the separable shadow hybrid Monte Carlo (S2HMC) [28,29] is adopted to 
update real structural systems. The S2HMC samples from the posterior PDF using a sep-
arable shadow Hamiltonian function and without involving any extra parameters. In this 
paper, the efficiency, reliability and limitations of the S2HMC technique are investigated 
when a Bayesian approach is applied to an FEM updating problem. The results obtained 
are compared with those obtained by the SHMC algorithm in [27]. In the next section, 
Bayesian inference is introduced and the posterior distribution of the uncertain parameters 
of the FEM is presented. Section 3 presents the Hamiltonian dynamics and describes the 
basic HMC algorithm. Section 4 introduces the Separable Shadow Hamiltonian method. 
Section 5 presents the implementation of some of these algorithms on the unsymmetrical 
H-shaped beam structure. Section 6 presents the implementation of these algorithms on 
the GARTEUR SM-AG19 structure. Finally, Section 7 concludes the paper.

2.  Bayesian inference

In order to update a mathematical model, the uncertain parameters of the model have to 
be identified and quantified. Bayes’ theorem offers the ability to quantify the uncertainty 
associated with the model parameters.[4,5] In this paper, Bayesian theory is used to identify 
the uncertain parameters in the FEM updating problem. Bayesian approaches are governed 
by Bayes’ rule [4,5,7,27,30]:
 

 represents the probabilistic model class for the target system. The model class is defined 
by the parameters of the model, � ∈ � ⊂ D, where a different set of the vector � represents 
a different class .  represents the modal properties obtained from experiments (natural 
frequencies, f mi , and mode shapes, �m

i ). The quantity P(�|) is the prior probability density 
function (PDF) of the updating parameters, given the assumed model class  in the absence 
of the data . The quantity P(�|,) describes the posterior PDF of the parameters in 
the presence of the data  and the assumed model class . P(|�,) is the likelihood 
function, which represents the probability of the data () in the presence of the uncertain 
parameters � and the assumed model class .[4,7,27] The dependence on the model class 
 is only important when more than one model class is investigated and a class selection 
is needed to identify the better class of model. In this work, only one model class is investi-
gated and hence the dependence on the model class  is omitted to simplify the notation.

The likelihood function is given by [4,7,27]

(1)P
(
�|,

)
∝ P

(|�,
)
P(�|)
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where βc is a constant and can be used to weight the likelihood terms in the posterior, Nm is 
the number of measured modes f mi  and f ai  is the ith analytical natural frequency obtained 
from the finite element model. In this paper, only natural frequencies are considered.

The prior PDF represents the prior knowledge of the updating parameters �.[8] Here, 
this PDF is assumed to be Gaussian [4,7,27]

 

where �0 represents the mean value of the uncertain parameters, Q is the number of uncer-
tain parameters to be identified and αj is the coefficient of the prior PDF for the jth updat-
ing parameter (which is related to the variance by �j =

1

�2
j

). The notation ‖ ∗ ‖ denotes the 
Euclidean norm of the term *.

The posterior PDF of the parameters �, given the observed data , is derived by applying 
Bayes’ theorem from Equation (1). The density function P(�|) is calculated by substituting 
Equations (2) and (3) into Equation (1) to give

 

where
 

In most cases, obtaining the analytical form of the posterior PDF is not possible. In these 
cases, sampling methods are used to provide an approximate solution. Sampling techniques 
can simplify Bayesian inference by providing a set of random samples from the posterior 
distribution.[4,7,27] If Y is an observation of certain parameters at different discrete time 
instants, then the prediction of the future responses of this parameter Y at different time 
instants could be achieved by the total probability theorem as

 

Equation (6) depends on the posterior PDF and sampling techniques such as the Markov 
Chain Monte Carlo (MCMC) methods can be easily employed to estimate the unknown 
parameters. Given a set of Ns random parameter vectors drawn from P(�|D), the expectation 

(2)P
�|�

�
=

1
�

2�

�c

�Nm∕2 ∏Nm

i=1
f mi

exp

�
−
�c

2

Nm�

i

�
f mi − f ai
f mi

�2
�

(3)
P(�) =

1

(2�)Q∕2
∏Q

j=1
1

√
�j

exp

�
−

Q�

j

�j

2

����
j − �

j

0

���
2

�

=
1

(2�)Q∕2
∏Q

j=1
1

√
�j

exp
�
−
1

2

�
� − �0

�T
Σ−1

�
� − �0

��

(4)P
(
�|)

∝
1

Zs

(
�, �c

)exp
(
−
�c

2

Nm∑

i

(
f mi − f ai
f mi

)2

−

Q∑

j

�j

2
‖‖‖�

j − �
j

0

‖‖‖
2

)

(5)Zs

�
�, �c

�
=

�
2�

�c

�Nm∕2 Nm�

i=1

f mi (2�)Q∕2
Q�

j=1

1√
�j

(6)P
(
Y |D

)
= ∫

�

P
(
Y |�

)
P
(
�|D

)
d�



6    I. Boulkaibet et al.

value of any observed function Y can be estimated by approximating the integral in Equation 
(6) by

 

where G is a function that depends on the unknown parameters �i. In this paper, the 
S2HMC, SHMC and HMC methods are used to sample from the posterior PDF and the 
results are compared.

3.  Hamiltonian dynamics

In an HMC algorithm, a dynamic system is considered in which auxiliary variables called 
momentum, � ∈ RN, are introduced. The updated vector � is treated as a displacement. The 
total energy, also known as the Hamiltonian function, of the new dynamic system is defined 
by H(�,�) = V (�) +W(�), where the potential energy is defined by V (�) = −ln(P(�|D)) 
and the kinetic energy W(�) = ���−1�∕2, which depends only on � and some chosen 
positive definite matrix � ∈ RN×N. The Hamiltonian method is a half-stochastic, hybrid 
approach that has a Molecular Dynamic trajectory. This property can be very useful when 
the HMC algorithm is implemented for large and complicated systems.[6,7,23,27,31] This 
method is hybrid because it combines a molecular dynamic (MD) trajectory with a Monte 
Carlo (MC) acceptance–rejection step.[23]

The Hamiltonian dynamic system associated with H(�,�) is governed by the following 
equations:

 

The Hamiltonian function can be used to define a joint distribution, which can be written as 
f (�,�) ∝ exp(−�BH(�,�)) where �B =

1

KBT
 and KB is a Boltzmann constant and T is temper-

ature. In this paper, the Hamiltonian dynamic system PDF function f (�,�) is considered to 
follow a Boltzmann distribution. The canonical ensemble (also known as ‘NVT’ for constant 
temperature T, constant volume V and constant number of particles N), is used to perform 
the Molecular Dynamic simulation. A nice feature of this ensemble is that position � and 
momentum � are independent for separable Hamiltonians.[32]

The evolution of (�,�) through time t can be achieved numerically using the VV 
(leapfrog) scheme [7,8]

 

 

 

(7)Ỹ ≅
1

Ns

Ns∑

i=1

G
(
�i

)

(8)d�

dt
= �−1�(t),

dp

dt
= −∇V (�(t))

(9)�
(
t +

�t

2

)
= �(t) −

�t

2
∇V (�(t))

(10)�(t + �t) = �(t) + �t�−1�
(
t +

�t

2

)

(11)�(t + �t) = �
(
t +

�t

2

)
−

�t

2
∇V (�(t + �t))
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where δt is the time step and ∇V is obtained numerically by finite differences as
 

Δ =
[
Δ1,Δ2,… ,ΔN

]T is the perturbation vector and h is a scalar that dictates the size of 
the perturbation of �.

After each iteration of Equations (9)–(11), the resulting candidate state is accepted or rejected 
according to the Metropolis criterion based on the value of the Hamiltonian H(�,�). The HMC 
algorithm can be summarized as follows:

(1) � �  Use �0 to initiate the algorithm.
(2) � �  Initiate �0 such that �0 ∼ N(0,M).
(3) � �  The leapfrog algorithm is initiated with (�,�) and the algorithm is evaluated for 

L time steps to obtain (�∗,�∗).
(4) � �  Use �∗ to update the FEM and to obtain the new analytic frequencies f ai  and then 

compute H(�∗,�∗).
(5) � �  Accept (�∗,�∗) with probability min

(
1, exp

{
−�BΔH

})
.

Repeat steps (3)–(5) for Ns samples.
Here, ΔH = H(�∗,�∗) −H(�,�), and the estimated mean value of the uncertain param-

eters is
 

where the E(∗) describes the mean value of a quantity *. The variance of the uncertain 
parameters is
 

where the standard deviation (the errors) is given by �
�
=

√
V
(
�̂
)

.
The distance vector  represents the move of the pair (�,�) in the search space after one 

evolution, where this vector depends on the time step δt. In this case, a relatively large time 
step δt is needed to ensure a significant move from the existing sample to a new one. This 
allows for fast convergence and better exploration of the search space. Unfortunately, due to 
the numerical errors caused by the Verlet integrator, the performance of the HMC method 
degrades when the time step is large. This may be due to the fluctuation of the Hamiltonian 
function which then causes an increase in the rejection rate of the algorithm. This means 
no samples are accepted when δt ≥ δtmax, where δtmax represents the upper bound of the 
time step. In such cases, the time step of the HMC algorithm should be less than δtmax to 
avoid a large rejection rate. On the other hand, a too small δt stabilizes the Hamiltonian 
function and gives a high acceptance rate of the HMC algorithm. However, a large number 
of samples will be needed to cover more space during the search (especially when δt ≤ δtmin, 
where δtmin represents the lower bound of the time step).

(12)
�V

��i
=

V (� + Δh) − V (� − Δh)

2hΔi

(13)�̂ = E(�) ≅
1

Ns

Ns∑

i=1

�
i

(14)V
(
�̂
)
= E

((
� − �̂

)2)
≅

1

Ns

Ns∑

i=1

(
�
i − �̂

)2
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Cheung et al. [6] maximized the distance (�t) using a small number of samples and 
empirically explored different δt to achieve the maximum (�t). However, this method is not 
efficient, especially when the algorithms search near space boundaries. Another approach 
to the time step problems is to use a variable step size (adaptive time step). Huang et al. 
[33] proposed an adaptive Verlet method, which is based on time re-parameterization. 
A new variable is introduced into the leapfrog scheme and this variable τ is related to a 
chosen smooth scalar-valued function. However, the adaptive Verlet method still has limi-
tations where the time step is still considered small within this method (the bounds of the 
time step are applied). To overcome this inconvenience, the shadow Hybrid Monte Carlo 
(SHMC) algorithm (with a modified Hamiltonian function) was proposed in [26]. This 
algorithm has the ability to produce samples with a relatively large time step. In SHMC algo-
rithm, a modified Hamiltonian function H̃

(
�, p

)
 is exploited to sample from an extended 

phase space of the shadow Hamiltonian rather than sampling from a configuration space.
[26,27] The SHMC formulation requires the introduction of a constant c in the modified 
Hamiltonian function H̃ (�,�), while the density function f̃ (�,�) ∝ exp

(
−𝛽B H̃ (�,�)

)
 is 

used to obtain samples. In the SHMC algorithm, the proposed modified Hamiltonian func-
tion is defined as H̃ (�,�) = max

(
H(�,�),H[2k]

(
�, p

)
− c

)
. The function H[2k]

(
�, p

)
 is a 

shadow Hamiltonian of an order 2k, where the shadow Hamiltonian functions of orders 
4 and 8 are described in [26,27]. The SHMC algorithm of order 2k is summarized as fol-
lowing [26,27]:

(1) � �  Set the initial value �0

(2) � �  Repeat for NS samples:

Monte Carlo (MC) step:

(a) � Produce p such that p ∼ N(0,M)

(b) � Accept with probability

(c) � Repeat until a new p is accepted
Molecular Dynamic (MD) step:

(a) � Initialize the extended leapfrog algorithm with (�,�) and run the algorithm for L 
time steps to obtain (�∗,�∗)

(b) � Update the FEM to obtain the new analytical frequencies and then compute H̃
(
�
∗, p∗

)

(c) � Accept (�∗,�∗) with the probability min
(
1, exp

{
−𝛽BΔ H̃

})

Unfortunately, the non-separable Hamiltonian function H[2k]
(
�, p

)
 used in this algorithm 

causes disadvantages such as the computational expense in generating the momentum 
estimates.[27] Furthermore, this method requires an extra tuning parameter to balance 
the cost of rejection of momentum and positions.

In this paper, the S2HMC algorithm which uses a separable shadow Hamiltonian func-
tion to sample the posterior distribution function of the FEM updating parameters is inves-
tigated. This approach does not require any extra parameters. The results obtained by the 

min
(
1, exp

{
−�B

(
H[2k]

(
�, p

)
− c −H(�,�)

)})
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S2HMC algorithm will be compared to those obtained by the HMC and SHMC algorithms 
in [27].

4.  The separable shadow Hamiltonian method

The separable shadow hybrid Monte Carlo (S2HMC) [28] algorithm is a modified version of 
the SHMC algorithm where a separable shadow Hamiltonian function is employed to gen-
erate samples. A shadow Hamiltonian function represents an accurate approximation to the 
Hamiltonian function which is conserved more closely than the original Hamiltonian func-
tion when a large time step is used during the evolution of the Verlet integrator. However, 
the use of the shadow Hamiltonian function can complicate the sampling procedure of the 
momentum vector. The S2HMC method improves the sampling efficiency by sampling 
from a separable shadow Hamiltonian function, which changes the configuration spaces. 
These transformations prevent the use of extra parameters (such as the constant c in the 
SHMC algorithm) and avoid the complication of using an augmented integrator. Moreover, 
the procedure of sampling a new momentum vector will be similar to the HMC algorithm. 
These improvements can accelerate the convergence of averages computed by the method.
[28] The transformations used can improve the acceptance rate with a comparatively neg-
ligible computational cost.

The S2HMC algorithm employs a processed velocity Verlet (VV) integrator to increase 
the order of accuracy of the sampling procedure. This can be done by changing the config-
uration space by introducing pre-processing and post-processing steps.[28,29] The modi-
fied Hamiltonian function used in this algorithm is conserved to O

(
�t4

)
 by the processed 

method, instead of just O
(
�t2

)
 by the unprocessed method. Similar to the SHMC algorithm, 

the S2HMC algorithm also requires a reweighting step to compensate for the modification 
of the potential energy. The shadow Hamiltonian function used in the S2HMC method is 
separable and of fourth order [28]:

 

where V
�
 is the derivative of the potential energy V with respect to �. The joint distri-

bution derived from the separable shadow Hamiltonian function can be written as 
f̃ (�,�) ∝ exp

(
−𝛽B H̃ (�,�)

)
. The separable shadow Hamiltonian function is derived by 

applying backward error analysis to the numerical integrator.[28]
The pre-processing step is
 

 

Equations (16) and (17) require an iterative solution for �̂ and a direct computation for �̂.  
The post-processing step is

 

(15)H̃ (�,�) =
1

2
���−1� + V (�) +

𝛿t2

24
VT

�
�−1V

�
+ O

(
𝛿t4

)

(16)𝐩̂ = 𝐩 −
�t

24

(
V

�

(
� + �t𝐌−1 𝐩̂

)
− V

�

(
� − �t𝐌−1 𝐩̂

))

(17)�̂ = � +
𝛿t2

24
𝐌−1

(
V

�

(
� + 𝛿t𝐌−1 𝐩̂

)
+ V

�

(
� − 𝛿t𝐌−1 𝐩̂

))

(18)� = �̂−
𝛿t2

24
𝐌−1

(
V

�

(
� + 𝛿t𝐌−1 𝐩̂

)
+ V

�

(
� − 𝛿t𝐌−1 𝐩̂

))
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Equations (18) and (19) require an iterative solution for � and a direct computation for �.  
To calculate balanced values of the mean, the results must be reweighted. The average of 
an observable A is given by [28]:

The S2HMC algorithm can be summarized as follows [26]:

  (1) � �  An initial value �0 is used to initiate the algorithm.
  (2) � �  Initiate �0 such that �0 ∼ N(0,M) .
  (3) � �  Compute the initial shadow energy H̃ (�,�) using Equation (15).
  (4) � �  Pre-processing: Starting from (�,�), solve iteratively for �̂ and directly compute 

�̂ using Equations (16) and (17).
  (5) � �  Initiate the leapfrog algorithm with 

(
�̂, �̂

)
 and run for L time steps to obtain (

�̂
∗, �̂∗

)
 (Equations (9)–(11)).

  (6) � �  Post-processing: Starting from 
(
�̂
∗, �̂∗

)
, solve iteratively for �∗ and a directly 

compute �∗ using Equations (18) and (19).
  (7) � �  Update the FEM to obtain the new analytic frequencies and then compute 

H(�∗,�∗).
  (8) � �  Accept (�∗,�∗) with probability min

(
1, exp

{
−𝛽BΔ Ĥ

})
.

  (9) � �  Repeat steps (3)–(8) to get Ns samples.
(10) � �  Compute weight: use Equation (20) to compute the averages of a quantity A(�).

The idea of the constructed processed integrator is to change the phase space (pre-pro-
cessing) of the pair (�,�) so that the propagation is performed in a different space and using 
another integrator (which has a non-separable shadow Hamiltonian). The post-processor 
step is evaluated when the output is required. In this way, the momentum sampling proce-
dure is simplified and an accurate and faster simulation is guaranteed.[34]

Small changes can be made to improve the S2HMC method. The momentum vector can 
be effectively sampled by avoiding the dependency between their components when the 
momentum is drawn. The best way to deal with the dependencies between components 
(which are unavoidable) is to use an ordered over-relaxation approach to suppress the 
random walk that can happen in the momentum sampling process.[35]

The finite difference approximations defined in Equation (12) are employed to compute 
the gradient V

�
. This gradient is based on forward and backward Taylor series expansions 

of the function and is more accurate than the forward/backward difference approximation. 
However, when the dimension of the uncertain parameters is high, forward difference 
approximation could be more practical since it requires d (d is the dimension of the uncer-
tain parameters) evaluations of V (�) to compute the gradient, while the central difference 
approximation requires 2d. The new gradient is given by �V

��i
=

V (�+Δh)−V (�)

2hΔi

. When significant 
data are required to compute the gradient, it becomes computationally expensive. Instead, 
a subset of the data can be used to compute a noisy gradient, called a stochastic gradient.
[36,37]

(19)𝐩 = 𝐩̂+
�t

24

(
V

�

(
� + �t𝐌−1 𝐩̂

)
− V

�

(
� − �t𝐌−1 𝐩̂

))

(20)
⟨A⟩ =

∑Ns

i=1 A.ai∑Ns

i=1 ai
, where ai =

exp(−𝛽BH(�,�))

exp(−𝛽B H̃ (�,�))



Inverse Problems in Science and Engineering    11

Finally, in order to calculate balanced values of the mean, the results must be reweighted. 
This can be done using f

(
�, p

)
∕ f̂

(
�, p

)
 before evaluating the averages. The average of an 

observable A is given by Equation (20). If the weighted vector parameter is described by �̃,  
the mean value of the estimated parameters is given by:

 

where �̃ =
�⋅ai∑Ns

i=1 ai
 and � is the un-weighted uncertain vector. The mean value can be written as

 

By following the same logic, the variance of the weighted estimated parameters is
 

where V (�) is the un-weighted variance, which is similar to the value estimated by the 
HMC algorithm (see Equation (14)), and the standard deviation is given by �

�̃
=

√
V
(
�̃
)

.
Table 1 summarizes the S2HMC algorithm, along with the HMC and SHMC algorithms. 

The differences between the procedures of sampling momentum along with the MD proce-
dure are highlighted. The function H[2k]

(
�, p

)
 represents the accurate shadow Hamiltonian 

of order k.
According to Table 1, the HMC algorithm is the easiest algorithm to programme, while 

the S2HMC algorithm requires a more complicated procedure to sample new momentum 
vectors than both the HMC and SHMC algorithms. The SHMC algorithm also requires a 
constant c to balance the acceptance rate of both the MD and MC steps.

(21)̂̃
� = E

(
�̃
)
≅

1

Ns

Ns∑

i=1

�̃
i

(22)̂̃
� ≅

1

Ns

Ns�

i=1

ai∑Ns

j=1 aj
�̃

i =
1

∑Ns

j=1 aj

1

Ns

Ns�

i=1

ai�
i =

1
∑Ns

j=1 aj
E
�
�.aT

�

(23)V
�
�̃
�
= E

��
�̃− ̂̃

�

�2
�

≅ V (�).

∑Ns

i=1 a
2
i�∑Ns

j=1 aj

�2

Table 1. The Momentum, MD and reweighting steps for HMC, SHMC and S2HMC algorithms.

Methods Sampling new momentums (MC) step The MD step Reweighting step
HMC Given �, generate p such that � ∼ N(0,M) Accept (�∗ ,�∗) 

with probability 
min

(
1, exp

{
−�

B
ΔH

})
.

_____________________

SHMC Given �, generate p such that p ∼ N(0,M) Accept 
with probability: 

min
(
1, exp

{
−�

B

(
H[2k](�, p) − c − H(�,�)

)})
,

Accept (�∗ ,�∗) 
with probability 

min
(
1, exp

{
−𝛽

B
Δ H̃

})
. 

 H̃ = max(H(�, p), 
H[2k](�, p) − c)

The observable B is given 
 

by: ⟨B⟩ =
∑Ns

i=1 B.ai∑Ns

i=1 ai

, where 

a
i
=

exp(−𝛽
B
H(�,�))

exp(−𝛽
B
H̃ (�,�))

 

S2HMC Given �, generate p such 
that � ∼ N(0,M) Then solve: 

�̂ = � −
𝛿t

24

(
V
�

(
� + 𝛿t�−1 �̂

)
− V

�

(
� − 𝛿t�−1 �̂

))
Accept (�∗ ,�∗) 

with probability 
min

(
1, exp

{
−𝛽

B
Δ H̃

})
.

The observable B is given 
by: 

⟨B⟩ =
∑Ns

i=1 B.ai∑Ns

i=1 ai

, where 

a
i
=

exp(−𝛽
B
H(�,�))

exp(−𝛽
B
H̃ (�,�))
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The MC and MD steps are both dependent on the parameter c (see Table 1). When c 
is large and positive, the SHMC algorithm becomes the HMC algorithm with different 
momentum vectors and this decreases the MD step acceptance rate (in the case that δt 
and/or system size are large). Otherwise, the MC step acceptance rate increases. A large 
negative c value increases the acceptance rate of the MD step and decreases the acceptance 
rate of the MC step. In this work, the original algorithm is modified so that the value of c 
is chosen to be proportional to the average difference between the Hamiltonian and the 
shadow Hamiltonian, which can be done offline as follows (the same strategy used in [27]):

(1) � �  Run the SHMC between 50 and 100 iterations and save ΔH = H[2k]
(
�, p

)
− H(�,�) 

in a vector for all iterations.
(2) � �  Determine the expected value ΔH  and standard deviation σΔH for the obtained 

vector.
(3) � �  Choose c = ΔH − 1.2 × �2

ΔH.

In the next sections, two structures are used to test the applicability of the S2HMC 
techniques to predict the uncertain parameters along with their errors. The structures are 
an unsymmetrical H-shaped beam structure and the GARTEUR SM-AG19 aeroplane 
structure. The results obtained by the S2HMC algorithms will be compared with those 
obtained by the HMC and SHMC algorithms. Since the S2HMC algorithm uses a fourth-or-
der shadow Hamiltonian function, the results obtained with this algorithm are compared 
with the fourth-order SHMC (SHMC4) results.

5.  Unsymmetrical H-shaped structure

In this section, the un-symmetrical H-shaped aluminium structure (see Figure 1) is updated 
using the S2HMC algorithm. These results are compared with those obtained by the HMC 
and SHMC algorithms that were published in [27]. The SDT Matlab® package is used to 
model the structure. The original structure is divided into 12 elements and each single 
element is modelled as an Euler–Bernoulli beam. The double arrow in Figure 1 shows the 
location where the beam was excited using an electromagnetic shaker, while the acceleration 
was measured at 15 different positions. The response was measured by a roving accelerom-
eter (see [4] for more details about the structure and the experiment).

Figure 1. The H-shaped aluminium structure.
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5.1.  H-beam simulation

The experimental natural frequencies are: 53.9, 117.3, 208.4, 254.0 and 445.0 Hz. In this 
paper, six uncertain parameters are updated, namely: the moments of inertia and the 
cross-sectional areas of each subsection of the beam (as shown in Figure 1). The unknown 
parameter vector is given by � =

{
Ix1, Ix2, Ix3,Ax1,Ax2,Ax3

}
. The beam has the following 

structure parameters: Young’s modulus is equal to 7.2 × 1010 N/m2, the density of the material 
is set to 2785 kg/m3 while the length and thickness of the beams are described in Figure 1. 
The set of updating parameters and the boundaries of the updated parameters are similar 
to those given in [27].

The posterior distribution function had the following constants: the temperature T = 300 K, 
�B =

1

KB300
 where KB = 0.00198719 k calmol−1K−1. The constant βc of the posterior is set to 10, 

and the coefficients αj are set equal to 1
�2
j

, where �2
j  is the variance of the jth parameter and the 

variance vector is defined as � =
[
5 × 10−8, 5 × 10−8, 5 × 10−8, 5 × 10−4, 5 × 10−4, 5 × 10−4

]
.  

These uncertain parameters are represented by a Gaussian distribution with a mean value 
equal to �0, and a variance �. To obtain a fast convergence of the algorithms, the constants 
of the prior (βc and �) are chosen so that the weight of the likelihood terms will be greater 
than the prior terms in Equation (4). To keep our uncertain parameters physically realistic, 
maximum and minimum vectors are needed to bound the updated parameters. The maxi-
mum vector is 

[
3.73 × 10−8, 3.73 × 10−8, 3.73 × 10−8, 4.16 × 10−4, 4.16 × 10−4, 4.16 × 10−4

]
 

and the minimum vector is 
[
1.7 × 10−8, 1.7 × 10−8, 1.7 × 10−8, 2 × 10−4, 2 × 10−4, 2 × 10−4

]
.

The number of samples is Ns = 1000, the initial time step is δt = 0.0045 s and the constant 
L is uniformly distributed on the interval.[1,10] To be certain of the results, each algorithm 
is implemented over 20 independent runs. The final results, tabulated in Tables 2 and 3, are 
the averages of these 20 runs, and these can accurately describe the results since a different 
momentum vector was used for each algorithm run.

Figure 2 represents the scatter plots with marginal histograms for four of the uncertain 
parameters using the S2HMC algorithm. In these figures, θi refers to the sequential num-
bering of the updating parameters in the updating vector, e.g. �2 = Ix2 which is the second 
moment of area of the middle beam, and the normalization constants �0i  are the initial 
(mean) values of the updated parameters. The plots show that the scatter is concentrated 
in a specific region, which means that the algorithm has found the region of high proba-
bility (which is almost the same as the HMC and SHMC algorithms in [27]). The expected 
values of the rest of the parameters along with their coefficient of variation (c.o.v) are given 
in Table 2.

Table 2 presents the initial and the updated values of the uncertain parameters. It also 
shows the coefficient of variation of the parameters for the S2HMC algorithm. The coefficient 

Table 2. Initial and updated parameters using HMC, fourth-order SHMC and S2HMC.

Initial �0

� vector, HMC 
Method

�
i

�
i

 (%)
� vector, SHMC 
Method

�
i

�
i
 (%) 

� vector, S2HMC 
Method

�
i

�
i
 (%) =

 Ix1 2.73 × 10−8  2.21 × 10−8 12.67  2.18 × 10−8 12.60  2.19 × 10−8 13.44
 Ix2 2.73 × 10−8  2.6 × 10−8 1.37  2.49 × 10−8 3.99  2.44 × 10−8 2.70
 Ix3 2.73 × 10−8  2.9 × 10−8 16.5  2.96 × 10−8 14.93  2.95 × 10−8 13.31
 Ax1 3.16 × 10−4  4.0 × 10−4 1.39  4.05 × 10−4 2.19  3.91 × 10−4 2.93
 Ax2 3.16 × 10−4  2.3 × 10−4 1.1  2.46 × 10−4 2.10  2.34 × 10−4 2.51
 Ax3 3.16 × 10−4 2.4 × 10−4 1.95  2.25 × 10−4 3.20  2.21 × 10−4 7.44
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of variation (c.o.v) represents the percentage of estimated standard deviation divided by the 
estimated � for each algorithm: �i

�i
 (%). The results obtained by the HMC and SHMC algo-

rithms in [27] are also presented in Table 2. The estimate of the middle beam parameters, 
particularly the second moment of area, is more accurate than the left and the right beam 
parameters, which can be seen from the values of the coefficient of variation in Table 2. The 
strain in the lower modes will be higher in the middle beam, meaning that the lower natural 
frequencies are more sensitive to the stiffness of the middle beam. The same observation is 
made when the HMC and SHMC algorithms are employed to update the same structure.

In general, the S2HMC algorithm updated � vector which is physically realistic. The time 
step used provides a very good sampling acceptance rate for all algorithms (99.9%). The 
updated values and the coefficient of variation for the HMC and SHMC algorithms found 
in [27] are close to those obtained by the S2HMC algorithm.

Table 3 presents the updated natural frequencies for each mode, the absolute mode errors 
and the final model error in percentages for all three algorithms. The coefficient of variation 
is given in the parenthesis and represents the estimated standard deviation divided by the 
estimated frequency. The absolute mode errors are given by |f

m
i −f ai |
f mi

, while the total average 

error, or the sum of the mode errors, (TAE) is given by TAE =
1

Nm

∑Nm

i=1

�f mi −f ai �
f mi

 . The main 
goal of the updating process is to improve the analytical frequencies by reducing the total 
average error; hence, the errors in all of the individual modes are not necessarily simulta-
neously reduced. The constant βc in Equation (4), which is used to weight the likelihood 
terms in the posterior, can be selected as a vector to improve certain modes. However, 
increasing the weight for certain frequencies does not guarantee the improvement of all 
modes and the TAE value.

Different methods have been used to update the H-shaped beam structure. The Nelder 
Mead (NM) simplex method reduced the error to 2.14% in [4], while the response surface 
(RS) method [4] produced a total average error of 1.84% in [4]. Both the HMC and SHMC 
algorithms were applied to update the same structure and the HMC algorithm reduced the 
error to 0.73%, while the fourth-order SHMC algorithm reduced the error to 0.66% (both 
the HMC and SHMC results obtained in [27] are presented in Table 3).

From Table 3, the error between the first measured natural frequency and that of the 
initial model was 4.63%. When the S2HMC algorithm was applied, the error decreased to 

Figure 2. Scatter plots with marginal histograms, using the S2HMC method: (a) A
x1
vs. I

x2
 (b) A

x2
vs. A

x3
.
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1.37%. The same comments can be made for the third, fourth and fifth natural frequencies. 
Overall, the updated FEM natural frequencies for the S2HMC algorithm are better than 
the initial FEM.

When results obtained by the S2HMC algorithm are compared to those obtained by both 
the HMC and SHMC algorithms, the S2HMC algorithm produced a slightly better total 
average error result than both the HMC and SHMC algorithms. The updating using the 
S2HMC method reduced the total average error from 4.7 to 0.58%, which is an acceptable 
percentage since the error is smaller than that obtained by the NM, RS, HMC and SHMC 
methods.

The coefficient of variation (c.o.v) for the S2HMC algorithms is very small. This indicates 
that the updating process using the separable shadow Hamiltonian algorithm under the 
Bayesian approach produced accurate results.

Figure 3 shows the correlation between all of the updated parameters. Smaller values 
indicate that the parameters are weakly correlated (<0.3). Large values (>0.7) indicate that 
the parameters are highly correlated, while zero indicates that the parameters are not corre-
lated. A positive correlation means that the variables are positively related, while a negative 
correlation indicates the opposite. Figure 3 shows that all parameters (except Ax1vs. Ax3) are 
weakly correlated. The pair (Ax1,Ax3) is highly correlated (the correlation is equal to 0.71).

The convergence of the total average error over a number of iterations is shown in 
Figure 4. The y-axis (Total Average Error) is defined on a logarithmic scale, while the x-axis 
represents the iterations of the S2HMC algorithm. To obtain this figure, the previously 
accepted samples are used to compute the mean at every iteration i (�̂ = E(�) ≅

1

Ns

∑i

j=1 �
i  

where i represents the current iteration). Then, the total average error is computed accord-
ing to TAE(i) = 1

i

∑Nm

j=1

�f mj −fj�
f mj

. The results obtained by the S2HMC are compared in the 
same plot with those obtained in [27] using the HMC and SHMC algorithms. The S2HMC 
algorithm converges fast and within the first 100 iterations, and has similar properties to 
the SHMC algorithm when the time step is relatively small. The HMC converges more 
slowly, but even in this case, 200 iterations (or 200 samples) would be sufficient to have 
good updated parameters.

The time step used in the Hamiltonian algorithms determines the accuracy of these algo-
rithms. Figure 5 shows the sampling acceptance rate (AR) of the HMC, SHMC and S2HMC 
algorithms when the time step varies between 0.006 and 0.01 s. The S2HMC algorithm has 
extended the upper boundary of the HMC time step. The S2HMC method maintains a good 
acceptance rate when the time step is increased. At time step 0.006 s, the S2HMC algorithm 
has an acceptance rate equal to 99.9%. The S2HMC algorithm preserves the same AR value 
until δt = 0.0066 s, and then the AR of the algorithm starts decreasing from δt = 0.0068 s 
(AR equal to 93.3%) to reach an acceptance rate equal to 69.7% at time step δt = 0.01 s. 
At time step δt = 0.01 s, the S2HMC algorithm achieves an acceptance rate slightly better 
than the SHMC acceptance rate (66% for the SHMC algorithm), while the AR of the HMC 
algorithm at time step δt = 0.01 s is less than 1% (no samples were accepted).

Figures 4 and 5 show that the results of the S2HMC and SHMC algorithms are close in 
terms of convergence and acceptance rates. However, the average running time (compu-
tational time to run the algorithm) for HMC, SHMC (4th order) and S2HMC algorithms 
for 1000 iterations is: 28.63, 89.33 and 43.12 min, respectively. The running time for the 
HMC algorithm is less than both SHMC and S2HMC since there are no complexities in its 
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MC and MD steps (see Table 1). The S2HMC algorithm does have a relatively large time 
step since it requires evaluating the separable shadow Hamiltonian function. On the other 
hand, the SHMC algorithm has a longer running time since both MC and MD steps require 
accept–reject procedure to accept samples. Table 1 indicates that the SHMC has a compli-
cated procedure to obtain new momentum values. Figure 6 describes both the MC and MD 
procedures of the SHMC algorithm when the constant c varies between 0.001 and 1. The 
constant c plays a very important role in SHMC algorithm since the acceptance rate of both 
MC and MD steps can be balanced using this constant. The constant c should be small to 
have a better acceptance rate in the MD step, but at the same time, the value of c should be 
large enough to have a good acceptance rate when the momentum is sampled (MC step). 
The MC acceptance rate started at 28% when c = 0.001,  which is not a good AR, since the 

Figure 4. The convergence of the HMC, SHMC and S2HMC methods.
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Figure 3. The correlation between the updated parameters (S2HMC algorithm).
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algorithm needs more time to produce new momentum, while the AR reached 76% when 
c = 1. In contrast, the MD acceptance rate started very high at 98.1% when c = 0.001 and 
decreases to 29.6% when c = 1. The SHMC algorithm used a constant c = 0.01,  which indi-
cates that the MC step had an AR equal to 52%. On the other hand, the S2HMC algorithm 
has a very simple momentum sampling procedure since all momentum samples will be 
accepted without the use of any extra constant and this can reduce the iterations of the algo-
rithm (the S2HMC algorithm’s computation cost is less than the SHMC algorithm’s cost).

The results from Tables 2 and 3 do not conclusively determine which Monte Carlo algo-
rithm is better for this relatively simple FEM problem. To explore this issue further, a more 
complex structure is considered in the next section. In general, one single implementation is 
not sufficient to reach any conclusions about the relative performance of the HMC, SHMC 
and S2HMC methods. In this case, a second implementation using a complicated system 
is needed to study the efficiency and the limitations of the algorithms.

Figure 5.  The acceptance rate obtained for different time steps using the HMC, SHMC and S2HMC 
algorithms.
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Figure 6. The MD and MC acceptance rate of the SHMC algorithm when c varies: (a) MC acceptance rate 
and (b) MD acceptance rate.
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6.  The GARTEUR SM-AG19 structure

In this section, the GARTEUR SM-AG19 structure [38–43] is updated using the S2HMC 
algorithm. The results obtained are compared with those obtained in [27] where the same 
set of parameters and boundaries are used. The GARTEUR SM-AG19 structure is shown 
in Figure 7.[39]

This structure has been updated, using different sets of uncertain parameters. More 
details about the methods used to update the structure can be found in [43], where Link and 
Friswell summarized the results obtained by seven participants. The updating procedures 
were performed differently. Each participant used a different set of uncertain parameters 
and many computational methods were tested in this structure. The participants obtained 
different total average errors that varied between 0.69 and 2.03%. The structure has also 
been modified in different studies where a mass was added to both wings, and the average 
errors were reduced to values between 1.02 and 1.50%.

The structure has the following characteristics: length of the fuselage is 1.5 m, the wing-
span is 3 m and the depth of the fuselage is equal to 15 cm, while the thickness is 5 cm. The 
structure is made of aluminium and its mass is 44 kg. A 1.1 × 76.2 × 1700mm3 viscoelastic 
constraining layer was bonded to the wings to increase the damping. Further details are 
described in Refs. [39,43]. In the models used for this research, all element materials are 
considered to be standard isotropic. The model elements are Euler–Bernoulli beam elements.

6.1.  GARTEUR simulation

The experimental test data used were those obtained from DLR Göttingen, Germany. The 
measured natural frequencies (Hz) are: 6.38, 16.10, 33.13, 33.53, 35.65, 48.38, 49.43, 55.08, 
63.04 and 66.52  Hz. The parameters of the structure to be updated are the right wing 
moments of inertia and torsional stiffness (R\Imin, R\Imax, R\Itors), the left wing moments 
of inertia and torsional stiffness (L\Imin, L\Imax, L\Itors), the vertical tail moment of inertia 
(VTP\Imin) and the overall mass density of the structure ρ.

Figure 7.  The GARTEUR SM-AG19 structure. This picture is reproduced with permission from the 
Department of Flight Mechanics, Flight Control and Aeroelasticity, TU Berlin, Germany (www.fmra.
tu-berlin.de).

http://www.fmra.tu-berlin.de
http://www.fmra.tu-berlin.de
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The temperature T = 300K, �B =
1

KB300
 where KB = 0.00198719 kcal mol−1K−1. The 

update vector is given by �  =  [�,VTP_Imin, L_Imin, L_Imax,R_Imin,R_Imax, L_Itors,R_Itors].  
The Young’s modulus for the aeroplane is set to 7.2  ×  1010  N/m2. In Equation 
(6), the constant βc of the posterior distribution is set equal to 100. All coeffi-
cients αj are set equal to 1

�2
j

, where �2
j  is the variance of the jth parameter and 

� =
[
5 × 102, 5 × 10−9, 5 × 10−9, 5 × 10−7, 5 × 10−9, 5 × 10−7, 5 × 10−8, 5 × 10−8

]
.

The mean values of the updated vector and their bounds are given in Tables 4 and 5, 
respectively. The bounds of the updated parameters are different from those in Ref. [29]; the 
bounds were increased to avoid obtaining results close to these bounds and the new bounds 
in Table 5 gave better results than those obtained in [29]. The time step is set to �t = 3ms 
and the number of samples is Ns = 1000. Each algorithm was run over 10 independent 
simulations. The final results tabulated in Tables 6 and 7 are the averages of these 10 runs.

In this study, the S2HMC algorithm is implemented to update the FEM of the above 
structure and the results obtained are compared to those obtained by the SHMC and HMC 
algorithms.[27] Again, in this example, the same comments can be made for the compu-
tational time for the three algorithms where the average running time for HMC, SHMC 
(fourth order) and S2HMC algorithms for 1000 iterations is: 82.81, 167.44 and 107.63 min, 
respectively. Table 6 presents the initial values (the means of the material or geometric 
parameters) of the updating vector �, the updated values and the corresponding coefficient 
of variation (c.o.v) obtained by the S2HMC, HMC and the SHMC methods for two time 
steps.

When the time step is δt = 0.003 s, the S2HMC algorithm updated all parameters and the 
precision of these updated parameters is considered good since the coefficients of variation 
for all parameters are small. The time step used is relatively small, which might mean that 
the HMC algorithm has more advantages than the SHMC and S2HMC algorithms. This 
can be seen in the c.o.v values. The HMC c.o.v values are smaller than both the SHMC 
and S2HMC results (Table 6). In general, c.o.v values are small for the updated parameters 
when the three Hamiltonian algorithms are implemented to update the structure (smaller 

Table 4. The initial values of the updating parameters for the GARTEUR example.

Parameter ρ (kg∕m3) VTP\Imin (10−9m4) L\Imin (10−9m4) L\Imax b

2785 8.34 8.34 8.34
Parameter  L\Itors(10

−8m4)  R\Imin (10−9m4)  R\Imax (10−7m4)  R\Itors (10
−8m4)

4.0 8.34 8.34 4.0

Table 5. The bounds of the updating parameters for the GARTEUR example.

Max Min
 ρ  3500  2500
 VTP\Imin  12 × 10−9  5 × 10−9

 L\Imin  12 × 10−9  5 × 10−9

 L\Imax  12 × 10−7  5 × 10−7

 R\Imin  12 × 10−9  5 × 10−9

 R\Imax  12 × 10−7  5 × 10−7

 L\Itors  6 × 10−8  3 × 10−8

 R\Itors  6 × 10−8  3 × 10−8
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than 6% for both the HMC and SHMC algorithms, and smaller than 6.5% for the S2HMC 
algorithm).

When a relatively large time step (δt = 0.0048 s) is used, the updated parameters obtained 
by the S2HMC method are much closer to the mean value than those obtained using a time 
step of δt = 0.003 s. In this setting, the HMC method gives poor updating parameters.[27] 
The updated and same initial parameters were identical since no new samples were accepted 
(see [27] for more details). The reason is that the Hamiltonian function rapidly fluctuated 
with time, and this caused a sudden decrease in the acceptance rate (the acceptance rate 
decreases to less than 1% when the time step is δt = 0.0048 s). The acceptance rates for the 
S2HMC and the SHMC algorithms are 71 and 70%, respectively, which is an acceptable 
rate compared to that of the HMC method. However, the S2HMC algorithm requires less 
implementation time than the SHMC algorithm. The constant c = 0.01 used in this example 
reduces the SHMC acceptance rate of the MC step to 61.2%, which indicates that the SHMC 

Figure 8.  Histograms of updating model parameters using the S2HMC method. The normalization 
constants �0

4
, �0

7
 and �0

8
 are the initial (mean) values: (a) ρ (b) VTP\Imin (c) L\Imin (d) L\Imax (e) R\Imin (f ) R\Imax 

(g) L\Itors (h) R\Itors.
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algorithm takes a long time to sample momentum, while the S2HMC initially uses a similar 
approach as the HMC method to sample new momentum vectors, while the pre-processing 
step transforms the momentum to be evaluated to a different search space.

The time step δt = 0.0048 s allows the S2HMC algorithm to give slightly more precise 
results than those obtained by time step δt = 0.003 s. This can be verified from Table 6 where 
the c.o.v values obtained by the S2HMC algorithm when δt = 0.0048 s are smaller than 

Figure 9. Normal probability plots for L\Imax(θ4), L\Itors(θ7) and R_I
tors

(θ8) from the S2HMC algorithm for 
the GARTEUR example. The straight line indicates a Gaussian distribution of data: (a) L\Imax (b) L\Itors (c) 
L\Imax (d) L\Itors (e) R\Itors and (f ) R\Itors.

Figure 10. The correlation between the updated parameters (S2HMC algorithm).
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those obtained by the same algorithm when δt = 0.003 s. Also, the c.o.v values obtained 
by the S2HMC algorithm are smaller than those obtained by the HMC and SHMC algo-
rithms, which means that the S2HMC algorithm produced more accurate results than those 
obtained by the other two algorithms (the c.o.v values are less than 4.5% for S2HMC algo-
rithm, while it reaches more than 10% for some parameters using the SHMC algorithm.).

Figure 8 presents the histograms of the updating parameters using the S2HMC method. 
In these figures, θi refers to the sequential numbering of the updating parameters in the 
updating vector, e.g. �1 = � (density), and the normalization constants �0i  are the initial 
(mean) values of the updated parameters. The results show that the S2HMC algorithm 

Figure 11. The total average error using the HMC, SHMC and S2HMC methods.

Figure 12.  The acceptance rate obtained for different time steps using the HMC, SHMC and S2HMC 
methods.
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was successfully able to identify the high probability region (the density of the parameters 
varies over a very small region, especially those of �5 and �6.

It is noticeable that the density function of ρ, VTP\Imin, L\Imin, L\Imax, L\Itors and R\Itors 
has forms similar (or close) to normal distribution function forms, while the density of the 
other parameters has different forms. The Gaussian probability plots for these six updated 
parameters using the S2HMC algorithm are presented in Figure 9. The results verify that 
some of these six parameters have an almost Gaussian distribution, especially ρ, L\Itors and 
R\Itors (non-Gaussian behaviours are seen in tails of the plots).

Figure 10 shows the correlation between all of the updated parameters for the S2HMC 
algorithm. All of the parameters are correlated (no values are close to 0); the pairs (L\Imin, 
R_Imin), (L\Imin, R_Imax) and (R\Imax, R_Imin) are highly correlated, while the pairs (ρ, R_Imax),  
(ρ, R_Imin) and (ρ, L_Itors) are weakly correlated.

Table 7 gives the updated natural frequencies and output errors when the S2HMC algo-
rithm is employed. The results show that the updated FEM natural frequencies are better 
than the initial FEM using the S2HMC algorithm with both time steps. When δt = 0.003 s, 
the error between the first measured natural frequency and that of the initial model was 
10.47%, and the S2HMC reduced the error to 0.85%. A similar observation can be made 
for the second, fourth, sixth, seventh, eighth and ninth natural frequencies. The initial total 
average error was 4.6%, but after using the S2HMC method, it was reduced to 0.964% (bet-
ter than 1.22% obtained by HMC and 1.20% obtained by SHMC). In general, the updated 
natural frequencies obtained by the three algorithms are better than the initial structural 
modes, and this can be seen from the total average error in Table 7.

Figure 11 shows the total average error of the HMC, SHMC and S2HMC algorithms for 
both time steps over 1000 iterations. Similar to Figure 4, the y-axis, which represents the 
Total Average Error, is plotted using a logarithmic scale. The S2HMC algorithm converges 
fast and almost has the same convergence rate for both time steps (the algorithms start to 
converge in the first 100–150 iterations).

The time step �t = 0.003 s provides a good acceptance sampling rate for the S2HMC 
algorithm (99.9%). Choosing a different time step may reduce the acceptance sampling rate 
for this method. The time step can significantly affect the convergence rate and the results 
obtained, especially for those algorithms that use the original Hamiltonian function. In 
the case where the time step δt = 0.0048 s, the S2HMC method improves the total average 
error (TAE) and reduces the c.o.v values. This can be seen in Table 7 where the total average 
error is reduced to 0.68% with an acceptance rate of 71%. However, this is not the case for 
HMC, where the acceptance rate decreases to less than 1%. Using this time step, the updated 
vector obtained from the HMC does not improve the FEM results. So the advantage of the 
S2HMC algorithm is its ability to use a large time step, which is not the case with the HMC 
algorithm. This allows the S2HMC method to overcome the complexities of sampling the 
momentum vector. The updated modes are close for both SHMC and S2HMC algorithms 
since they both use the advantage of the gradient to converge to the same local optimal 
vector and both allow relatively large time steps. However, the S2HMC algorithm is faster 
than the SHMC algorithm since the SHMC algorithm is required to run an extra procedure 
(the MC step) to accept the new momentum.

Figure 12 shows the acceptance rate for different time steps. The acceptance rate of the 
S2HMC algorithm is 99.9% when the time step is 3ms. The acceptance rate starts decreasing 
when the time step increases but this decrease is faster and more significant in the case of 
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the HMC method (similar to [27]). When the time step �t = 3.4ms, the acceptance rate 
for the S2HMC is 99.9% and reduces slightly to 97.8% when the time step reaches 3.8ms. 
Finally, when the time step is 4.8ms, the S2HMC acceptance rate reduces to 71.3%, while 
SHMC algorithm has an AR equal to 70.8%, which is an acceptable rate compared to that 
obtained by the HMC method (less than 1%).

7.  Conclusion

This paper analyses the applicability of three sampling techniques using the Bayesian for-
mulation of the finite element model update problem. These methods are tested on two 
real-world structures: an unsymmetrical H-shaped beam and the GARTEUR SM-AG19 
structure. These sampling methods are used to evaluate the posterior distribution function 
of Bayes’ theorem for FEM updating. All these methods use the Markov Chain Monte 
Carlo (MCMC) type sampling approach. Of particular interest in this paper are the subtle 
differences in performance of these algorithms, the hybrid Monte Carlo, the shadow hybrid 
Monte Carlo and the separable shadow Hamiltonian Monte Carlo algorithm. The paper 
details these algorithms, highlights their parameters and their performance characteristics.

In both experiments, the results obtained by the S2HMC algorithm are better than 
both the SHMC and HMC algorithms. The resultant total average error of the updated 
model parameters is lower, the sampling acceptance rate is higher and the convergence of 
the S2HMC algorithm is faster. This is mainly due to the S2HMC algorithm being able to 
efficiently sample the search space at larger time steps and being faster in producing new 
momentum values. The use of the separable Hamiltonian is thus a useful modification to 
the classic hybrid Monte Carlo algorithm.
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