
Journal of Sound and <ibration (2002) 251(3), 491}504
doi:10.1006/jsvi.2001.4024, available online at http://www.idealibrary.com on

0

IDENTIFICATION OF DAMPING: PART 4, ERROR
ANALYSIS

S. ADHIKARI AND J. WOODHOUSE

Department of Engineering, ;niversity of Cambridge, ¹rumpington Street, Cambridge CB2 1PZ,
England. E-mail: jw12@eng.cam.ac.uk

(Received 14 May 2001, and in ,nal form 6 September 2001)

In previous papers (S. ADHIKARI and J. WOODHOUSE 2001 Journal of Sound and<ibration
243, 43}61; 63}88; S. ADHIKARI and J. WOODHOUSE 2002 Journal of Sound and <ibration
251, 477}490) methods were proposed to obtain the coe$cient matrix for a viscous damping
model or a non-viscous damping model with an exponential relaxation function, from
measured complex natural frequencies and modes. In all these works, it has been assumed
that exact complex natural frequencies and complex modes are known. In reality, this will
not be the case. The purpose of this paper is to analyze the sensitivity of the identi"ed
damping matrices to measurement errors. By using numerical and analytical studies it is
shown that the proposed methods can indeed be expected to give useful results from
moderately noisy data provided a correct damping model is selected for "tting. Indications
are also given of what level of noise in the measured modal properties is needed to mask the
true physical behaviour.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The presence of noise of some kind is inevitable in any experimental analysis. In this paper,
the e!ects of measurement noise are considered on the damping identi"cation procedures
developed in references [1}3]. These damping identi"cation procedures rely on complex
natural frequencies and mode shapes. For lightly damped structures, complex natural
frequencies can be expressed in terms of undamped natural frequencies and modal
Q-factors. Natural frequencies, Q-factors and mode shapes, collectively called the modal
parameters or modal data, are commonly measured from vibration experiments. Typically,
one measures time histories of the responses at di!erent degrees of freedom together with
time histories of the input forces. The transfer functions of a system are obtained by taking
the ratios of the Fourier transforms of the output time histories to those of the corresponding
input time histories. The modal parameters of a structure can be extracted from a set of
transfer functions obtained in this way, by "nding the poles and residues [4].

In the presence of noise, the time histories and consequently the measured transfer
functions become noisy. This in turn makes the natural frequencies, Q-factors and mode
shapes erroneous as they are extracted from the transfer functions. The e!ect of errors in the
modal data on identi"cation of viscous and non-viscous damping will be discussed using
numerical simulations and analytical perturbation analysis. In order to simulate the e!ect
of noise, strictly speaking, one should start by perturbing the time histories with random
noise and then treat them as if they were obtained from a real experiment. Here, however,
a more direct approach is adopted by perturbing the modal data directly. There are
interesting issues associated with this. Recall that for lightly damped systems the imaginary
022-460X/02/130491#14 $35.00/0 � 2002 Elsevier Science Ltd.
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parts of the complex modes are small compared with their corresponding real parts. Thus,
the presence of random errors is likely to a!ect the imaginary parts more than the real parts.
Clearly, if the identi"ed matrix is very sensitive to errors in the imaginary parts of complex
modes then these methods may turn out not to be very useful in practice.

2. ERROR ANALYSIS FOR VISCOUS DAMPING IDENTIFICATION

In reference [1], the method for viscous damping identi"cation was developed after
assuming that the complex natural frequencies and modes were known exactly. In this
section, the in#uence of errors in the modal data on the identi"ed viscous dampingmatrix is
investigated. This can be done best by considering the numerical examples used in the
earlier studies. Figure 1 shows the model system together with the numerical values used.
The damping elements are associated between the 8th and 17th masses. Again, two
non-viscous damping models, namely, exponential (model 1) and Gaussian (model 2), are
used. The nature of both damping models is controlled by a single parameter �, a
non-dimensional characteristic time constant. The quantities are all de"ned in equation (28)
of reference [1]. As noted in the earlier papers, if � is close to zero the damping behaviour
will be near-viscous, and vice versa.

2.1. NUMERICAL STUDY

2.1.1. Noise assumptions

In order to simulate the e!ect of noise, the modal data were perturbed by adding
zero-mean Gaussian random noise to them. Numerical experiments have been performed
by adding di!erent levels of noise to the following four quantities (a list of nomenclature is
given in Appendix A):

(1) real parts of the complex natural frequencies (noise level r�);
(2) imaginary parts of the complex natural frequencies (noise level r�);
(3) real parts of the complex modes (noise level r

�
);

(4) imaginary parts of the complex modes (noise level r
�
).

Levels of random noise, denoted by the quantities r�, r�, r� and r
�
, are speci"ed by the

standard deviations of the corresponding Gaussian distributions. These quantities are
expressed as a percentage of their corresponding original (mean) values. The following cases
are considered regarding the noise levels r�, r�, r� and r

�
:

Case (a): r�"2%, r�"0%, r
�
"0% and r

�
"0%;

Case (b): r�"0%, r�"10%, r
�
"0% and r

�
"0%;
Figure 1. Linear array of N spring}mass oscillators used for numerical studies, N"30, m
�
"1 kg,

k
�
"4�10� N/m.
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Case (c): r�"0%, r�"0%, r
�
"10% and r

�
"0%;

Case (d): r�"0%, r�"0%, r
�
"0% and r

�
"10%;

Case (e): r�"2%, r�"10%, r
�
"5% and r

�
"10%.

In cases (a)}(d), noise in all but one quantity is assumed to be zero. These cases are
considered to reveal the sensitivity of the "tted damping matrix when any one of the
parameters is considered in isolation. It is assumed r�"2% while noise in all other
quantities is assumed to be 10% in recognition of the fact that natural frequencies are
generally the easiest quantity to measure accurately. Case (e) is a combination of noise in all
the four parameters intended to represent physically realistic noise levels. In practice
one would expect to obtain the real parts of complex natural frequencies and complex mode
shapes more accurately than the corresponding imaginary parts. For this reason, we assume
r�"2% and r

�
"5% while r�"10% and r

�
"10%.

2.1.2. Results

Figures 2 and 3 show the "tted viscous damping matrix for damping model 2
corresponding to noise cases (a) and (b) respectively. The value �"0)02 is assumed. Observe
that for both cases, the "tted viscous damping matrix is not very di!erent from the exact
coe$cient matrix. In particular, the "tted viscous damping matrix for noise case (b) is very
close to the noise-free case. These results show that 2% noise in the real part of the natural
frequencies, and 10% noise in the modal damping factors do not in#uence the "tting
procedure signi"cantly. Numerical studies were also conducted with higher level noise in
these quantities. It was observed that higher level of noise ('5%) in the real part of the
natural frequencies invalidates the "tting procedure. This, however, is not a serious
limitation in practice. Interestingly, it was observed that the "tting procedure is rather
insensitive to the noise in the modal damping factors. In this study, it was observed that
with as much as 40% noise in the damping factors, the "tting procedure still produces
acceptable results.

The "tted viscous damping matrices for damping model 2 in the presence of 10% noise
in the real and imaginary parts of complex modes (noise cases (c) and (d)) are shown in
Figure 2. Fitted viscous damping matrix for �"0)02, damping model 2, noise case (a).



Figure 3. Fitted viscous damping matrix for �"0)02, damping model 2, noise case (b).

Figure 4. Fitted viscous damping matrix for �"0)02, damping model 2, noise case (c).
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Figures 4 and 5 respectively. For both cases the "tted viscous damping matrix is noisy and
asymmetric. This, however, does not completely invalidate the "tting procedure: one can see
the noisy peak along the diagonal indicating the spatial distribution of the damping. From
this study it may be concluded that the presence of noise in the real and imaginary parts of
the mode shapes a!ects the "tting procedure. Further, upon comparing Figures 2 and 3
with Figures 4 and 5 it is clear that the "tted viscous damping matrix is more sensitive to
errors in the mode shapes than to errors in the complex natural frequencies.

Now consider the noise case (e), with noise levels assumed for all four quantities which
approximate to the case one might expect in a real experimental situation. The "tted viscous
damping matrix for damping model 2 corresponding to this noise case is shown in Figure 6.
The "tted matrix is noisy, but a &&peak'' corresponding to the positions of the dampers can
still be identi"ed. Thus, for small values of �, the method of viscous damping identi"cation
works reasonably well for realistic noise levels.



Figure 5. Fitted viscous damping matrix for �"0)02, damping model 2, noise case (d).

Figure 6. Fitted viscous damping matrix for �"0)02, damping model 2, noise case (e).
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For the results shown so far it is assumed that the complete set of modes is available. In
practice it would be expected that some modes will not be available. For damping model
2 corresponding to the noise cases (e), Figures 7 and 8 show the "tted viscous damping
matrix using the "rst 20 and "rst 10 modes respectively. Comparing Figures 6}8 one
observes that reduction in the number of modes used for "tting the damping matrix results
in a reduction of noise in the "tted matrix. The spatial resolution of the "tted matrix reduces
with the reduction in the number of modes used for "tting. As a result, noise is sampled at
fewer points and consequently the "tted matrix is less noisy. The same behaviour has been
observed for other noise cases also.

Numerical experiments have been carried out using a wide range of damping models and
parameter values. For small values of � the results are, in general, quite similar to what has
been shown already. For large values of �, the results are somewhat di!erent. For large
values of � with noise cases (a) and (b), the "tted damping matrix is not very di!erent from
the noise-free case reported in reference [1]. However, for noise cases (c)}(e), the damping



Figure 7. Fitted viscous damping matrix using "rst 20 modes for �"0)02, damping model 2, noise case (e).

Figure 8. Fitted viscous damping matrix using "rst 10 modes for �"0)02, damping model 2, noise case (e).
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identi"cation procedure yields unacceptable results for large values of �. An illustration of
this fact is shown here. Figure 9 shows the "tted viscous damping matrix for damping model 1
with �"0)5 corresponding to the noise case (e). The "tted matrix is asymmetric and also it
is no longer possible to see the spatial distribution of the damping. This result is obviously
unacceptable. Similar results were obtained for noise cases (c) and (d) also.

From this numerical study, a general picture has emerged of the sensitivity of the "tted
viscous damping to errors in the measured modal data. No matter what the value of �,
relative errors in the real and imaginary parts of the complex natural frequencies do not
a!ect the "tted damping matrix very badly. However, errors in the real and imaginary parts
of the complex modes a!ect the "tted damping matrix signi"cantly. When � is small, that is
when the "tted damping model is not very di!erent from the &&true'' damping model, the
e!ect of errors in the mode shapes on the identi"ed damping matrix is acceptable. But when
� is higher, that is when the "tted damping model is signi"cantly di!erent from the &&true''



Figure 9. Fitted viscous damping matrix for �"0)5, damping model 1, noise case (e).
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damping model, error in the identi"ed damping matrix due to errors in the mode shapes
becomes unacceptable.

2.2. PERTURBATION ANALYSIS

These "ndings are further explored by a simple perturbation analysis. Suppose that the
real and imaginary parts of the complex modal matrix can be expressed as

U"U
�
#�U and V"V

�
#�V, (1)

where �( ' ) denotes the &&error part'' and ( ' )�
denotes the &&error-free part''. Note that, in

general, U and V are not square matrices. In reference [1] it was shown that the viscous
damping matrix in the physical co-ordinates can be obtained from the following
relationships:

C"[(U�U)��U�]� C�[(U�U)��U�], (2)

where

C�"B�!��B���, C�
��
"2J(�)

�
) (3)

and

B"[U�U]��U�V. (4)

In view of equation (1), from the preceding equation the matrix constants B can be
expressed as

B"[(U
�
#�U)� (U

�
#�U)]�� (U

�
#�U)� (V

�
#�V)

"[I!(U�
�
U

�
)�� (�U�U

�
#U�

�
�U#�U��U)]��

�(U�
�
U

�
)�� (U

�
#�U)� (V

�
#�V). (5)
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Neglecting second or higher order terms involving �, one may approximate the above
relationship by

B"B
�
#�B, (6)

where

B
�
"(U�

�
U

�
)��U�

�
V

�
(7)

and

�B+[(U�
�
U

�
)�� �U�V

�
!(U�

�
U

�
)�� (�U�U

�
#U�

�
�U)(U�

�
U

�
)�� U�

�
V

�
]

#[(U�
�
U

�
)��U��V]. (8)

Now, express the errors in the real and imaginary parts of the complex natural frequencies
as

�"�
�
#�� and �"�

�
#��. (9)

By using these equations and equation (6), the damping matrix in the modal co-ordinates
can be obtained from equation (3) as

C�"(B
�
#�B)(�

�
#��)!(�

�
#��)� (B

�
#�B)(�

�
#��)��. (10)

Upon neglecting second or higher order terms involving �, the above relationship can be
approximated by

C�"C�
�
#�C�, (11)

where

C�
�
"B

�
�

�
!��

�
B

�
���

�
(12)

and

�C�+(�
�
�B)#(B

�
��!2�

�
��B

�
���

�
!�

�
��#��

�
B
�
���

�
��). (13)

Substituting B
�
and �B from equations (7) and (8) into the preceding expression one may

write

�C�+�C��;#�C��<#�C���, (14)

where �C�( ' ), the error in C� due to error in ( ' ), are given by

�C��;"�
�
(U�

�
U

�
)���U�V

�
!�

�
(U�

�
U

�
)��(�U�U

�
#U�

�
�U)(U�

�
U

�
)��U�

�
V

�
,

(15)

�C��<"�
�
(U�

�
U

�
)��U��V (16)
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and

�C���"(U�
�
U

�
)��U�

�
V

�
��!2�

�
��(U�

�
U

�
)��U�

�
V

�
���

�
!�

�
��

#��
�
(U�

�
U

�
)��U�

�
V

�
���

�
��. (17)

The above expressions are valid for the o!-diagonal terms of C� only. For the diagonal
terms, from equation (3) one simply obtains

�C�
��
"2��

�
. (18)

Equation (14) separates the contributions to the error in the o!-diagonal terms of C� arising
from �U, �V and ��. Using equations (15)}(18) one can "nd the error in the modal
damping matrix due to errors in the modal parameters.

The computed results from the previous section can be used to obtain numerical values.
A convenient measure is the l

�
matrix norm. It was observed that for the same level of noise

in the real and imaginary parts of the complex modes, the norm of �C��; is close to the norm
of �C��<. For noise case (e), ��C��<�/��C��;�"2)66. This implies that when the error in V is
twice that in U, the resulting error in the modal damping matrix due to the error in V is
approximately 2)66 times that due to U. From equation (2) observe that only U is required
to obtain C from C�. For this reason the e!ect of errors in U on the "tted viscous damping
matrix C may "nally be more than that due to errors in V.

3. ERROR ANALYSIS FOR NON-VISCOUS DAMPING IDENTIFICATION

3.1. NUMERICAL STUDY

Identi"cation of an exponential damping model requires the relaxation parameter as well
as the coe$cient damping matrix [2]. Numerical investigations using the "ve noise cases
introduced earlier have been carried out in this case also. Again, the locally reacting
damping model shown in Figure 1 was used. It was observed that the coe$cient matrix for
the "ve noise cases behaves similar to the viscous damping matrix discussed in the last
section. It is su$cient to show representative results, for noise case (e).

3.1.1. Results for small �

Figure 10(a) shows the values of "tted � for di!erent modes for noise case (e) with
damping model 2 and �"0)02. The pattern of "tted � for di!erent modes is quite di!erent
from the corresponding noise-free case (obtained in reference [2]). For some modes the
values of � become negative, which is a non-physical result. Unlike the noise-free case, where
the value of � corresponding to the "rst mode turned out to be the most accurate, here it
becomes the most inaccurate. In fact, values of � for the higher modes tend towards the
&&true'' value, as opposed to those for the lower modes as may be observed for the noise-free
case. The explanation of these observations is not clear; a perturbation analysis in the next
section attempts to throw some light on these issues.

The "tted coe$cient matrix corresponding to this case is shown in Figure 10(b). The
nature of this "tted coe$cient matrix is recognizably similar to the "tted viscous damping
matrix for the corresponding case shown earlier in Figure 6. The e!ect of modal truncation
on the "tted coe$cient matrix was investigated, and the result turned out to be very
similar to that shown in Figures 7 and 8, the corresponding cases for viscous damping



Figure 10. (a) Values of identi"ed �
�
for damping model 2, noise case (e);**, "tted �

�
for di!erent modes; )} )} ,

original �"0)02; (b) "tted coe$cient matrix of exponential model for �"0)02, damping model 2, noise case (e).
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identi"cation. Recall from reference [2] that only one value of � from those shown for
di!erent modes in Figure 10(a) should be used to obtain the coe$cient matrix. It was
observed that the choice of � did not a!ect the "tted coe$cient matrix to a great extent. For
any choice of � in the range shown in Figure 10(a), the "tted coe$cient matrix in
Figure 10(b) more or less remains the same. This is probably due to the fact that the
variation in the values of � is small in this case.

3.1.2. Results for larger �

Now consider a case when � is large, so that the damping model is far from viscous.
Figure 11(a) shows the values of "tted � for di!erent modes for the noise case (e) with
dampingmodel 1 and �"0)5.Were the modal data exact, the values of � for di!erent modes
would be constant at 0)5 since the "tted damping model is correctly &&identi"ed'' as
exponential (see reference [2]). However, as in the case shown in Figure 10(a), the values of
"tted � vary considerably for di!erent modes. For the "rst mode the "tted � turns out to be
negative, which is non-physical.

Figure 11(b) shows the "tted coe$cient matrix corresponding to this case. The "tted
matrix is noisy, but it is symmetric and the nature of damping may still be understood
clearly. The e!ect of modal truncation on the "tted coe$cient matrix for this case was also
investigated, and the result was found to be similar to those shown in Figures 7 and 8. The
"tted viscous damping matrix corresponding to this case was shown before in Figure 9. The
result shown in Figure 11(b) is clearly much better than that in Figure 9. This shows that if
a correct model is "tted, then the spatial distribution of the damping can be identi"ed even if
� is large and modal data are noisy and incomplete.

When the "tting procedure was repeated for damping model 2 with large � it was found
that the resulting "tted coe$cient matrix becomes unacceptable, like that shown in
Figure 9. This implies that if the "tted damping model is not close to the true model, the
damping identi"cation method proposed here produces unacceptable results in the
presence of noise in the modal data. Thus, conversely, if an asymmetric matrix as shown in
Figure 9 is obtained by using the damping identi"cation procedure (whether the "tted model
is viscous or non-viscous), it may be concluded that the "tted damping model is not close to
the true damping model of the system. However, if a correct model of damping is "tted



Figure 11. (a) Values of identi"ed �
�
for damping model 1, noise case (e);**, "tted �

�
for di!erent modes; )} )} ,

original �"0)5; (b) "tted coe$cient matrix of exponential model for �"0)5, damping model 1, noise case (e).
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(viscous or non-viscous), the spatial distribution and the nature (e.g., local or non-local) of the
damping mechanism can be identi"ed using this procedure in the presence of noise.

3.2. PERTURBATION ANALYSIS

Some explanation of the facts regarding the "tted values of � can be given by a simple
perturbation analysis. The procedure for "tting of the coe$cient matrix is similar to that for
the viscous damping matrix and will not be discussed again. Suppose for the jth mode

u
�
"u0

�
#�u

�
, v

�
"v0

�
#�v

�
, and �

�
"�0

�
#��

�
. (19)

Now, following reference [2], the expression for the normalized characteristic time constant
for the jth mode, �

�
, can be written as

�
�
"1/¹

���
�
�
, (20)

where ¹
���

is the minimum time period of the system and the relaxation parameter for the
jth mode, �

�
, is

�
�

"�
�

v�
�
Mv

�
v�
�
Mu

�

. (21)

For the purpose of generality, assume the error in the mass matrix as

M"M
�
#�M. (22)

By using equations (19) and (22), from equation (21), 1/�
�
can be written as

1

�
�

"

1

(�0
�
#��

�
)

(v0
�
#�v

�
)� (M

�
#�M)(v0

�
#�v

�
)

(v0
�
#�v

�
)� (M

�
#�M)(u0

�
#�u

�
)
. (23)
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Upon neglecting all terms of second or higher order involving �, equation (20) together with
the above expression may be approximated as

�
�
+�0

�
#�0

�
(�����

�
#�����

�
#���	�

�
#���
�

�
), (24)

where

�0
�
"

1

¹
���

1

�0
�

v�0
�
M

�
u0

�

v�
��

M
�
v0

�

, (25)

�����
�

"!��
�
/�

��
, (26)

�����
�

"

�v�
�
M

�
u0

�
#v�0

�
M

�
�u

�
v�0

�
M

�
u0

�

, (27)

���	�
�

"!2 v�0
�
M

�
�v

�
/v�0

�
M

�
v0

�
, (28)

���
�
�

"

v�0
�
�Mu0

�

v�0
�
M

�
u0

�

!

v�0
�
�Mv0

�

v�0
�
M

�
v0

�

. (29)

Equation (24) describes how the values of �
�
are a!ected by the error in the modal data and

mass matrix. Observe that error in the real and imaginary parts of the complex modes as
well as error in the natural frequencies and the mass matrix introduce error in the estimate
of the relaxation parameter. The nature of the variation of �

�
about the &&true'' value (�0

�
), as

seen in Figures 10(a) and 11(a), clearly depends on the terms �����
�
, r"1, 2, 3, 4 in

equation (24).
Results from the numerical study reported in the previous section can be used to shed

light on these error terms. The term ���
�
�

is zero because �M was assumed to be zero, but
the other three terms can be computed. Figure 12 shows the values of �����

�
, �����

�
and ���	�

�
plotted against mode number j. It is immediately clear that �����

�
dominates the other two,

for all values of j. This term is responsible for virtually the entire error shown in Figure 10(a).
The reason this term is so big is apparent from equation (27): the expression has v�0

�
M

�
u0

�
in

the denominator. This expression is zero for a viscous damping model [2], and can be
expected to be nearly zero for a near-viscous model. Of course, for such a model the
numerical value of � should be small, but the fractional error in this small value becomes
very large in the presence of errors in the complex modes. The error can even become larger
than the error-free value, and this accounts for the occasional appearance of non-physical
negative values of �.

Another obvious feature of Figures 10(a) and 12 is that the errors are bigger for the lower
values of j. This can be explained qualitatively by the mechanism just described. So far
a given damping model has been characterized as more or less close to viscous in terms of
a single number, �, which was normalized by the shortest natural period ¹

���
. However, this

is an over-simpli"cation. In reality, one could de"ne a mode-by-mode version of this
parameter, normalized by the natural period 2�/�

�
. This would immediately suggest that

a given damping model is likely to appear &&more viscous'' to the low modes of the system,
and &&less viscous'' to the higher modes. In terms of the complex modes, this means that one
might expect the low modes to satisfy the condition v�0

�
M

�
u0

�
"0 to some accuracy, thus

leading to very high values of �����
�
. Higher modes will be constrained less by this requirement,

and thus are likely to have lower errors, exactly as seen in the computed results.



Figure 12. Errors in identi"ed �
�
for damping model 2, noise case (e); **, �����

�
; )} )} , �����

�
; } } }, ���	�

�
.
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4. CONCLUSIONS

The e!ects of noise in the modal data on the identi"ed damping properties when using the
damping identi"cation methods proposed in references [1}3] have been investigated by
using numerical and analytical perturbation methods. The e!ect was considered of noise in
four quantities, namely the real and imaginary parts of the complex natural frequencies and
complex mode shapes. Both viscous and non-viscous damping models were considered for
the identi"cation. For the identi"cation of a viscous damping matrix it was observed that
the result is sensitive to errors in the real and imaginary parts of the complex modes, but
very much less sensitive to errors in the complex natural frequencies. Modal truncation
reduces the resolution, and actually can reduce noise in the identi"ed damping matrix. For
the identi"cation of a non-viscous damping model, the relaxation parameter is sensitive to
errors in the mode shapes and real part of the complex natural frequencies while the
associated coe$cient dampingmatrix behaves in very much the same manner as the viscous
damping matrix. It was found that the value of the relaxation parameter is particularly
error-prone when estimated from a system with a near-viscous dampingmodel, and that the
problem is most severe for the low-frequency modes. Fortunately, in practice this problem
may be partially compensated by the fact that low-frequency modes are likely to be more
accurately measured than higher modes.

It was shown that when the "tted damping model is close to the true damping model
(viscous or non-viscous) of the system, it is possible to identify the correct damping
distribution even if the modal data are moderately noisy. However, if the "tted damping
model is far from the true damping model, a physically realistic damping matrix can only be
obtained if the modal data are su$ciently accurate.
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APPENDIX A: NOMENCLATURE

C viscous damping matrix
C� viscous damping matrix in the modal co-ordinates
M mass matrix
u
�

real part of the complex modes
U matrix containing u

�v
�

imaginary part of the complex modes
V matrix containing v

��
�

jth complex natural frequency of the system
� non-dimensional characteristic time constant
�

�
real part of the complex natural frequencies

� diagonal matrix containing �
��

�
imaginary part of the complex natural frequencies

� vector containing �
��

�
estimated relaxation parameter for the jth mode

r(�) noise level in (�)
�(�) error part of (�)
(�)

�
error-free part of (�)

J(�) imaginary part of (�)
�(�)� l

�
matrix norm of (�)
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