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Department of Engineering, Identification of damping is an active area of research in structural dynamics. In one of
University of Cambridge, the earliest works, Lancaster [1] proposed a method to identify the viscous damping
Trumpington Street matrix from measured natural frequencies and mode shapes. His method requires the
Cambridge CB2 1PZ (U.K.) modes to be normalized in a particular way, which in turn a priori needs the very same
e-mail: sa225@eng.cam.ac.uk viscous damping matrix. A method, based on the poles and residues of the measured
transfer functions, has been proposed to overcome this basic difficulty associated with
Lancaster’s method. This approach is then extended to a class of nonviscously damped
systems where the damping forces depend on the past history of the velocities via convo-
lution integrals over some kernel functions. Suitable numerical examples are given to
illustrate the modified Lancaster's method developed hg®I: 10.1115/1.1500742
1 Introduction caster's Eqs(2)—(4) are that, they are simple, direct, give the

omplete solution to the inverse problem, and also very little com-

e o mecharca ebygatona efor s requred (o apply tem. However, ther are
p 9 9 y P three major problems associated with Lancaster's method. First,

vibration energy odamping In spite of extensive research, theh L

B f : complete set of modes are required in order to use 3
knowledge regarding damping forces is least developed compaF%% 4) pSecond these equationg are valid only if th(eE)?jir;ping
to the other forces acting on a structure. There are two badlc ) '

reasons for this. First, from a theoretical point of view, it is not iﬁmdel of the structure under consideration is viscous. Third, and

general clear which state variables are relevant to determine %ssmly most importantly, due to the normalization conditibn

damping forces. This fact makes it difficult to choose what matt- fllnc;IC a_r”ea priort reglwred, as Pilkey and l?m%ﬁ] _have put
ematical form of damping model should be used in the first pla § "It is still not possible to measure normalized eigenvectors.

let alone how to identify its parameters from experimental me he shortfall of this method comes in normalizing the eigenvec-
P P ﬂ rs, which requires knowledge of the very same damping matrix

surements. Second, from an experimental point of view, unlike E('%-‘i(:h we wish to find in the end.” The main aim of this paper is

mass and stifiness properties, the damping properties can be | © overcome this shortfall and to extend Lancaster’s method to a

tified only by a dynamic testing. .
. .class of nonviscously damped systems.
mfl?ll Ifea_r(’jethrzegg?:egggqmmﬁge;?e;hgtderg ir:ot((j)elasiinnlgnt%elio-rhe method of damping identification proposed in this paper
hie-aeg : - Y lies in between the two broad classes of damping identification
Ca”?]d ;ISCO%S df';\ympln_g Consaderable rese_ar(;h has PrOPOSER o ihods mentioned earlier. The proposed method neither uses
methods to identify a viscous damping matrix from experiment : o
measurementsgsee Pilkey and Inmafi2] for a recent survey %b*odal data, nor does it use direct force response measurements,

- . ut utilizes thetransfer function residuesThe use of transfer
These methods can be divided into two broad categ¢psa) function residues provides a natural framework of avoiding the

damping identification from modal testing and analyfdigt—17, PP ” . . i
) s daming eticator o h e sl S oy et s
mgasgjéi?jr?ﬁﬁ1r3e;e1r2'n%d1%t]angg adltsécruismn of these method riefly discussed in Section 2. In Section 3, Lancaster’s equations

y ' P are reformulated in terms of the poles and the residues of the

m;—tui d”gf :ﬁ:é O?sttggmpgﬁ%e?; e[:lﬁﬁg;tilcl)isplrn OF? c? se e o(l) fb)t/hf aﬁig';’tsi%nsfer functions. In Section 4, a class of nonviscously damped
[1]. SupposeM, K andC, all Nx N real matrices, are respectively’ ystems is introduced in which the damping forces are expressed

: : : : terms of the past history of the velocities via convolution inte-
the mass, stiffness a‘nNdX’zln_scous_ damping matrices of a SYStéé]Pms over suitable kernel functions. The approach developed in
Also suppose that e C is a diagonal matrix of complex ei-

NN ; : Section 3 is then extended to such nonviscously damped systems
genvaluesX,) andZ e """ is the complex modal matrix whose i, section 5. Finally Section 6 summarized the main findings of
columns are complex modeg. Lancaster’s result states that ify,;q paper.

the complex modes are normalized such that

Z(2\M+C)z,=1 (1)
then the system matrices can be uniquely obtained from the modal Dynamics of Viscously Damped Systems
data as: The equations of motion describing free vibration of a vis-
U Y cously damped linear discrete system witldegrees of freedom
M=(ZAZ'+Z*A*Z") (2)  can be written as
_ -1 T _
K=—(ZA 1ZT+Z*A* z* )7 ! ©)) Mg (t)+Cq(t) +Kg(t)=0. (5)
and C=—-M(ZA%ZT+2z* A*TZ*T)M. (4) The eigenvalue problem associated with E§). can be repre-
sented b
In the above equations (*)denotes matrix transpose 6%, and y
(*)* denotes complex conjugate ¢f). The advantages of Lan- A2Mz,+ \ Cz+ Kz, =0. (6)
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The order of the polynomial isi and the roots appear in com- From the above discussion it clear that determination of the
plex conjugate pairs. For convenience, the eigenvalues are taansfer function residues is the first step to obtain complex modes
ranged as from experimental modal analysis. However, there is one diffi-
" culty in determiningg, from R via Eq.(12). Determination of the
MR ANGAT A Ay (8) constantsy, requires knowledge of the mass and damping matri-
In this paper we assume that all the eigenvalues are distinct. Sees(see Eq(9)), which are unknown in an identification problem.
eral authors[20,21] for example, have studied nonclassically-or this reason, in this paper it is intended to use the residues
damped linear systems using the state-space methods. Followdlifgctly, thus avoiding the use of modes and bypassing this diffi-
the state-space approach it may be sh¢2&] that each complex culty. Next, Lancaster’s equations are reformulated in terms of the

mode satisfies the normalization relationship poles and the residues of the transfer functions.
T By definition, we know that the matrix of transfer functions
z[2MM +CJz= 6, Yk=1;-- 2N (9)  H(s) is the inverse of thelynamic stiffness matriR(s), that is

for some non-zer@, e C. Numerical values o8, can be selected H(s)=D"%(s), where D(s)=s?M+sC+K e (N*N. (14)

in various ways:

) - Rewrite the expression of the dynamic stiffness matrix as
(a) Choosef=2\, YK. This reduces ta,Mz,=1, Vk when

the damping is zero. This is consistent with the unity )
modal-mass convention often used in experimental modal D(s)=s"M
analysis and finite element methods.

(b) Choosef,=1, Vk. Theoretical analysis becomes easiesvherely denotes an identity matrix of si¢. Taking the inverse
with this normalization. However, as pointed ouf 28,24, of this equation and expanding the right-hand side one obtains
this normalization is inconsistent with undamped or classi-

-1
(15)

Iyt — | C+—~
NT s s

-1 -1 2
cally damped modal theories. H(s)=D L(s)=|Iy— C+—|+ C+ 5 ]
S s s
Recall that Lancaster’s formulation requires the normalization ac-
cording to(b). Mt
e (16)

3 The Modified Lancaster’s Method ) S )
Equation(16) can be further simplified to obtain
3.1 Theory. In this section it is intended to reformulate M-l 1 1
Lancaster’s equations in terms of the transfer function residues. - VIS NPTV R 1
The transfer function matrix of a viscously damped system has the H(s)= Z " 53( MTCM™H + st (MTTCMC

form
—KIM Y+ (7)

2N
H(s)= 2 Ry (10) Now, express a general term of the expression of transfer function
k=1 S Ak matrix given by Eq(10) as

whereR, e CN*N is the residue matrix corresponding to tkeh
mode ands=iw wherew denotes frequency. Because all the ei-

1N 71R—1R+1 MR+ = [AR
S S k—gkgz[kk]gé[kk]

genvalues appear in complex conjugate pairs, due td&qt is SR
clear that 1
+ 2 [ MR+ 18
N, FRd (18)
and Ry, =R}, for 1<k=N. (11) Using the above expression, the transfer function matrix in Eq.
) ] (10) can be expressed as
In reference$19,24 it was shown that the residue matfy can
be related to the corresponding mode and the normalization con- 1[N 1 [ 2N 1[N ,
stant as H(s)= 2| X Ri|+ | 2, MRe|+ 5| 2 MR«
T S| k=1 S™| k=1 S”| k=1
2z
Ry =X (12)

_ Tk 2N
<o > MRy

In a modal testing procedure, typically, a set of transfer functions k=t

is measured by exciting a structure at sompriori selected grid Comparing Eqs(17) and(19) it is clear that their right-hand sides

points. The type of structures normally encountered in practigge equal. Equating the coefficients 0§,11/s2, ..., 16* in the
satisfy the usual check of reciprocity. This makes the matrix ¢fght-hand sides of Eq$17) and(19) the following relationships
transfer functiongd(s) symmetric. The poles, appearing in Eq. may be obtained
(10) can be related to the natural frequenciegand the damping

factors, ., as

+1 + 19
= . (19)

)\k,)\ﬁwffkwkiiwk. (13) kZl Rk © (20)
Usually the damping of a structure is sufficiently light so that all 2N

modes are subcritically damped, i.e., all of them are oscillatory in 2 MR=M"1 (21)
nature. In this case the transfer functions of a system has “peaks” k=1

corresponding to all the modes. The natural frequencies and the
damping factors can be obtained by examining each peak sepa- ) PP
rately, for example using the circle fitting methi@b]. Estimation kZl ARy=—M""CM (22)
of w, and ¢, is likely to be good if the peaks are well separated. B

Once the poles are known, the residues can be obtained easily, see 2N

for example[19,26,27. From the identified residud® , the com- and E ARe=M"CM C-KIM L (23)
plex modesz, should be obtained by using E{.2). k=1

2N
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This procedure can be extended to obtain further higher order

terms involving\ . Note that Eqs(21) and(22) is equivalent to
Lancaster’s Eqs(2) and (4). In view of Eq.(11), from Eq. (21)
one has

N
2> R(\RY)=M"1
k=1

-1

N
1
that is, M"'=> k}_)l RONRY) (24)

wherefi(¢) denote real part ofs) and the superscript (¥) de-
notes the reconstructed value (ef. Similarly, from Eq.(22), the
viscous damping matrix can be expressed as

N

Ch=-2M"| > ROEZR) (M. (25)
k=1

The expression of the viscous damping matrix in &%) can also

N

> RRD)
k=1

and C'=2K") KO, (34)

Thus, Eqs(24), (25), (33) and(34) provide relationships equiva-
lent to that of Lancaster’s. Because these relationships are in terms
of transfer function residues and poles, they naturally avoid the
normalization problem associated with Lancaster’s method. Note
that the full transfer function matrix is required to apply this
method. Because most structures encountered in practice satisfy
the reciprocity relationship, it is sufficient to measure either the
upper triangular part or the lower triangular part of the transfer
function matrix. This implies that folN points in a structure,
N(N—1) transfer function measurements are required. However,
this is not a serious drawback. With the advancement of the laser
vibrometer techniques it is possible to automate the laborious task
of measuring many transfer functions.

The method developed here for the identification of the system
matrices is simple, direct and requires very little computational

be obtained in terms of the stiffness matrix. The expression of théort. Observe that there are two different expressions given for

dynamic stiffness matrix in Eq14) can be rearranged as

D(s)=K[Iy+s(sKk M+K™1C)]. (26)

the damping matrix. If the damping of the system is truly viscous,
then the results obtained from both the equations should be the
same. Next, these issues are discussed using numerical examples.

Taking the inverse of Eq26) and expanding the right-hand side

one obtains
H(s)=D Y(s)=[Iy—s(sK M+K 1C)+{s(sk "M
+K™lC))2— KL 27)
The preceding equation can be further simplified to obtain

H(s)=K '+s(—K 1CK Y +s?(K Y CKIC-M]K™})

3.2 Numerical Examples

3.2.1 Example 1. We consider a four-degree-of-freedom sys-
tem with viscous damping. The system matrices are given by

1 0 0 O 5 -3 0 0
L (28) 0200 -3 7 -4 0
Further, rewrite the expression of transfer function matrix given in M= o o0 2 ol K= 0O -4 7 -3 and
Eq. (10 as
0 0 0 1 0 0O -3 5
N o 2 s\1-1
k
H(s)=2 ——=2, —xk(l——) Ry
SRS N 10 -03 0 0
%N: . %"i , -03 07 —-04 O (35)
=—> N 'Re—s N PR C= . 35
e B =T 0 -04 07 -03
0 0 -03 05

_52

2N
> M CRe
s

2N
_53{ > AR
|

(29)

Equating the coefficients af®, s?, s? in the right-hand sides of

Egs.(28) and(29) one obtains

2N
2 N Re=—K
k=1

(30)
2N
> A PRe=K lcK 1 (31)
k=1
2N
and k21 AR=K YM-CK ICIK 1, (32)

The system has four modes and all of them are subcritically
damped. The poles and the residues corresponding to the four
modes, obtained using the modal properties, are given in Table 1.
Using these values, from Eq&4) and (33), the mass and stiff-
ness matrices can be reconstructed as

-1

N
1
M<r>:§[k21 RO Ry (36)

o O O -
O O N O
SO N O O
= O O O

This procedure can be extended to obtain further lower order [ tl-3 7 -4 o0
terms involvingh, . Note that Eq(30) is equivalent to Lancast- and K(D=— > kz RR /N | = 0o -4 7 _3|
er's Eq. (3). Using the relationships in Eq11), equations(30) -t

and(31) can be simplified to obtain the reconstructed value of the 0 0 -3 5
stiffness and damping matrices as (37)

N
> R(Re/\)
k=1

-1

KM= — E (33)
2
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Using the reconstructed values of the mass and stiffness matrices,
from Eq. (25) or (34), the damping matrix can be calculated as
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Table 1 Poles and residues of the four DOF system with viscous damping

Mode Number (k) Pole (A;) Residue Matrix (Ry)

[ ~0.0097-0.0636i —0.0078—0.0964i —0.0059~-0.0966i —0.0035—0.06451 ]
H —0.0078—0.0964i —0.0013—0.1454i 0.0016—0.1455{ 0.0018—-0.0971i

1 —0.0477 + 0.7072i —0.0059—0.09661 0.0016—0.1455i 0.0045-0.1457i 0.0037-0.0971i

L —0.0035—0.06451 0.0018—0.0971i 0.0037-0.0971i 0.0029—0.0648i |

[ —0.0238—0.0777i 0.0018-0.0539i 0.0116+40.0490i 0.0082+0.0811i 7

: 0.0018—0.0539i 0.0128—0.03351 ~—0.0033+0.0332i —0.01244-0.05261
2 —0.2260 +- 1.7604i 0.0116+0.0490i —0.0033+0.0332i —0.0052--0.0307i —0.0018-0.0504i
L 0.0082+0.0811i —0.0124+0.0526i —0.0018—0.0504i 0.0079-0.0812]

[ —0.0086—0.11371 0.028740.0351i -0.0208+0.0321i 0.0093-0.0942i 1

; 0.028740.03511 —0.0174-0.0049i —0.0005—0.0152i 0.01844-0.0328i
3 —0.4137 + 2.42091 —0.0208+4-0.0321i —0.0005—0.0152i 0.0120-0.0043i —0.021640.0233i
L 0.0093-0.0942i 0.0184--0.03281 —0.0216+0.0233i 0.0211-0.0757¢

[ 0.0422-0.01921 —0.0227+0.0284i 0.0150—0.0359i -0.0139+0.0494i ]

d=8 —0.022740.0284i 0.0058—0.0280i 0.002240.0305i —0.0078—0.0396i
4 —0.4126 + 2.6565i 0.0150—0.03591  0.0022+0.0305i —0.0113-0.0308i 0.0197+0.0384i
L —0.0139+0.0494i —0.0078—0.0396i 0.0197+0.0384i —0.0319—0.0472i J

(r) " S 2 ) 2 1 -
r— _ r r
ch=—2Mm kzlm(kak) M .
& K=k 39
=2KO| D} R(R/AD) [KD T -1 2 -1 ' (39)
=]
oo —1
10 -03 0 0 I
-03 07 -04 0 38) } }
= . 38
0 -04 07 -03 Certain of the masses of the system shown in Fig. 1 have viscous
0 0 ~03 05 dampers connecting them to the ground. The damping matrix can

be expressed &=c,| wherec, is the viscous damping constant
Equations(36), (37) and (38) clearly show that the system matri'andI_Fi)s a block iderL;tity matri;( which is non-zero Fz)nlgi/ between
ces are reconstructed exactly. Note that only the poles and tl}tﬁién _th andn,-th entries along the diagonal, so thatdenotes
associated residues are used to identify the system matrices. ltrﬂ@ filrst dampzed mass ant, the last one |,:OI’ the numerical
S|m|lar’ study, Pilkey and Inma[9] haye used the original Lgin- calculations, we have considered a thirty-degree-of-freedom sys-
caster's Eqs(2), (3) and (4), to identify the viscous damping tem so thatN=30. Values of the mass and stiffness associated
matrix of a system from a full set of modal data. Their metho ith each unit are assumed to be the same with numerical values
was based on an iterative approach and requires the mass m X =1 kg, k,=10 N/m. The start and end positions of the
of the system. The proposed method neither requires the m 3?115ers aré asusumed tOI:beS andn.= 15 with values for each
matrix nor does it use an iterative approach. This demonstrates & of c,=0.5 Nm/s. 2
?érégngth of the modified Lancaster’s equati¢a4), (25), (33) and In order to simulate the effect of noise, we perturb the poles and
: the residues by adding zero-mean Gaussian random noise to them.
3.2.2 Example 2. In the last example, the exact values of théumerical experiments have been performed by adding different
poles and the residues are used for identification of the systégnels of noise to the following four quantities:
matrices. The exact reconstructed values of the system matrice
tell very little other than verifying the correctness of the math- 2. Imaginary parts of complex eigenvalues
ematical expressions developed so far in this paper. In practices' Real parts of residued '
due to the presence of noise or random errors, the measured trans- i Ke'
fer functions become noisy. This in turn makes the poles and the?: maginary parts of residugg .
residues erroneous. The_ purpose of this example is to analyz_e tl%%els of noise associated with the above quantities, denoted by
effects of random errors in the measured data. A system consistng ~ ~ = .
of a linear array of spring-mass oscillators and dampers is cons%?’ Mo _RkR a_”‘? Ry, are expresseq as a percentage O_f their cor-
ered for this purpose. Figure 1 shows the model syskémasses, responding original values. In practice we hope to obtain the natu-
each with massn,, are connected by springs of stiffness valuéal frequencies and damping factors, i.e., the poles, with good
k.. The mass matrix of the system has the fdvrs-m,l, where accuracy. So, in what follows next, we assuihig=\,;=2% for
Iy is theNX N identity matrix. The stiffness matrix of the systemall the modes. The following cases are considered regarding the
is noise levelsR,_ andRy for all k:

1. Real parts of complex eigenvalueg.

k, M k, " k, my, k, My, k,

T HEA

C
Cy u N-th
Fig. 1 Linear array of N spring-mass oscillators, = N=30, m,=1kg, k,=10N/m and c,
=0.5 Nm/s.
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S|

Fitted Mass matrix Mk.

j~th DOF 0

k-th DOF

Fig. 2 Identified mass matrix for noise case (a).

(@ ﬁkR=0% andﬁklz 10% exact value. Again, like the noise ca@®, the identified stiffness
(b) R, =10% andR, =0% and damping matrices using E¢83) and(34) produce unaccept-
~ R ~ able results.
(©) Ri,=5% andRy =5%. From the above results we conclude that the presence of noise

Figures 2 and 3 show the identified mass matrix and the viscoaf§ects the identified matrices obtained using Bg) and(34) to

damping matrix corresponding to the noise ca@@sThe fitted a great extent. Thus, for all practical cases E@%) and (25)

viscous damping matrix in Fig. 3 is obtained using the recoshould be used to reconstruct the mass matrix and the viscous

structed mass matrix from E5). The high portion of this dia- damping matrix. Next, we extend the current studies to a class of

gram corresponds to the position of the dampers. Both these manviscously damped systems.

trices are reasonably close to their corresponding exact values. For

this set of data, application of Eq&3) and(34) to reconstruct the

stiffness and damping matrices produces resulté shown here 4 Dynamics of Nonviscously Damped Systems

which are very far from the true values. This demonstrates that the . . -

identification procedure of the stiffness matrix and the viscoys Possibly the most general way to model damping within the

damping matrix using Eqg33) and (34) is sensitive to errors in IN€&r range is to use nonviscous damping models in which the

the imaginary parts of the transfer function residues. damping forces depend on the past history of motion via convo-
Now consider the noise cagb). It is observed thatresult not Ution integrals over some kernel functions. The equations of mo-

shown the mass matrix can be reconstructed with very good allon describing free vibration of ahl-degree-of-freedom linear

curacy using Eq(24). The identified damping matrix, obtainedSYStém with such nonviscous damping can be expressed by

from Eq. (25), using the reconstructed mass matrix is shown in t

Fig. 4. Observe that the identified viscous damping matrix is less Mq(t)+f g(t—7q(nd7+Kq(t)=0. (40)

accurate compared to that for the noise o@seas shown in Fig. 0

3. T_he ident_ified stiff_ness matrix obtained using E2B) is_ shown  The kernel functionsg(t) e RN*N, or others closely related to

in Fig. 5. This result is much better than that for the noise €ase them, are described under many different names in the literature

However, the identified viscous damping matrix, obtained using gitferent subjects: for example, retardation functions, heredity

Eq. (34) is very far from its true value, as in noise ca&®. fnctions, after-effect functions, relaxation functions etc. This

Numerical experiments were conducted using small vall@s- model was originally introduced by Bi¢28]. In the special case

2%) of Ry . In general, it was observed that the identified stiffnesgheng(t— r) = CS(t— 7), wheres(t) is the Dirac-delta function,

matrix obtained using Eq.33) is very sensitive to errors in the Eq. (40) reduces to the case of viscous damping. The damping

imaginary parts of the transfer function residues. model of this kind is a further generalization of the familiar vis-
For the noise cas&), again, the identified mass matrix turnscous damping.

out to be close to its exact value. The identified damping matrix The eigenvalue problem associated with &) can be defined

using Eq.(25), shown in Fig. 6, is also reasonably close to itby taking the Laplace transform as
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Fitted viscous damping matrix Ck_

| |
w 2 o
o N pry
V4 /

. 0
j~th DOF k—th DOF

Fig. 3 Identified viscous damping matrix for noise case (a).

08 .o

E:;7015\ I

.E: oz N “ /\ A'

A i A“‘ N
= L “h’ “3:&-,
é-m f‘ %“,\ \‘\‘ \ N

15
j—th DOF
J k~th DOF
Fig. 4 Identified viscous damping matrix for noise case (b).
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Ky

Fitted Stiffness matrix

j~th DOF

k-th DOF

Fig. 5 Identified stiffness matrix for noise case (b).
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Fitted viscous damping matrix C
o
V4

| 1
o e
N —
Z Z

j~th DOF

k-th DOF
Fig. 6 Identified viscous damping matrix for noise case (o).
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NEMz+ MG (N ) z+ Kz, =0, (41) Ron+k=Rny,, 1=k=p.

whereG(s) is the Laplace transform af(t). We do not assume |n the above (s), denotes the nonviscous terms(ef It has been

any specific functional form o6(s) but assume thaB(s) has mentioned earlier that for passive systems, the kind of systems we
finite poles andGjy(s)| <o whens—c. This in turn implies that mostly encounter in practice, the nonviscous modes are usually
the elements 0G(s) are at the most of orderdin s or constant, over-critically damped. Thus, in contrast to the elastic modes, they
as in the case of viscous damping. The eigenvalue problem of i@ not produce any peaks in the transfer functions. As a conse-
form (41) has been discussed by Adhik§#9]. Here we briefly quence to this, the modal parameters corresponding to nonviscous

outline the main features. _ modes cannot be obtained by usual techniques of experimental
The eigenvalues)y, associated with Eq41) are roots of the modal analysis. This is the fundamental difficulty in considering
characteristic equation nonviscously damped systems. However, as shown by Adhikari
defs?M +sG(s) +K]=0. (42) [29], the nonviscous part d#5) may be quite small compared to

that of the elastic part. Next, assuming the validity of E4p),
Suppose the order of the characteristic equation. is1 generam  Lancaster’'s formulations are extended to nonviscously damped
is more than R, that ism=2N+p; p=0. Thus, although the systems.
system hadN degrees of freedom, the number of eigenvalues is A major difficulty in relating the system matrices with the poles
more than A. This is a major difference between nonviscouslynd residues is that, unlike viscously damped systems, the damp-
damped systems and viscously damped systems where the nuniiigrmatrix G(s) is a function ofs. To simplify the problem we
of eigenvalues is exactly R, including any multiplicities. We consider only two limiting case$a) whens—o, and(b) when
restrict our attention to a special case when, amongrtfeégen- s—0. Suppose
values, only N appear in complex conjugate pairs. For conve- ) NXN
nience, arrange the eigenvalues as limG(s)=G..e R (47)

S—
Xl,)\gy"'y)\Nq}\; ’ ; 1'“1)\7\] v)\2N+11'“!)\m' (43) and IimG(S):GOERNXN (48)
It is further assumed that the remaining eigenvalues, 50
Nons1s """ sAm, are purely real. where||G..||, [Gol <.

From Eq.(4]) it is easy to observe that, wher appear in For nonviscously damped systems, the transfer function matrix

complex conjugate pairg, also appear in complex conjugatehas the form

pairs, and whei is realz, can also be real. Corresponding to the

2N complex conjugate pairs of eigenvalues, tesigenvectors H(s)=D"%(s), where D(s)=s’M +sG(s)+K e CN*N,
together with their complex conjugates are caliddstic modes (49)

These modes are related to themodes of vibration of the struc-
tural system. Physically, the assumption ofNZomplex conju-
gate pairs of eigenvalues” implies that all the elastic modes are

oscillatory in nature, that is, they are subcritically damped. The D(s)=s’M
modes corresponding to the “additiongd’eigenvalues are called

nonviscous modeS hese modes are induced by the nonviscoukaking the inverse of this equation and expanding the right-hand
effect of the damping mechanism. For stable passive systems sige one obtains

Rewrite the expression of the dynamic stiffness matrix as
-1

K
G(S)"r g

Int T (50)

nonviscous modes are over-critically dampg@é., negative real M-t 1
eigenvaluesand not oscillatory in nature. ()= —+ =5 (~MIG(s)M 1)
Following [30] the normalization relationship satisfied by the S S
modes of nonviscously damped systems may be expressed as 1
AG(s)] +g(M’1[G(S)M’1G(s)—K]M’1)+~~. (51)

Zr| 20 M+ GO ) + N Nk

Zk: 0k! Vk:]., ,m.
78 (44) The expression ofi(s) given by Eqg.(19) holds for nonviscously
damped systems provided the limit of the sums appearing in this
Note that Eq.(44) reduces to Eq(9), the corresponding relation- equation is extended toN2+ p, that is

ship for viscously damped systems, wh&(s) is constant with

respect tos. 1 2N+p 1 2N+p 1 2N+p
HS)==| X R+ 2| 2 MRe|+=5| 2 MR«
S| k=1 S k=1 S k=1
5 Lancaster’'s Method for Nonviscously Damped Sys- R
tems ta kZl NERy |+ (52)

5.1 Theory. In this section Lancaster’s equations are e
tended to nonviscously damped systems. In referE2@k it was
shown that the transfer function matrix of nonviscously damp
systems can be expressed as

x(‘:omparing Eqs(51) and(52) it is clear that their right-hand sides
e equal. Multiplying these equations byand s? respectively
and taking the limit as— one obtains

2N+p 2N+p

N Ry > R=0 (53)
Hs)= 2 o (45) &
2N+p

where the residue matric& take the same form as given by Eq. .
(12). The difference between E@45) and Eq.(10) comes from and kzl MR=M "+ (54)

the fact that the sum in E@45) is extended to nonviscous modes -

also. Due to the arrangement of the eigenvalues in(E8), in Observe that the coefficients associated with the corresponding
addition to Eq.(11), which describes the relationships for thenegativeé powers ofs in the series expression$l) and (52)

elastic modes, the following relationships also hold: cannot be equated becausés) is also a function of. However,
N N in the limit whens—, the variation ofG(s) becomes negligible
2N+kT Moy as by Eq.(47) it approaches t&., . Considering the second term
(46)
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of the right-hand side of Eq51), equating it with the correspond- to nonviscously damped systems and that the “amount of the
ing term of Eq.(52) and taking the limit as—« one obtains approximation” depends on how “big” are the nonviscous terms.
2N+p Next, these issues are discussed using a numerical example.

E )\ﬁRk= -M7 G, ML (55) 5.2 Numerical Examples. A three-degree-of-freedom sys-
k=1 tem is used to illustrate the results derived in the last section. The
It must be noted that this procedure cannot be extended to furtfigass and stiffness matrices are assumed to be
lower order terms as all of them would be affected by the func-
tional variation ofG(s) from previous terms. 3 00
Equations(54) and (55) are equivalent to Lancaster's Eqg) M=|0 3 0 (60)
and(4). In view of Egs.(11) and (46), from Eq.(54) one has

0 0 3
N p
zkzl m(xekRekaZl N R =M 71 4 -2 0
and K=| =2 4 =2, (61)
N p -1
0 -2 4

that is, MT'=| 2>, R(NeRe)+ >, Ay R,
k=1 k=1

where (¢), denotes the elastic parts ¢f). Similarly, from Eq.

(56)

The matrix of the damping functions is assumed to be of the form

(55), the damping matrix of damping functions evaluatedsat 0 0 0
— can be expressed as G(t)=|0 1E(t) 0 (62)
r . 2 4 2 0 0 0
G=-M®| 2> R(\2Re)+ >, A2, Ry, [MD. (57)
k=1 KO ke e T where
The damping matrix can also be expressed in terms of the stiffness _ — oty
matrix. Following the approach outlined for viscously damped 9 =)+ (uae “+ po *2)0 pg, p2>0. (63)

systems, and taking the limit &0 it may be shown that the The damping matrix in the Laplace domai@(s), can be ob-
reconstructed values of the stiffness and damping matrices argajned by taking the Laplace transform of Eg2). The Laplace

N p -1 transform ofg(t) given by Eq.(63) can be obtained as
KN=—122, R(Rg /Ne)+ 2, Ry I\ 58
kzl (Re/xe) IZL Wi Tk 8) G(s)=1+ (p1t+p2)s+2uius (64)
N p S+ (et o) St papy”
Gy'=K" 221 m(Rek/xéka; Rnu /N, |K". (59)  This damping model is a linear combination of the viscous damp-

ing model and the GHM damping mode81,32. Regarding the
Thus, Eqs(56), (57), (58) and(59) provide relationships equiva- numerical values of the damping parameters, we assume
lent to that of Lancaster’s for nonviscously damped systems. Ore).15 andu,=0.1.

difficulty in employing this approach is that the damping matrix in Using Eq. (64), together with the expressions of the system
the Laplace domair(s), can be obtained only at the two limit- matrices given by equatior($0)—(62), it can be shown that the

ing values whers—o, ands—0. That is, no clue regarding the order of the characteristic polynomiah=8. It has been men-
functional variation ofG(s) can be obtained between these twaioned that(for lightly damped systemsamong them eigenval-
extreme values. Further note that, in contrast to viscously dampees, N=6 appear in complex conjugate paiedastic modesand
systems, the poles and the residues corresponding to the nonthis- restp=m—2N=2 eigenvalues become purely réabnvis-
cous modes appear in Eq56)—(59). This is the biggest difficulty cous modes The eigenvalue§oles and the residues of the sys-

in applying these equations in practice. As mentioned earlier, itiem are shown in Table 2. Observe that the eigenvalues corre-
still not possible to identify the nonviscous modes from the meaponding to the nonviscous modes are purely real and negative,
sured transfer functions. Due to this shortfall it appears that, a@mplying that the nonviscous modes are stable and nonoscillatory
though it is known that in general mechanical systems are nonvis-nature (i.e., over critically damped For this simulation ex-
cously damped, one still has to use the expressions developeddomle, the residue matrices corresponding to these modes are cal-
viscously damped systems. This fact, in turn, also indicates thatlated using the eigenvectors from E#)2). The eigenvectors, in
Lancaster’s original equations are only approximate when appliagn are calculated using the method outlined in refer¢@6g It

Table 2 Poles and residues of the three DOF system with non-viscous damping
Mode Number Pole (X;) Residue Matrix (Ry)

. . 0.0107-0.0664i -0.0030—0.0921i 0.0107—0.0664i
Elastic mode 1 ~0.1296 + 0.67401 [—0<0030—0A0921i —0.0282—0.1229i —0.0030—0.0921i]
0.0107-0.0664i —0.0030—0.0921i 0.0107—0.0664i

. - —0.0722i 0 0.0722i
Elastic mode 2 1.1547i [ 0 _l 0 o ]
0.07221 0 —0.0722i
. . —0.0118-0.0257i 0.0007+0.0414i —0.0118—0,0257i
Elastic mode 3 —0.1312 + 1.4979i [ 0.000740.04141 0.0235-0.05590 0.0007+0.0414il]
—0.0118—-0.0257i 0.0007-+0.0414i —0.0118—0.0257i
. .0011 0.0022 0.0011
Non-viscous Mode 1 -0.1373 [8.8822 00028 8.8822]
0.0011 0.0022 0.0011
. L0012 0. B
Non-viscous Mode 2 —-0.0912 [8.8824 00028 8.8853]
0.0012 0.0024 0.0012
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must be noted that for experimental works the residue matrices &e Conclusions
directly obtained from the measured transfer functions and deter-A method for identification of damping in the context of

mination of modes is not necessary.
Using the poles and the residues corresponding to the ela
and nonviscous modes it may be verified that E§6)—(59) are

gltiple-degree-of-freedom linear systems has been developed.
ffe approach adopted in this paper is based on the poles and the
rgsidues of the measured transfer functions. The newly developed

satisfiedexactly The interest here, however, is to understand thapproach extends the applicability of Lancaster’s original contri-

effect of neglecting the nonviscous modes. Thus, from (G6)
one obtains

N -1

MO~ 2> R(\eRe)
| k=1

[ 2.9977 —0.0047 —0.0023
—| —0.0047 2.9904 -0.0047|. (65)
| -0.0023 -0.0047 2.9977

The above value of the reconstructed mass matrix is sufficien

close to the actual value in E¢60). From Eq.(58), the recon-

structed stiffness matrix using only the elastic modes becomes

N -1
KO~—]2> R(Re /e,
k=1
40  -20039 00
—| —2.0039  4.4290 —2.0039 (66)
0 —20039 4.0

which is again close to the actual value given by E{).
Taking the Laplace transform of E¢62) and considering the
limiting cases as—~, ands—0 one obtains

0O 0 O
G.=|0 15 0 (67)
0 0 O
0O 0 O
and Gy=| 0 4.5 O0f. (68)
0O 0 O

Now, using only the elastic mode, from E@&7) one obtains

N
(Nae — M (D) 2 (r)
G~ —M( zgl RN Re) M
0.0003 —0.0018 0.0003
—| —0.0018 1.4915 —0.0018|. (69)
0.0003 —0.0018 0.0003

Similarly, after neglecting the nonviscous terms, Eif) results

N

Gy ~KM| 2> R(Re N2) K™
k=1
~0.0004 0.0317 —0.0004
=| 00317 16540 0031 (70)

—0.0004 0.0317 —0.0004

Observe that the reconstructed damping matrix shown in(@&3y.
is close to its exact value given by E@7) while that given by

Eq. (70) differs significantly from the true value given by Eq.
(68). Although in practice the nonviscous modes cannot be mea-

bution by avoiding the direct use of modes, thus bypassing the
difficulty regarding the normalization, which priori needs the
mass and the damping matrices.

For viscously damped systems, the method developed here can
identify the exact damping matrix provided the full set of poles
and residues are known exactly. The effects of measurement noise
have been investigated using a numerical example. It was shown
that some of the relationships developed here can be applied to
moderately noisy data. Finally, the approach is extended to a class
of nonviscously damped systems where the damping forces de-

nd on the past history of the velocities via convolution integrals
over some kernel functions. For nonviscously damped systems,
the application of Lancaster’s original methdad terms of the
poles and the residugegrovides only approximate estimates of the
system matrices because some poles and residboese corre-
sponding to the nonviscous modlesnnot be “measured” using
the conventional experimental modal analysis techniques. The na-
ture of this approximation has been investigated using a numerical
example.

The initial numerical study suggests that it might be possible to
put the method into practice. However, much remains to be done
to consolidate, test and extend both the theory and the methods of
practical application. Most immediate of these is the experimental
testing of the proposed procedure. Beside these, there are a num-
ber of interesting issues. For nonviscously damped systems, a fun-
damental limitation of the method developed so far is that the
matrix of damping functions(s), can only be obtained at two
extreme values whes—«, and s—0. This illustrates that, in
principle, using the method as it stands now, ihat possible to
obtain the functional variation of nonviscous damping functions.
This demands new research regarding identification of nonviscous

damping.
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