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Lancaster’s Method of Damping
Identification Revisited
Identification of damping is an active area of research in structural dynamics. In on
the earliest works, Lancaster [1] proposed a method to identify the viscous dam
matrix from measured natural frequencies and mode shapes. His method require
modes to be normalized in a particular way, which in turn a priori needs the very s
viscous damping matrix. A method, based on the poles and residues of the me
transfer functions, has been proposed to overcome this basic difficulty associated
Lancaster’s method. This approach is then extended to a class of nonviscously da
systems where the damping forces depend on the past history of the velocities via
lution integrals over some kernel functions. Suitable numerical examples are giv
illustrate the modified Lancaster’s method developed here.@DOI: 10.1115/1.1500742#
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1 Introduction
A major reason for studying vibration in civil, mechanical an

aerospace engineering is to reduce the vibration by dissipatio
vibration energy ordamping. In spite of extensive research, th
knowledge regarding damping forces is least developed comp
to the other forces acting on a structure. There are two b
reasons for this. First, from a theoretical point of view, it is not
general clear which state variables are relevant to determine
damping forces. This fact makes it difficult to choose what ma
ematical form of damping model should be used in the first pla
let alone how to identify its parameters from experimental m
surements. Second, from an experimental point of view, unlike
mass and stiffness properties, the damping properties can be
tified only by a dynamic testing.

By far, the most common method to model damping
multiple-degree-of-freedom linear systems is to assume the
called viscous damping. Considerable research has propos
methods to identify a viscous damping matrix from experimen
measurements~see Pilkey and Inman@2# for a recent survey!.
These methods can be divided into two broad categories@3#: ~a!
damping identification from modal testing and analysis@1,4–12#,
and ~b! direct damping identification from the forced respon
measurements@3,13–18#. A detailed discussion of these metho
may be found in reference@@19#, Chapter 1#.

The interest of the present paper lies in one of the earl
method of viscous damping identification proposed by Lanca
@1#. SupposeM , K andC, all N3N real matrices, are respectivel
the mass, stiffness and viscous damping matrices of a sys
Also suppose thatLPCN3N is a diagonal matrix of complex ei
genvalues (lk) andZPCN3N is the complex modal matrix whos
columns are complex modeszk . Lancaster’s result states that
the complex modes are normalized such that

zk
T~2lkM1C!zk51 (1)

then the system matrices can be uniquely obtained from the m
data as:

M5~ZLZT1Z* L* Z*
T
!21 (2)

K52~ZL21ZT1Z* L*
21

Z*
T
!21 (3)

and C52M ~ZL2ZT1Z* L*
T
Z*

T
!M . (4)

In the above equations (•)T denotes matrix transpose of~•!, and
(•)* denotes complex conjugate of~•!. The advantages of Lan
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caster’s Eqs.~2!–~4! are that, they are simple, direct, give th
complete solution to the inverse problem, and also very little co
putational effort is required to apply them. However, there
three major problems associated with Lancaster’s method. F
the complete set of modes are required in order to use Eqs.~2!, ~3!
and ~4!. Second, these equations are valid only if the damp
model of the structure under consideration is viscous. Third,
possibly most importantly, due to the normalization condition~1!,
M andC area priori required, as Pilkey and Inman@2# have put
it, ‘‘It is still not possible to measure normalized eigenvecto
The shortfall of this method comes in normalizing the eigenv
tors, which requires knowledge of the very same damping ma
which we wish to find in the end.’’ The main aim of this paper
to overcome this shortfall and to extend Lancaster’s method
class of nonviscously damped systems.

The method of damping identification proposed in this pa
lies in between the two broad classes of damping identifica
methods mentioned earlier. The proposed method neither
modal data, nor does it use direct force response measurem
but utilizes thetransfer function residues. The use of transfer
function residues provides a natural framework of avoiding
difficulties associated with normalizing the complex modes. B
fore going into details, dynamics of viscously damped systems
briefly discussed in Section 2. In Section 3, Lancaster’s equat
are reformulated in terms of the poles and the residues of
transfer functions. In Section 4, a class of nonviscously dam
systems is introduced in which the damping forces are expre
in terms of the past history of the velocities via convolution in
grals over suitable kernel functions. The approach develope
Section 3 is then extended to such nonviscously damped sys
in Section 5. Finally Section 6 summarized the main findings
this paper.

2 Dynamics of Viscously Damped Systems
The equations of motion describing free vibration of a v

cously damped linear discrete system withN degrees of freedom
can be written as

Mq̈ ~ t !1Cq̇~ t !1Kq ~ t !50. (5)

The eigenvalue problem associated with Eq.~5! can be repre-
sented by

lk
2Mzk1lkCzk1Kzk50. (6)

The eigenvalues,lk , are the roots of the characteristic polynomi

det@s2M1sC1K #50. (7)
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The order of the polynomial is 2N and the roots appear in com
plex conjugate pairs. For convenience, the eigenvalues are
ranged as

l1 ,l2 ,¯ ,lN ,l1* ,l2* ,¯ ,lN* . (8)

In this paper we assume that all the eigenvalues are distinct.
eral authors,@20,21# for example, have studied nonclassica
damped linear systems using the state-space methods. Follo
the state-space approach it may be shown@22# that each complex
mode satisfies the normalization relationship

zk
T@2lkM1C#zk5uk , ;k51,̄ ,2N (9)

for some non-zeroukPC. Numerical values ofuk can be selected
in various ways:

~a! Chooseuk52lk , ;k. This reduces tozk
TMzk51, ;k when

the damping is zero. This is consistent with the un
modal-mass convention often used in experimental mo
analysis and finite element methods.

~b! Chooseuk51, ;k. Theoretical analysis becomes easie
with this normalization. However, as pointed out in@23,24#,
this normalization is inconsistent with undamped or clas
cally damped modal theories.

Recall that Lancaster’s formulation requires the normalization
cording to~b!.

3 The Modified Lancaster’s Method

3.1 Theory. In this section it is intended to reformulat
Lancaster’s equations in terms of the transfer function resid
The transfer function matrix of a viscously damped system has
form

H~s!5(
k51

2N
Rk

s2lk
(10)

whereRkPCN3N is the residue matrix corresponding to thek-th
mode ands5 iv wherev denotes frequency. Because all the
genvalues appear in complex conjugate pairs, due to Eq.~8! it is
clear that

lN1k5lk*

and RN1k5Rk* , for 1<k<N. (11)

In references@19,24# it was shown that the residue matrixRk can
be related to the corresponding mode and the normalization
stant as

Rk5
zkzk

T

uk
. (12)

In a modal testing procedure, typically, a set of transfer functi
is measured by exciting a structure at somea priori selected grid
points. The type of structures normally encountered in prac
satisfy the usual check of reciprocity. This makes the matrix
transfer functionsH(s) symmetric. The poleslk appearing in Eq.
~10! can be related to the natural frequencies,vk and the damping
factors,zk , as

lk ,lk* '2zkvk6 ivk . (13)

Usually the damping of a structure is sufficiently light so that
modes are subcritically damped, i.e., all of them are oscillator
nature. In this case the transfer functions of a system has ‘‘pea
corresponding to all the modes. The natural frequencies and
damping factors can be obtained by examining each peak s
rately, for example using the circle fitting method@25#. Estimation
of vk andzk is likely to be good if the peaks are well separate
Once the poles are known, the residues can be obtained easil
for example@19,26,27#. From the identified residuesRk , the com-
plex modeszk should be obtained by using Eq.~12!.
618 Õ Vol. 124, OCTOBER 2002
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From the above discussion it clear that determination of
transfer function residues is the first step to obtain complex mo
from experimental modal analysis. However, there is one d
culty in determiningzk from Rk via Eq.~12!. Determination of the
constantsuk requires knowledge of the mass and damping ma
ces~see Eq.~9!!, which are unknown in an identification problem
For this reason, in this paper it is intended to use the resid
directly, thus avoiding the use of modes and bypassing this d
culty. Next, Lancaster’s equations are reformulated in terms of
poles and the residues of the transfer functions.

By definition, we know that the matrix of transfer function
H(s) is the inverse of thedynamic stiffness matrixD(s), that is

H~s!5D21~s!, where D~s!5s2M1sC1KPCN3N. (14)

Rewrite the expression of the dynamic stiffness matrix as

D~s!5s2M F IN1
M21

s S C1
K

s D G (15)

whereIN denotes an identity matrix of sizeN. Taking the inverse
of this equation and expanding the right-hand side one obtain

H~s!5D21~s!5F IN2
M21

s S C1
K

s D1H M21

s S C1
K

s D J 2

2¯G M21

s2 . (16)

Equation~16! can be further simplified to obtain

H~s!5
M21

s2 1
1

s3 ~2M21CM21!1
1

s4 ~M21@CM21C

2K #M21!1¯ . (17)

Now, express a general term of the expression of transfer func
matrix given by Eq.~10! as

Rk

s2lk
5FsS 12

lk

s D G21

Rk5
1

s
Rk1

1

s2 @lkRk#1
1

s3 @lk
2Rk#

1
1

s4 @lk
3Rk#1¯ . (18)

Using the above expression, the transfer function matrix in
~10! can be expressed as

H~s!5
1

s F(
k51

2N

RkG1
1

s2 F(
k51

2N

lkRkG1
1

s3 F(
k51

2N

lk
2RkG

1
1

s4 F(
k51

2N

lk
3RkG1¯ . (19)

Comparing Eqs.~17! and~19! it is clear that their right-hand side
are equal. Equating the coefficients of 1/s, 1/s2, . . . , 1/s4 in the
right-hand sides of Eqs.~17! and ~19! the following relationships
may be obtained

(
k51

2N

Rk5O (20)

(
k51

2N

lkRk5M21 (21)

(
k51

2N

lk
2Rk52M21CM21 (22)

and (
k51

2N

lk
3Rk5M21@CM21C2K #M21. (23)
Transactions of the ASME
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This procedure can be extended to obtain further higher o
terms involvinglk . Note that Eqs.~21! and~22! is equivalent to
Lancaster’s Eqs.~2! and ~4!. In view of Eq. ~11!, from Eq. ~21!
one has

2(
k51

N

R~lkRk!5M21

that is, M ~r !5
1

2 F(
k51

N

R~lkRk!G21

(24)

whereR(•) denote real part of~•! and the superscript (•)(r ) de-
notes the reconstructed value of~•!. Similarly, from Eq.~22!, the
viscous damping matrix can be expressed as

C~r !522M ~r !F(
k51

N

R~lk
2Rk!GM ~r !. (25)

The expression of the viscous damping matrix in Eq.~25! can also
be obtained in terms of the stiffness matrix. The expression of
dynamic stiffness matrix in Eq.~14! can be rearranged as

D~s!5K @ IN1s~sK21M1K21C!#. (26)

Taking the inverse of Eq.~26! and expanding the right-hand sid
one obtains

H~s!5D21~s!5@ IN2s~sK21M1K21C!1$s~sK21M

1K21C!%22¯#K21. (27)

The preceding equation can be further simplified to obtain

H~s!5K211s~2K21CK21!1s2~K21@CK21C2M #K21!

1¯ . (28)

Further, rewrite the expression of transfer function matrix given
Eq. ~10! as

H~s!5(
k51

2N
Rk

s2lk
5(

k51

2N F2lkS 12
s

lk
D G21

Rk

52(
k51

2N

lk
21Rk2sF(

k51

2N

lk
22RkG

2s2F(
k51

2N

lk
23RkG2s3F(

k51

2N

lk
24RkG2¯ .

(29)

Equating the coefficients ofs0, s1, s2 in the right-hand sides o
Eqs.~28! and ~29! one obtains

(
k51

2N

lk
21Rk52K21 (30)

(
k51

2N

lk
22Rk5K21CK21 (31)

and (
k51

2N

lk
23Rk5K21@M2CK21C#K21. (32)

This procedure can be extended to obtain further lower or
terms involvinglk . Note that Eq.~30! is equivalent to Lancast
er’s Eq. ~3!. Using the relationships in Eq.~11!, equations~30!
and~31! can be simplified to obtain the reconstructed value of
stiffness and damping matrices as

K ~r !52
1

2 F(
k51

N

R~Rk /lk!G21

(33)
Journal of Vibration and Acoustics
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R~Rk /lk
2!GK ~r !. (34)

Thus, Eqs.~24!, ~25!, ~33! and~34! provide relationships equiva
lent to that of Lancaster’s. Because these relationships are in te
of transfer function residues and poles, they naturally avoid
normalization problem associated with Lancaster’s method. N
that the full transfer function matrix is required to apply th
method. Because most structures encountered in practice sa
the reciprocity relationship, it is sufficient to measure either
upper triangular part or the lower triangular part of the trans
function matrix. This implies that forN points in a structure,
N(N21) transfer function measurements are required. Howe
this is not a serious drawback. With the advancement of the la
vibrometer techniques it is possible to automate the laborious
of measuring many transfer functions.

The method developed here for the identification of the sys
matrices is simple, direct and requires very little computatio
effort. Observe that there are two different expressions given
the damping matrix. If the damping of the system is truly visco
then the results obtained from both the equations should be
same. Next, these issues are discussed using numerical exam

3.2 Numerical Examples

3.2.1 Example 1. We consider a four-degree-of-freedom sy
tem with viscous damping. The system matrices are given by

M5F 1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

G , K5F 5 23 0 0

23 7 24 0

0 24 7 23

0 0 23 5

G and

C5F 1.0 20.3 0 0

20.3 0.7 20.4 0

0 20.4 0.7 20.3

0 0 20.3 0.5

G . (35)

The system has four modes and all of them are subcritic
damped. The poles and the residues corresponding to the
modes, obtained using the modal properties, are given in Tab
Using these values, from Eqs.~24! and ~33!, the mass and stiff-
ness matrices can be reconstructed as

M ~r !5
1

2 F(
k51

N

R~lkRk!G21

5F 1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

G (36)

and K ~r !52
1

2 F(
k51

N

R~Rk /lk!G21

5F 5 23 0 0

23 7 24 0

0 24 7 23

0 0 23 5

G .

(37)

Using the reconstructed values of the mass and stiffness matr
from Eq. ~25! or ~34!, the damping matrix can be calculated as
OCTOBER 2002, Vol. 124 Õ 619
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Table 1 Poles and residues of the four DOF system with viscous damping
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C~r !522M ~r !F(
k51

N

R~lk
2Rk!GM ~r !

52K ~r !F(
k51

N

R~Rk /lk
2!GK ~r !

5F 1.0 20.3 0 0

20.3 0.7 20.4 0

0 20.4 0.7 20.3

0 0 20.3 0.5

G . (38)

Equations~36!, ~37! and~38! clearly show that the system matr
ces are reconstructed exactly. Note that only the poles and
associated residues are used to identify the system matrices
similar study, Pilkey and Inman@9# have used the original Lan
caster’s Eqs.~2!, ~3! and ~4!, to identify the viscous dampin
matrix of a system from a full set of modal data. Their meth
was based on an iterative approach and requires the mass m
of the system. The proposed method neither requires the
matrix nor does it use an iterative approach. This demonstrate
strength of the modified Lancaster’s equations~24!, ~25!, ~33! and
~34!.

3.2.2 Example 2. In the last example, the exact values of t
poles and the residues are used for identification of the sy
matrices. The exact reconstructed values of the system ma
tell very little other than verifying the correctness of the ma
ematical expressions developed so far in this paper. In prac
due to the presence of noise or random errors, the measured
fer functions become noisy. This in turn makes the poles and
residues erroneous. The purpose of this example is to analyz
effects of random errors in the measured data. A system cons
of a linear array of spring-mass oscillators and dampers is co
ered for this purpose. Figure 1 shows the model system.N masses
each with massmu , are connected by springs of stiffness va
ku . The mass matrix of the system has the formM5muIN where
IN is theN3N identity matrix. The stiffness matrix of the syste
is
4, OCTOBER 2002
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K5ku3
2 21

21 2 21

� � �

21 2 21

� � 21

21 2

4 . (39)

Certain of the masses of the system shown in Fig. 1 have visc
dampers connecting them to the ground. The damping matrix
be expressed asC5cuĪ wherecu is the viscous damping constan
and Ī is a block identity matrix which is non-zero only betwee
the n1-th andn2-th entries along the diagonal, so thatn1 denotes
the first damped mass andn2 the last one. For the numerica
calculations, we have considered a thirty-degree-of-freedom
tem so thatN530. Values of the mass and stiffness associa
with each unit are assumed to be the same with numerical va
of mu51 kg, ku510 N/m. The start and end positions of th
dampers are assumed to ben155 andn2515 with values for each
unit of cu50.5 Nm/s.

In order to simulate the effect of noise, we perturb the poles
the residues by adding zero-mean Gaussian random noise to t
Numerical experiments have been performed by adding diffe
levels of noise to the following four quantities:

1. Real parts of complex eigenvalueslR .
2. Imaginary parts of complex eigenvaluesl I .
3. Real parts of residuesRkR

.
4. Imaginary parts of residuesRkI

.

Levels of noise associated with the above quantities, denote
l̃R , l̃ I , R̃kR

and R̃kI
, are expressed as a percentage of their c

responding original values. In practice we hope to obtain the n
ral frequencies and damping factors, i.e., the poles, with g
accuracy. So, in what follows next, we assumel̃R5l̃ I52% for
all the modes. The following cases are considered regarding
noise levelsR̃kR

andR̃kI
for all k:
Fig. 1 Linear array of N spring-mass oscillators, NÄ30, m uÄ1 kg, k uÄ10 NÕm and c u
Ä0.5 NmÕs.
Transactions of the ASME
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Fig. 2 Identified mass matrix for noise case „a….
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~a! R̃kR
50% andR̃kI

510%

~b! R̃kR
510% andR̃kI

50%

~c! R̃kR
55% andR̃kI

55%.
Figures 2 and 3 show the identified mass matrix and the visc
damping matrix corresponding to the noise cases~a!. The fitted
viscous damping matrix in Fig. 3 is obtained using the rec
structed mass matrix from Eq.~25!. The high portion of this dia-
gram corresponds to the position of the dampers. Both these
trices are reasonably close to their corresponding exact values
this set of data, application of Eqs.~33! and~34! to reconstruct the
stiffness and damping matrices produces results~not shown here!
which are very far from the true values. This demonstrates tha
identification procedure of the stiffness matrix and the visco
damping matrix using Eqs.~33! and ~34! is sensitive to errors in
the imaginary parts of the transfer function residues.

Now consider the noise case~b!. It is observed that~result not
shown! the mass matrix can be reconstructed with very good
curacy using Eq.~24!. The identified damping matrix, obtaine
from Eq. ~25!, using the reconstructed mass matrix is shown
Fig. 4. Observe that the identified viscous damping matrix is l
accurate compared to that for the noise case~a!, as shown in Fig.
3. The identified stiffness matrix obtained using Eq.~33! is shown
in Fig. 5. This result is much better than that for the noise case~a!.
However, the identified viscous damping matrix, obtained us
Eq. ~34! is very far from its true value, as in noise case~a!.
Numerical experiments were conducted using small values~1%–
2%! of R̃kI

. In general, it was observed that the identified stiffne
matrix obtained using Eq.~33! is very sensitive to errors in the
imaginary parts of the transfer function residues.

For the noise case~c!, again, the identified mass matrix turn
out to be close to its exact value. The identified damping ma
using Eq.~25!, shown in Fig. 6, is also reasonably close to
tion and Acoustics

 to 137.222.10.58. Redistribution subject to ASME lic
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exact value. Again, like the noise case~a!, the identified stiffness
and damping matrices using Eqs.~33! and~34! produce unaccept-
able results.

From the above results we conclude that the presence of n
affects the identified matrices obtained using Eq.~33! and~34! to
a great extent. Thus, for all practical cases Eqs.~24! and ~25!
should be used to reconstruct the mass matrix and the vis
damping matrix. Next, we extend the current studies to a clas
nonviscously damped systems.

4 Dynamics of Nonviscously Damped Systems
Possibly the most general way to model damping within

linear range is to use nonviscous damping models in which
damping forces depend on the past history of motion via con
lution integrals over some kernel functions. The equations of m
tion describing free vibration of anN-degree-of-freedom linea
system with such nonviscous damping can be expressed by

Mq̈ ~ t !1E
0

t

G~ t2t!q̇~t!dt1Kq ~ t !50. (40)

The kernel functionsG(t)PRN3N, or others closely related to
them, are described under many different names in the litera
of different subjects: for example, retardation functions, hered
functions, after-effect functions, relaxation functions etc. Th
model was originally introduced by Biot@28#. In the special case
whenG(t2t)5Cd(t2t), whered(t) is the Dirac-delta function,
Eq. ~40! reduces to the case of viscous damping. The damp
model of this kind is a further generalization of the familiar vi
cous damping.

The eigenvalue problem associated with Eq.~40! can be defined
by taking the Laplace transform as
OCTOBER 2002, Vol. 124 Õ 621
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Fig. 3 Identified viscous damping matrix for noise case „a….

Fig. 4 Identified viscous damping matrix for noise case „b….
, OCTOBER 2002 Transactions of the ASME
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Fig. 5 Identified stiffness matrix for noise case „b….

Fig. 6 Identified viscous damping matrix for noise case „c….
tion and Acoustics OCTOBER 2002, Vol. 124 Õ 623
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lk
2Mzk1lkG~lk!zk1Kzk50, (41)

whereG(s) is the Laplace transform ofG(t). We do not assume
any specific functional form ofG(s) but assume thatG(s) has
finite poles anduGjk(s)u,` whens→`. This in turn implies that
the elements ofG(s) are at the most of order 1/s in s or constant,
as in the case of viscous damping. The eigenvalue problem o
form ~41! has been discussed by Adhikari@29#. Here we briefly
outline the main features.

The eigenvalues,lk , associated with Eq.~41! are roots of the
characteristic equation

det@s2M1sG~s!1K #50. (42)

Suppose the order of the characteristic equation ism. In generalm
is more than 2N, that is m52N1p; p>0. Thus, although the
system hasN degrees of freedom, the number of eigenvalues
more than 2N. This is a major difference between nonviscous
damped systems and viscously damped systems where the nu
of eigenvalues is exactly 2N, including any multiplicities. We
restrict our attention to a special case when, among them eigen-
values, only 2N appear in complex conjugate pairs. For conv
nience, arrange the eigenvalues as

l1 ,l2 , ¯ ,lN ,l1* ,l2* , ¯ ,lN* ,l2N11 , ¯ ,lm . (43)

It is further assumed that the remainingp eigenvalues,
l2N11 , ¯ ,lm , are purely real.

From Eq. ~41! it is easy to observe that, whenlk appear in
complex conjugate pairs,zk also appear in complex conjuga
pairs, and whenlk is realzk can also be real. Corresponding to th
2N complex conjugate pairs of eigenvalues, theN eigenvectors
together with their complex conjugates are calledelastic modes.
These modes are related to theN modes of vibration of the struc
tural system. Physically, the assumption of ‘‘2N complex conju-
gate pairs of eigenvalues’’ implies that all the elastic modes
oscillatory in nature, that is, they are subcritically damped. T
modes corresponding to the ‘‘additional’’p eigenvalues are called
nonviscous modes. These modes are induced by the nonvisco
effect of the damping mechanism. For stable passive system
nonviscous modes are over-critically damped~i.e., negative real
eigenvalues! and not oscillatory in nature.

Following @30# the normalization relationship satisfied by th
modes of nonviscously damped systems may be expressed a

zk
TF2lkM1G~lk!1lk

]@G~s!#

]s UlkGzk5uk , ;k51,¯ ,m.

(44)

Note that Eq.~44! reduces to Eq.~9!, the corresponding relation
ship for viscously damped systems, whenG(s) is constant with
respect tos.

5 Lancaster’s Method for Nonviscously Damped Sys-
tems

5.1 Theory. In this section Lancaster’s equations are e
tended to nonviscously damped systems. In reference@29#, it was
shown that the transfer function matrix of nonviscously damp
systems can be expressed as

H~s!5 (
k51

2N1p
Rk

s2lk
(45)

where the residue matricesRk take the same form as given by E
~12!. The difference between Eq.~45! and Eq.~10! comes from
the fact that the sum in Eq.~45! is extended to nonviscous mode
also. Due to the arrangement of the eigenvalues in Eq.~43!, in
addition to Eq.~11!, which describes the relationships for th
elastic modes, the following relationships also hold:

l2N1k5lnvk (46)
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R2N1k5Rnvk
, 1<k<p.

In the above (•)nv denotes the nonviscous terms of~•!. It has been
mentioned earlier that for passive systems, the kind of systems
mostly encounter in practice, the nonviscous modes are usu
over-critically damped. Thus, in contrast to the elastic modes, t
do not produce any peaks in the transfer functions. As a con
quence to this, the modal parameters corresponding to nonvis
modes cannot be obtained by usual techniques of experime
modal analysis. This is the fundamental difficulty in consideri
nonviscously damped systems. However, as shown by Adhi
@29#, the nonviscous part of~45! may be quite small compared t
that of the elastic part. Next, assuming the validity of Eq.~45!,
Lancaster’s formulations are extended to nonviscously dam
systems.

A major difficulty in relating the system matrices with the pol
and residues is that, unlike viscously damped systems, the da
ing matrix G(s) is a function ofs. To simplify the problem we
consider only two limiting cases,~a! when s→`, and ~b! when
s→0. Suppose

lim
s→`

G~s!5G`PRN3N (47)

and lim
s→0

G~s!5G0PRN3N, (48)

whereiG`i , iG0i,`.
For nonviscously damped systems, the transfer function ma

has the form

H~s!5D21~s!, where D~s!5s2M1sG~s!1KPCN3N.
(49)

Rewrite the expression of the dynamic stiffness matrix as

D~s!5s2M F IN1
M21

s S G~s!1
K

s D G (50)

Taking the inverse of this equation and expanding the right-h
side one obtains

H~s!5
M21

s2 1
1

s3 ~2M21G~s!M21!

1
1

s4 ~M21@G~s!M21G~s!2K #M21!1¯ . (51)

The expression ofH(s) given by Eq.~19! holds for nonviscously
damped systems provided the limit of the sums appearing in
equation is extended to 2N1p, that is

H~s!5
1

s F (
k51

2N1p

RkG1
1

s2 F (
k51

2N1p

lkRkG1
1

s3 F (
k51

2N1p

lk
2RkG

1
1

s4 F (
k51

2N1p

lk
3RkG1¯ . (52)

Comparing Eqs.~51! and~52! it is clear that their right-hand side
are equal. Multiplying these equations bys and s2 respectively
and taking the limit ass→` one obtains

(
k51

2N1p

Rk5O (53)

and (
k51

2N1p

lkRk5M21. (54)

Observe that the coefficients associated with the correspon
~negative! powers of s in the series expressions~51! and ~52!
cannot be equated becauseG(s) is also a function ofs. However,
in the limit whens→`, the variation ofG(s) becomes negligible
as by Eq.~47! it approaches toG` . Considering the second term
Transactions of the ASME
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of the right-hand side of Eq.~51!, equating it with the correspond
ing term of Eq.~52! and taking the limit ass→` one obtains

(
k51

2N1p

lk
2Rk52M21G`M21. (55)

It must be noted that this procedure cannot be extended to fu
lower order terms as all of them would be affected by the fu
tional variation ofG(s) from previous terms.

Equations~54! and ~55! are equivalent to Lancaster’s Eqs.~2!
and ~4!. In view of Eqs.~11! and ~46!, from Eq. ~54! one has

2(
k51

N

R~lek
Rek

!1(
k51

p

lnvk
Rnvk

5M21

that is, M ~r !5F2(
k51

N

R~lek
Rek

!1(
k51

p

lnvk
RnvkG21

(56)

where (•)e denotes the elastic parts of~•!. Similarly, from Eq.
~55!, the damping matrix of damping functions evaluated as
→` can be expressed as

G`
~r !52M ~r !F2(

k51

N

R~lek

2 Rek
!1(

k51

p

lnvk

2 RnvkGM ~r !. (57)

The damping matrix can also be expressed in terms of the stiff
matrix. Following the approach outlined for viscously damp
systems, and taking the limit ass→0 it may be shown that the
reconstructed values of the stiffness and damping matrices a

K ~r !52F2(
k51

N

R~Rek
/lek

!1(
k51

p

Rnvk
/lnvkG21

(58)

G0
~r !5K ~r !F2(

k51

N

R~Rek
/lek

2 !1(
k51

p

Rnvk
/lnvk

2 GK ~r !. (59)

Thus, Eqs.~56!, ~57!, ~58! and~59! provide relationships equiva
lent to that of Lancaster’s for nonviscously damped systems.
difficulty in employing this approach is that the damping matrix
the Laplace domain,G(s), can be obtained only at the two limit
ing values whens→`, ands→0. That is, no clue regarding th
functional variation ofG(s) can be obtained between these tw
extreme values. Further note that, in contrast to viscously dam
systems, the poles and the residues corresponding to the no
cous modes appear in Eqs.~56!–~59!. This is the biggest difficulty
in applying these equations in practice. As mentioned earlier,
still not possible to identify the nonviscous modes from the m
sured transfer functions. Due to this shortfall it appears that,
though it is known that in general mechanical systems are non
cously damped, one still has to use the expressions develope
viscously damped systems. This fact, in turn, also indicates
Lancaster’s original equations are only approximate when app
Journal of Vibration and Acoustics
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to nonviscously damped systems and that the ‘‘amount of
approximation’’ depends on how ‘‘big’’ are the nonviscous term
Next, these issues are discussed using a numerical example.

5.2 Numerical Examples. A three-degree-of-freedom sys
tem is used to illustrate the results derived in the last section.
mass and stiffness matrices are assumed to be

M5F 3 0 0

0 3 0

0 0 3
G (60)

and K5F 4 22 0

22 4 22

0 22 4
G . (61)

The matrix of the damping functions is assumed to be of the fo

G~ t !5F 0 0 0

0 1.5g~ t ! 0

0 0 0
G (62)

where

g~ t !5d~ t !1~m1e2m1t1m2e2m2t!; m1 , m2.0. (63)

The damping matrix in the Laplace domain,G(s), can be ob-
tained by taking the Laplace transform of Eq.~62!. The Laplace
transform ofg(t) given by Eq.~63! can be obtained as

G~s!511
~m11m2!s12m1m2

s21~m11m2!s1m1m2
. (64)

This damping model is a linear combination of the viscous dam
ing model and the GHM damping model@31,32#. Regarding the
numerical values of the damping parameters, we assumem1
50.15 andm250.1.

Using Eq. ~64!, together with the expressions of the syste
matrices given by equations~60!–~62!, it can be shown that the
order of the characteristic polynomial,m58. It has been men-
tioned that~for lightly damped systems!, among them eigenval-
ues, 2N56 appear in complex conjugate pairs~elastic modes! and
the restp5m22N52 eigenvalues become purely real~nonvis-
cous modes!. The eigenvalues~poles! and the residues of the sys
tem are shown in Table 2. Observe that the eigenvalues co
sponding to the nonviscous modes are purely real and nega
implying that the nonviscous modes are stable and nonoscilla
in nature ~i.e., over critically damped!. For this simulation ex-
ample, the residue matrices corresponding to these modes are
culated using the eigenvectors from Eq.~12!. The eigenvectors, in
turn are calculated using the method outlined in reference@29#. It
Table 2 Poles and residues of the three DOF system with non-viscous damping
OCTOBER 2002, Vol. 124 Õ 625
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must be noted that for experimental works the residue matrices
directly obtained from the measured transfer functions and de
mination of modes is not necessary.

Using the poles and the residues corresponding to the el
and nonviscous modes it may be verified that Eqs.~56!–~59! are
satisfiedexactly. The interest here, however, is to understand
effect of neglecting the nonviscous modes. Thus, from Eq.~56!
one obtains

M ~r !'F2(
k51

N

R~lek
Rek

!G21

5F 2.9977 20.0047 20.0023

20.0047 2.9904 20.0047

20.0023 20.0047 2.9977
G . (65)

The above value of the reconstructed mass matrix is sufficie
close to the actual value in Eq.~60!. From Eq.~58!, the recon-
structed stiffness matrix using only the elastic modes become

K ~r !'2F2(
k51

N

R~Rek
/lek

!G21

5F 4.0 22.0039 00

22.0039 4.4290 22.0039

0 22.0039 4.0
G (66)

which is again close to the actual value given by Eq.~61!.
Taking the Laplace transform of Eq.~62! and considering the

limiting cases ass→`, ands→0 one obtains

G`5F 0 0 0

0 1.5 0

0 0 0
G (67)

and G05F 0 0 0

0 4.5 0

0 0 0
G . (68)

Now, using only the elastic mode, from Eq.~57! one obtains

G`
~r !'2M ~r !F2(

k51

N

R~lek

2 Rek
!GM ~r !

5F 0.0003 20.0018 0.0003

20.0018 1.4915 20.0018

0.0003 20.0018 0.0003
G . (69)

Similarly, after neglecting the nonviscous terms, Eq.~59! results

G0
~r !'K ~r !F2(

k51

N

R~Rek
/lek

2 !GK ~r !

5F 20.0004 0.0317 20.0004

0.0317 1.6540 0.0317

20.0004 0.0317 20.0004
G . (70)

Observe that the reconstructed damping matrix shown in Eq.~69!
is close to its exact value given by Eq.~67! while that given by
Eq. ~70! differs significantly from the true value given by Eq
~68!. Although in practice the nonviscous modes cannot be m
sured, this study gives the confidence that reasonable estimat
the mass and stiffness matrices and also the damping matrix in
high frequency region may be obtained using modified Lanc
er’s equations.
626 Õ Vol. 124, OCTOBER 2002

oaded 08 Jan 2009 to 137.222.10.58. Redistribution subject to ASME lic
are
ter-

stic

he

tly

s

.
ea-
es of
the
st-

6 Conclusions
A method for identification of damping in the context o

multiple-degree-of-freedom linear systems has been develo
The approach adopted in this paper is based on the poles an
residues of the measured transfer functions. The newly develo
approach extends the applicability of Lancaster’s original con
bution by avoiding the direct use of modes, thus bypassing
difficulty regarding the normalization, whicha priori needs the
mass and the damping matrices.

For viscously damped systems, the method developed here
identify the exact damping matrix provided the full set of pol
and residues are known exactly. The effects of measurement n
have been investigated using a numerical example. It was sh
that some of the relationships developed here can be applie
moderately noisy data. Finally, the approach is extended to a c
of nonviscously damped systems where the damping forces
pend on the past history of the velocities via convolution integr
over some kernel functions. For nonviscously damped syste
the application of Lancaster’s original method~in terms of the
poles and the residues! provides only approximate estimates of th
system matrices because some poles and residues~those corre-
sponding to the nonviscous modes! cannot be ‘‘measured’’ using
the conventional experimental modal analysis techniques. The
ture of this approximation has been investigated using a nume
example.

The initial numerical study suggests that it might be possible
put the method into practice. However, much remains to be d
to consolidate, test and extend both the theory and the method
practical application. Most immediate of these is the experime
testing of the proposed procedure. Beside these, there are a
ber of interesting issues. For nonviscously damped systems, a
damental limitation of the method developed so far is that
matrix of damping functions,G(s), can only be obtained at two
extreme values whens→`, and s→0. This illustrates that, in
principle, using the method as it stands now, it isnot possible to
obtain the functional variation of nonviscous damping functio
This demands new research regarding identification of nonvisc
damping.
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