
Contents lists available at SciVerse ScienceDirect

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing 29 (2012) 262–283
0888-32

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/ymssp
A second-moment approach for direct probabilistic model updating
in structural dynamics
E. Jacquelin a,n, S. Adhikari b, M.I. Friswell b
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Discrepancies between experimentally measured data and computational predictions

are unavoidable for structural dynamic systems. Model updating methods have been

developed over the past three decades to reduce this gap. Well established model

updating methods exist when both the model and experimental measurements are

deterministic in nature. However in reality, experimental results may contain uncer-

tainty, for example arising due to unknown experimental errors, or variability in

nominally identical structures. Over the past two decades probabilistic approaches have

been developed to incorporate uncertainties in computational models. In this paper, the

natural frequencies and the eigenvectors of the system are measured and assumed to be

uncertain. A random matrix approach is proposed and closed-form expressions are

derived for the mean matrix and the covariance matrix of the updated stiffness matrix.

A perturbation technique is used to obtain a usable expression for the covariance

matrix.

The new method is illustrated by three numerical examples highlighting the

influence of the eigenfrequency uncertainties on the mean matrix and the influence

of the eigenvector uncertainties on the covariance matrix.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In various areas of computational modeling, it has been established over the past three decades that uncertainties
should be taken into account for credible predictions. In the context of structural dynamics, such uncertainties can be
broadly divided into two categories, namely, parametric uncertainty and non-parametric uncertainty. Parametric
uncertainty includes uncertainty in geometric parameters, friction coefficient, and the moduli of the materials involved.
In contrast, non-parametric uncertainty can arise due to the lack of scientific knowledge about the model which is
unknown a priori. Although this distinction is often made, the origin of uncertainty in real-life systems is not always
obvious [1,2]. In this paper we propose an analytical approach to update random variables describing parametric
uncertainty of a linear dynamical system using experimental data.

The deterministic finite element model updating problem [3–7] is well established, both in the development of
methods and in application to industrial-scale structures [8,9]. The proposed methods can be broadly divided into two
categories, namely, the non-parametric (or direct) and parametric approaches. In the non-parametric approach, developed
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Nomenclature

covðO2
Þ covariance matrix of O2

JXJS stochastic norm of X
~Y mean of Y estimated through a perturbation

method
C ¼ covðXÞ covariance matrix of X

ðS;CÞ Kronecker product decomposition of a covar-
iance matrix

O natural frequency matrix
� Kronecker product of two matrices
X mean of X

JXJF Frobenius norm of X

trðXÞ trace of X

vecð�Þ vectorization operator of a matrixbX maximum likelihood estimator of X

Ef�g expectation operator
f(t) forcing vector
K initial estimate of the stiffness matrix
M mass matrix
n number of degrees of freedom
q(t) response vector
X mode shape matrix
X0 transpose of X

Y corrected stiffness matrix
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during early eighties, the system matrices (mass, stiffness and damping matrices) are updated directly so that the differences
between the predicted data (natural frequencies, damping ratios, and mode shapes) and measured data are minimum
according to a suitable norm. The non-parametric methods have some significant problems that have restricted their
application in practical examples where the model has a large number of degrees of freedom. The methods do not give a
clear physical insight into the modeling errors that are corrected, and the connectively of the original model is not
necessarily preserved. Furthermore the incompleteness of the measured data, in terms of the number of sensors used and the
number of modes measured, leads to a highly underdetermined estimation problem. This is further complicated because the
lower frequency modes are measured but the higher frequency modes have the greatest effect on the stiffness matrix.
Despite these problems non-parametric methods can be applied to reduced order models for some limited objectives, such as
controller performance or response prediction studies. The alternative, and increasingly popular, approach is parametric
model updating where physical parameters (for example, joint stiffnesses, thicknesses) are selected and updated. The
estimation is usually based on some kind of sensitivity analysis that minimizes the error between predicted results and test
data from a single physical structure. The choice of updating parameters is an important aspect of the process and should
always be justified physically. Model uncertainties should be located and parameterized sensitively to the predictions.
Finally, the model should be validated by assessing the model quality within its range of operation and its robustness to
modifications in the loading configuration, design changes, coupled structure analysis and different boundary conditions.

Collins et al. [10] developed a Bayesian approach to model updating using linearized sensitivities based on knowledge
of the distributions of the unknown parameters and the vibration measurements. In these approaches, the randomness
arises only from the measurement noise and the updating parameters take unique values, to be found by iterative
correction to the estimated means, whilst the variances are minimized [11]. These statistical approaches have been
extended to update parameter distributions using measured response distributions from multiple measurements. These
include Bayesian methods [12–15], perturbation based methods [16] and the maximum likelihood method [17]. Hua et al.
[18] considered an improved perturbation method where statistical correlations between the updating parameters were
taken into account. Faverjon et al. [19] considered updating of uncertain systems using a polynomial chaos expansion.
McFarland et al. [20] used Gaussian process emulators to update linear systems with parametric updating. Their approach
is valid for both Gaussian and non-Gaussian random variables. Ren et al. [21] proposed a response surface-based finite-
element-model updating technique using structural static responses. Adhikari and Friswell [22] proposed a sensitivity
based model updating approach for distributed updating parameters expressed using the Karhunen–Lo�eve expansion.
Goller et al. [23] considered stochastic model updating for complex aerospace structures. More recently Khodaparast et al.
[24] considered model updating with an interval description of uncertain variables.

The source of the uncertainty in the model must be considered when the objectives of the model updating problem are
considered. The uncertainty may be epistemic, for example arising from the measurement process, that may be reduced by
using more information. Alternatively the uncertainty may be aleatory, for example arising from manufacturing or
material variability for multiple structures, that cannot be improved by increased information on a single structure.
Determining the source of the uncertainty in a practical problem is difficult, and many updating methods do not make a
clear distinction. Indeed the way a method is used can determine the type of uncertainty considered. For example, the
Bayesian methods [10,11] specify the covariance matrix of the measurements, and the original papers assumed this
represented the measurement errors with a view to estimating deterministic parameters for a single structure. However if
the covariance matrix represented the variability in measurements taken on multiple structures then the methods could
be used to estimate the covariance of the estimated parameters.

The majority of the research reported in the literature consider the parametric approach for stochastic model updating.
The aim of this paper is to propose a simple and computationally efficient approach (i.e., avoiding Monte Carlo Simulation) to
update stiffness matrices from experimental measurements of the natural frequencies and the corresponding eigenvectors. A
direct second moment approach based on random matrix theory is developed in this paper. The outline of the paper is as
follows. In Section 2 the direct deterministic updating methods are briefly presented. Then in Section 3, the context of the
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probabilistic approach is given and the main mathematical tools used in this work are defined. The solutions obtained when
only the eigenfrequencies are supposed to be random are given in Section 4, while in Section 5, the solutions are provided
when both eigenfrequencies and eigenvectors are random. Section 6 gives three examples to illustrate this approach. Finally,
based on the results and analytical formulations, a set of conclusions are drawn in Section 7.

2. A brief overview of direct modal updating

The equation of a discretized linear dynamical system can be expressed by a set of coupled second-order ordinary
differential equations as

M €qðtÞþKqðtÞ ¼ f ðtÞ ð1Þ

Here M is the mass matrix, K is the stiffness matrix, q(t) is the vector of generalized coordinates, f(t) is the applied forcing
and t is the time. We consider the system has n degrees of freedom. The eigenvalue problem governing the natural
frequencies and mode shapes associated with Eq. (1) is given by

Kxj ¼o2
j Mxj, j¼ 1;2, . . . ,n ð2Þ

In the above equation oj are the natural frequencies and xj are the mode shapes. We form the matrices of natural
frequencies and mode shapes as

O2
¼ diag o2

1,o2
2, . . . ,o2

n and X ¼ ½x1,x2, . . . ,xn� ð3Þ

The eigenvectors are mass normalized so that x0jMxk ¼ djk where djk is the Kronecker delta function, and the prime denotes
the matrix transpose. The relationships between M, K, X and O2 can be expressed using the orthogonality properties as

X0MX ¼ I, X0KX ¼O2 and KX ¼MXO2
ð4Þ

We consider that experimentally measured natural frequencies and mode shapes are ‘exact’. Updating the numerical
model is required because the eigenvalues and eigenvectors computed from the original mass and stiffness matrices do not
match with the corresponding measured quantities. The fundamental aim of model updating is to reduce this ‘mismatch’.
This can be done in one of the two ways, namely (a) by updating a set of physically realistic system parameters (geometric
dimension, joint stiffness, thickness, mass density), or (b) directly updating the mass or stiffness matrix, or both.

The damping has been neglected so far. If the system is proportionally damped, then the undamped mode shapes and the
damped mode shapes are identical. However, general non-proportionally damped systems usually have complex modes. For
such general damped systems, model updating [25–31] can be done, for example by extending the classical modal sensitivity
analysis [32] to complex modes [33,34]. Another alternative is the direct model updating approach proposed by Friswell et al.
[35] and subsequently used by several researchers [36–48]. In this paper we consider updating the stiffness matrix directly
when there are uncertainties in the measured undamped natural frequencies and mode shapes.

The mass matrix is positive definite and is considered to be error free. The equation of motion (1) can be expressed in
terms of the weighted stiffness matrix using a coordinate transformation of the form

q¼M�1=2p ð5Þ

Substituting this in Eq. (1), premultiplying by M�1=2 and assuming free vibration we have

€pðtÞþM�1=2KM�1=2qðtÞ ¼ 0 ð6Þ

Suppose that the ‘correct’ stiffness matrix is Y. This implies that the eigenvalues and the eigenvectors generated by this
matrix are equal to the measured values. The matrix Y should be symmetric and should satisfy the modal equation, that is

YX ¼MXO2 and Y ¼ Y 0 ð7Þ

Additionally, we want to obtain the Y which is closest to our initial model. This implies that the following norm needs to be
minimized:

d¼ JM�1=2
ðY�KÞM�1=2J2 ð8Þ

Minimizing the above norm subject to the constraints in Eq. (7), Baruch and Bar-Itzhack [49] showed that the optimal
value of the corrected stiffness matrix is obtained as

Y ¼ K�KXX0M�MXX0KþMXX0KXX0MþMXO2X0M ð9Þ

In this paper we use this expression for the case when there are uncertainties in the measured data.
For the stochastic case, the deterministic matrices appearing in Eq. (9) become random matrices. In particular, the

following points can be noted:
�
 M is the n�n deterministic mass matrix, where n is the number of degrees of freedom.

�
 K is the initial estimate of matrix Y. It is an n� n deterministic matrix obtained from an initial finite element model. In

our case where nsamp stiffness matrices are derived from a Monte-Carlo simulation, K may be either a matrix drawn
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from the nsamp stiffness matrix samples or the mean over all the Monte-Carlo simulated stiffness matrices. Ks denotes
for a sample stiffness matrix from the Monte-Carlo simulation.

�
 X is the matrix of eigenvectors. Depending on the assumptions made in the next section, X may be either a deterministic

matrix or a random matrix. In this latter case, Xs, a sample of X, is the eigenvector matrix related to the (Ks,M)
eigenproblem. The size of X is n� p, where p is the number of ‘measured’ modes (prnÞ.

s

�
 O2 is a random diagonal matrix. O2 , a sample of O2, is the diagonal matrix of the eigenvalues related to the (Ks,M)

eigenproblem.

Next we obtain statistical moments of the corrected stiffness matrix Y.

3. Matrix variate distributions

In order to obtain the statistical moments of the matrix Y, we consider two cases based on increasingly physically
realistic assumptions:
�
 Case 1: O2 is random but X is deterministic. X may be either a matrix drawn from the nsamp matrices Xs samples or the
mean of the Monte-Carlo simulated eigenvector matrices. From the point of view of experimental identification, this is
the easiest case.

�
 Case 2: Both O2 and X are random. This is the most general case.

We consider the measured natural frequencies and mode shapes to be normally distributed. In particular, the following
assumptions are made:
�
 Each fO2
iigi ¼ 1: :p has a normal distribution. Then O2 has a matrix variate normal distribution (see the definition

below): O2
�N p,pðO2 ,CO2 Þ.
�
 The diagonal elements of O2 are in general assumed to be correlated with a (nondiagonal) covariance matrix CO2 .

�
 When X is random, it is also assumed to have a matrix variate normal distribution. The elements of X are in general

assumed to be correlated with a general nondiagonal covariance matrix covðXÞ.

In this paper we are concerned with second-order statistics only. The maximum entropy principle suggests that given only
the first two moments, the most appropriate distribution is Gaussian [50,51]. Therefore, since the only information given is the
mean and covariance matrices of O2 and X, we assume that they are Gaussian random matrices [52]. The matrix containing the
square of the eigenvalues O2 should have strictly positive diagonal entries. Clearly if O2 is a Gaussian random matrix, this
cannot be guaranteed with probability 1. In the following analytical derivations only first and second-order moments of O2 are
considered, which are finite. Because the tails of the probability density function of O2 have not been used, the possible
limitations arising from the Gaussian assumption for O2 have not influenced our analytical second-moment results. For further
developments, and some important notation and definitions, following Refs. [52–54] are given below:
�
 vecðXÞ is the vector obtained by stacking the columns of X. The following property will be used [52]:

vecðAXBÞ ¼ ðB0 � AÞ vecðXÞ ð10Þ

where � denotes the Kronecker product.

�
 A random matrix X (n� p) has a matrix normal distribution with a mean matrix X (n� p) if there exist matrices S

(p� p) and C (n� n) such that

vecðXÞ �N npðvecðX Þ,C ¼S�CÞ ð11Þ

This is denoted by X �N n,pðX ,S,CÞ. The pdf of X is

pðX9X ,S,CÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p detðSÞndetðCÞp
p exp tr �

1

2
C�1
ðX�X ÞS�1

ðX�X Þ0
� �� �

ð12Þ

Some useful properties are given in Appendices A and B.

�
 The covariance matrix of the random matrices X and Y is

covðX,YÞ ¼ EfvecðX�X ÞðvecðY�Y ÞÞ0g ð13Þ

The variance matrix will be denoted covðXÞ.

3.1. The Covariance Kronecker product decomposition

In statistics, it is natural to consider the covariance matrix of a normally distributed random n� p matrix Z as the
Kronecker product [53]

covðZÞ ¼ C ¼S�C ð14Þ
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where S is a p� p matrix and C is an n� n matrix. For example, the book by Gupta and Nagar [52] provides many
relationships about the expectation of a product of matrices which are based on this decomposition. The Kronecker
product decomposition allows the manipulation of smaller matrices. Indeed, covariance matrix C has p2 � n2 elements
whereas S and C have only p2þn2 elements. In this study, covðZÞ may be derived from a Monte-Carlo simulation but we
need to find S and C.

3.1.1. Optimized solution

Van Loan and Pitsianis [55] considered the factorization of the covariance matrix, and more precisely minimized
FZðS,CÞ defined by

FZðS,CÞ ¼ JcovðZÞ�S�CJF ð15Þ

The solution is only a rank-1 approximation. Moreover, in general, for a given covariance matrix (that is any symmetric
positive semi-definite matrix), decomposition (14) is not always possible. However, for a given matrix C there exist two
sets of matrices fSgk ¼ 1: :r and fCkgk ¼ 1r such that [56]

C ¼
Xr

k ¼ 1

Sk �Ck ð16Þ

with r¼ rankðCÞ. Sk (resp. Ck) is related to the k-th left (resp. right) singular vector of C.
If the rank of C is too high, such a decomposition may be very costly and an approximation may be obtained by only

summing up to r 5r.

3.1.2. Maximum likelihood estimation

The previous method to determine the Kronecker product decomposition required the covariance matrix C of a normal-
distributed random matrix Z. However Dutilleul [54] estimated Z , S, and C from r measurements. This method consists of
finding the matrices that lead to the maximum of the log-likelihood L, given the r measurements. As the matrix variate
distribution is normal, the log-likelihood function is

L¼�npr

2
logð2pÞ�nr

2
logðdetðSÞÞ�

pr

2
logðdetðCÞÞ�

1

2

Xr

k ¼ 1

trðC�1
ðZk�ZÞS�1

ðZk�ZÞ0Þ ð17Þ

Then, the maximum likelihood estimators of Z , S, and C are [54]

bZ ¼ 1

2

Xr

k ¼ 1

Zk

bC ¼ 1

pr

Xr

k ¼ 1

ðZk�
bZ ÞbS�1

ðZk�
bZ Þ

bS ¼ 1

nr

Xr

k ¼ 1

ðZk�
bZ Þ bC�1

ðZk�
bZ Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð18Þ

An iterative procedure is necessary to evaluate bS and bC [54]. This method will be used in the following to obtain the
Kronecker decomposition product.

4. Updating with eigenvalue uncertainty

This is the case 1 introduced in the previous section. The statistical moments of the corrected stiffness matrix Y are
obtained below.

4.1. Mean of Y

Considering that O2 is the only random matrix, the mean of Y is easily determined as

Y ¼ K�KXX0M�MXX0KþMXX0KXX0MþMXO2 X0M ð19Þ

4.2. Covariance of Y

From (19) we have

Y�Y ¼MXðO2
�O2
ÞX0M ð20Þ

Following the definition given in the previous section, the covariance matrix of Y is

covðYÞ ¼ EfvecðY�Y ÞvecðY�Y Þ0g ð21Þ
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Considering (10) and (20), we have

vecðY�Y Þ ¼ vecðAZA0Þ ð22Þ

vecðY�Y Þ ¼ ðA� AÞvecðZÞ ð23Þ

ðvecðY�Y ÞÞ0 ¼ vecðZÞ0ðA� AÞ0 ð24Þ

ðvecðY�Y ÞÞ0 ¼ vecðZÞ0ðA0 � A0Þ ð25Þ

where
�
 A¼MX
�
 Z ¼O2
�O2
Hence the covariance matrix of Y is

covðYÞ ¼ ðA� AÞEfvecðZÞ vecðZÞ0gðA0 � A0Þ ð26Þ

covðYÞ ¼ ððMXÞ � ðMXÞÞCO2 ððMXÞ0 � ðMXÞ0Þ ð27Þ

5. Updating with eigenvalue and eigenvector uncertainty

In this section O2 and X are random matrices with matrix variate normal distributions:
�
 O2
�N p,pðO2 ,CO2 Þ;
�
 X �N n,pðX ,CÞ: X is an n� p-matrix and C is an np�np-matrix.
In general, the matrices O2 and X are themselves fully correlated random matrices. However, for analytical simplicity in
the following O2 and X are assumed to be uncorrelated. Under certain circumstances this assumption is valid even when
mathematically the eigenvalues and eigenvectors are obtained from the same random eigenvalue problem. It is known
that if a random matrix is rotationally invariant such as the Gaussian Orthogonal Ensemble (GOE) [51] or the Wishart
random matrix with identity matrix as the parameter [57], the eigenvalues and eigenvectors become statistically
uncorrelated. This condition is not met in general and therefore the assumption of uncorrelated O2 and X will introduce
some error when real-life measurements are used. It will be shown that only one term is influenced by the statistical
correlation of O2 and X. The calculations are carried out with the real covariance matrices first, and then the Kronecker
product decomposition (C ¼S�C) will be used. Note that the relation between the elements of C, C, and S is

EfðX�X ÞijðX�X Þklg ¼ Cðj�1Þnþ i,ðl�1Þnþk ¼CikSjl ð28Þ

5.1. The mean matrix: exact results

5.1.1. Real covariance matrix

The mean of the optimized stiffness matrix is

Y ¼ K�K EfXX0gM�M EfXX0gKþM EfXX0KXX0g MþM EfXO2X0gM ð29Þ

Note that among the various terms, only the term EfXO2X0g is influenced by statistical correlation of O2 and X. The
terms EfXX0g, EfXX0KXX0g, EfXO2X0g are evaluated in Appendix B. Then for a general covariance matrix, each element of Y

can be evaluated with relations (B.1), (B.4) and (B.7).

5.1.2. Kronecker product decomposition

When the covariance matrix is given as a Kronecker product, Y can be calculated with relations (B.2), (B.6) and (B.9) as

Y ¼ K�KðXX
0
þtrðSÞCÞM�MðXX

0
þtrðSÞCÞKþMðXX

0
KXX

0
þtrðSÞCKXX

0
þCKXSX

0

þtrðC KÞXSX
0
þtrðSX

0
KX ÞCþXSX

0
KCþtrðSSÞCKCþtrðSÞ2CKC

þtrðSÞXX
0
KCþtrðSSÞtrðCKÞCÞMþMðXO2 X

0
þtrðSO2

ÞCÞM ð30Þ

5.2. The covariance matrix: exact results

The covariance matrix of Y is defined as

covðYÞ ¼ EfvecðY�Y ÞvecðY�Y Þ0g ð31Þ
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and we have

Y�Y ¼ K�Y�KXX0M�MXX0KþMXX0KXX0MþMXO2X0M ð32Þ

with Y being defined in (29) or in (30). Contrary to case 1 (see relation (21)), the covariance matrix expression is not simple
and involves the evaluation of moments up to the 8th order. This expression is too complicated and such a calculation is
much too time consuming: therefore, the covariance matrix of Y cannot be evaluated directly.

5.3. The mean and covariance matrices: perturbation results

A perturbation method is proposed to determine the covariance matrix when X is random. This method is presented
first and then applied to the estimation of Y : it will be possible to assess the perturbation method by comparing the results
with the expressions obtained in Section 4.

The main assumption is that the random eigenfrequencies and eigenvectors are close to their mean. That is, these data
may be written as follows:

X ¼ XþDX ð33Þ

O2
¼O2

þDO2
ð34Þ

where DX and DO2 are supposed to be small, and are random matrices having the following matrix variate normal
distributions:

DX ¼N n,pð½0�,CÞ or DX ¼N n,pð½0�,S,CÞ ð35Þ

DO2
¼N p,pð½0�,CO2 Þ or DO2

¼N p,pð½0�,SO2 ,CO2 Þ ð36Þ

To estimate whether or not a stochastic variable DX is small compared to another, a stochastic norm J � JS must be defined.
This has been done by Stewart [58], and is defined as

JDXJS ¼ EfJDXJFg ð37Þ

5.3.1. Estimation of Y

By substituting (33) and (34) in (9), Y becomes

Y ¼ K�KðXþDXÞðXþDXÞ0M�MðXþDXÞðXþDXÞ0KþMðXþDXÞðXþDXÞ0KðXþDXÞðXþDXÞ0M

þMðXþDXÞðO2
þDO2

ÞðXþDXÞ0M ð38Þ

Then, as the mean of DX and DO2 is null matrices, and keeping the terms only up to second order, the mean of Y is denoted
by ~Y and estimated as

~Y ¼ K�KXX
0
M�K AcovðXÞM�MXX

0
K�M AcovðXÞKþMXX

0
KXX

0
MþMXX

0
K AcovðXÞMþMaX

0
M

þMbMþMXgX
0
MþMXa0MþM AcovðXÞKXX

0
MþMXO2 X

0
MþMdM ð39Þ

where
�
 the matrices a, b, g, d are defined as

a¼ EfDX X
0
K DXg ð40Þ

b¼ EfDX X
0
KX DX0g ð41Þ

g¼ EfDX0 K DXg ð42Þ

d¼ EfDX O2 DX0g ð43Þ

The elements of these matrices may be evaluated by using (B.10), (B.12) and (B.14) or, by using (B.11), (B.13) and (B.15).

�
 The matrix AcovðXÞ is defined as

AcovðXÞ ¼ EfDX DX0g ¼ EfðX�X Þ ðX�X Þ0g ð44Þ
5.3.2. Expression of ~Y with the real covariance matrix

In this case, the jk element of matrices a, b, g, d, and AcovðXÞmust be calculated element by element from (B.10), (B.12)
and (B.14) as

ajk ¼
Xp

q ¼ 1

Xn

r ¼ 1

ðX
0
KÞqrCðq�1Þnþ j,ðk�1Þnþ r ð45Þ
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bjk ¼
Xp

q ¼ 1

Xp

r ¼ 1

ðX
0
KX ÞqrCðq�1Þnþ j,ðr�1Þnþk ð46Þ

gjk ¼
Xn

q ¼ 1

Xn

r ¼ 1

KqrCðj�1Þnþq,ðk�1Þnþ r ð47Þ

djk ¼
Xp

q ¼ 1

O2
qqCðq�1Þnþ j,ðq�1Þnþk ð48Þ

AcovðXÞjk ¼
Xp

q ¼ 1

EfDXjq DXkqg ¼
Xp

q ¼ 1

Cðq�1Þnþ j,ðq�1Þnþk ð49Þ

5.3.3. Expression of ~Y with the Kronecker product decomposition

When the covariance matrix may be decomposed as a Kronecker product, relations (B.11), (B.13) and (B.15) may be
used to calculate ~Y as

~Y ¼ K�KXX
0
M�K AcovðXÞM�MXX

0
K�M AcovðXÞKþMXX

0
KXX

0
MþMXX

0
K AcovðXÞMþM AcovðXÞKXX

0
M

þMCKXSX
0
MþtrðX

0
KXSÞMCMþtrðKCÞMXSX

0
MþMXSX

0
KCMþMXO2 X

0
MþtrðSO2

ÞMCM ð50Þ

5.3.4. Estimation of covðYÞ
In Appendix C, it is proved that the covariance matrix of Y may be written as

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

DicovðXÞD0jþDcovðO2
ÞD0 ð51Þ

where

8 i¼ 1 . . .5, Di ¼ ðB
0
i � AiÞþðAi � B0iÞPnp ð52Þ

D¼ ðMX Þ � ðMX Þ ð53Þ

where Ai, Bi, and Pnp are defined in Appendix C.

6. Numerical examples

A clamped–free square beam is studied in this section (length L, width b, thickness t). The characteristics of the beam
are listed in Table 1. The beam is modeled as an Euler–Bernoulli beam and is discretized into nele elements. Each node has 2
degrees of freedom (dof) and the interpolation functions are cubic: in this study, nele ¼ 10 and hence then the number of
dofs, n, is equal to 20.

The rigidity EI¼ E� I (I: second moment of inertia) of each beam element is assumed to be a random variable. Thus

EI¼ EImþDEI ð54Þ

where EIm is deterministic and is evaluated from the section dimensions and Young’s modulus given in Table 1.
A Monte-Carlo simulation (MCS) was carried out: rtot ¼ 4000 random stiffness matrices Ks were calculated from rtot

samples of the rigidity EIs. The mass matrix M is assumed to be deterministic. K is the ‘deterministic’ stiffness matrix
evaluated for EI¼ EIm: the deterministic eigenvectors X in case 1 were obtained by solving the deterministic eigenproblem
associated with the matrices K and M.

Regarding case 2, by solving the eigenproblem related to the matrices Ks and M, rtot samples of the first p modes fX,O2
gs

were obtained. The mean matrix X (respectively O2 ) and the covariance matrix C (respectively CO2 ) of Xs (respectively O2s
)

were evaluated. A Kronecker product decomposition was then calculated following the procedure given in Section 3.1.2.
Relations (19), (27), (29), (30), (39), (50) and (51) were applied to calculate the first two moments of Y. In order to

assess the accuracy of the results, the mean and the covariance matrix of Y were directly determined from the Monte-Carlo
simulation: from each sample Ks a sample Ys of Y was calculated with relation (9). Then the mean matrix and the
covariance matrix of Y were determined from the rtot samples Ys. In the following, a 3D plot of the covariance matrices will
be given. The standard deviation of the elements of the stiffness matrix Y are given in 2D plots: this corresponds to the
Table 1
Characteristics of the beam.

L (m) b (mm) t (mm) Em (GPa) r ðkg m�3Þ EIm (N m2)

1 20 20 210 7800 2.8�103
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square root of the diagonal elements of the covariance matrix. Similarly, to show the results of the stiffness matrices, a vec
operation had been performed on the mean matrix which is then plotted as a 2D curve. In order to assess the main
assumption of the perturbation method is valid, the stochastic norm of the uncertainties on the eigenfrequencies JDO2

JS

and the eigenvectors JDXJS were also calculated.
In the following several cases are studied and compared to the results obtained from the direct MCS:
�
 the rigidity is almost uniform on the whole beam for each simulation,

�
 the rigidity of each element varies randomly along the beam for each simulation,

�
 the rigidity of only one element is random for each simulation.
6.1. Almost uniform rigidity

In this case, the rigidity of element e is

EIe
¼ EImþDEIð1þseÞ ð55Þ

where:
�
 a realization of the random variable DEI is drawn for each simulation from a normal distribution: DEI�N ð0,sEIÞ. The
influence of sEI will be addressed.

�
 se is also a random variable; a realization is drawn for each element and each simulation according to a normal

distribution DEI�N ð0;5%Þ: the standard deviation of 5% is sufficiently small to consider that the rigidity is almost
uniform along the beam.

It is important to mention that if the rigidity distribution was uniform for each simulation (i.e. se ¼ 0), the eigenvectors
would be deterministic: this justifies that case 1 has been considered in this study.

The results are given in Figs. 1–4. They were obtained for p¼ n¼ 20 with only r¼100 samples drawn from the rtot MCS
samples, and for sEI ¼ 10%. In that case the relative uncertainties on the eigenvectors and the eigenvalues are

JDXJS

JXJF

C0:8% ð56Þ

JDO2
JS

JO2
JF

C7:3% ð57Þ

In the following the uncertainty on the eigenvectors (resp. eigenfrequencies) is quantified with relation (56) (resp. relation
(57)).

In Fig. 1 all of the curves are superposed, showing a good agreement between the solutions proposed in this paper and
the one obtained from the MCS solution:

JX case 1;case 2�X MCSJF

JX MCSJF

¼ 2:3% ð58Þ
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Fig. 1. vecðY Þ from MCS, case 1 solution, exact case 2 solution, perturbed case 2 solution, Kronecker product decomposition case 2 solution.
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Fig. 4. Covariance matrix of Y from MCS.
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From Fig. 2, the same conclusions may be drawn for the covariance matrices, except that the peaks obtained from the MCS
are slightly higher (6%):

Jcovcase 1;case 2�covMCSJF

JcovMCSJF
¼ 6:3% ð59Þ

In the following the error on the mean matrix (resp. covariance matrix) is quantified with relation (58) (resp. relation (59)).
Fig. 3 shows some parasitic oscillations that increase the discrepancy with respect to the MCS solution when the

Kronecker product decomposition solution is used:

Jcovcase 2,Kronecker�covMCSJF

JcovMCSJF
¼ 22:3% ð60Þ

A 3D representation of the covariance matrix calculated from the MCS is given in Fig. 4: the covariance matrices
obtained from the solutions proposed in this paper are very similar. It shows that the uncertainties are spread over all of
the beam showing correlation between the vertical displacement of distant nodes.

Relations (56) and (57) show that the uncertainty on the eigenvectors is much smaller than on the eigenvalues. Thus
the eigenvectors may be considered as deterministic and case 1 is then applicable. This explains why the results obtained
for case 2 are the same as for case 1: the contribution of the eigenvector uncertainties is negligible compared to the
uncertainties of the eigenfrequencies. Relation (56) also shows that the main assumption of the perturbation method is
fulfilled: the results given by this method are then very good.

The influence of the number of samples was studied by comparing the results obtained with 10, 30, 100, 300, 500, 1000
and 4000 samples. Naturally, the results show that the errors decrease with the number of samples, although the errors
remain quite small even for r¼10. Similarly the influence of the uncertainty on the rigidity, sEI , was studied. Fig. 5 shows
the influence of this parameter on the input quantities (eigenvectors and eigenfrequencies): the uncertainty on the
eigenfrequencies increases more quickly than that on the eigenvectors. Obviously the errors on the mean matrix and the
covariance matrix decrease with sEI , but they are still good up to 20%. All these of results are shown in Figs. 6 and 7(b).

6.2. Non-uniform rigidity distribution

In this case, the rigidity of an element e is given by

EIe
¼ EImþDEIe

ð61Þ

where DEIe is drawn for each element and each simulation according to a normal distribution: DEIe
�N ð0,sEIÞ.

This rigidity distribution infers a stronger uncertainty on the eigenvectors than on the eigenfrequencies as shown in
Fig. 8.

In this case the uncertainties do not spread over the beam and Fig. 9 shows that a vertical displacement is strongly
correlated only with the vertical displacements of the adjacent nodes. This is a significant difference with the previous
example. The covariance matrix given by the case 1 solution is very different from the one obtained from the MCS and is
very similar to the one obtained in the previous example, as shown in Fig. 10(a): when the eigenvectors are supposed to be
deterministic, the uncertainties spread over the beam. In contrast, the perturbation method case 2 solution is a good
estimate of the covariance matrix obtained from the MCS (see Fig. 10(b)). Fig. 11(a) and (b) confirms these conclusions:
even for a small value of sEI (1%) and a large r, the case 1 solution cannot provide a covariance matrix close to the MCS
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Fig. 5. Uncertainty on the eigenvectors (plain line) and the eigenfrequencies (dashed line).
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Fig. 6. Error on the mean matrix.
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Fig. 7. Error on the covariance matrix with respect to direct Monte Carlo simulation—almost uniform rigidity distribution. (a) Solution for case 1.

(b) Perturbation method based solution for case 2.
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solution (error always greater than 55%), whereas the perturbation method solution can give a good estimation of the
covariance matrix, provided enough samples are considered, even for a quite high value of sEI (20%). This proves the strong
influence on the eigenvectors on the covariance matrix estimation.

Regarding the mean matrix, Fig. 12(a) shows that the case 1 solution agrees well with the MCS solution up to sEI ¼ 20%
whereas Fig. 12(b) shows that the perturbation method case 2 solution agrees well with the MCS solution only up to
sEI ¼ 10%: beyond this limit the uncertainty on the eigenvectors is not small enough. It is important to note that the
results are very good even when few samples are used.

The good results obtained from the case 1 solution shows that the influence of the eigenvector uncertainty on the mean
matrix is weak.

6.3. Random local rigidity

In this case, the rigidity of only one element is random. In this example the rigidity of the third element is considered,
so that

EI3
¼ EImþDEI ð62Þ

where the DEI realizations are drawn for each element and each simulation according to a normal distribution:
DEI�N ð0,sEIÞ. The rigidity of the other elements is assumed to be deterministic and equal to EIm. Fig. 13 shows that
the uncertainties on the eigenvectors are much stronger than on the eigenfrequencies, which remains quite small at
approximately 4% even for sEI ¼ 50%.



Fig. 8. Uncertainty on the eigenvectors (plain line) and the eigenfrequencies (dashed line).

Fig. 9. Covariance matrix of Y from MCS, sEI ¼ 10%, r¼100.

Fig. 10. Covariance matrix of Y, sEI ¼ 10%, r¼100, non-uniform rigidity distribution. (a) Solution for case 1. (b) Perturbation method based solution for

case 2.
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Fig. 11. Error on the covariance matrix with respect to direct Monte Carlo simulation—non-uniform rigidity distribution. (a) Solution for case 1.

(b) Perturbation method based solution for case 2.
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Fig. 12. Error on the mean matrix with respect to direct Monte Carlo simulation—non-uniform rigidity distribution. (a) Solution for case 1.

(b) Perturbation method based solution for case 2.
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The uncertainty location appears very clearly in the covariance matrix, as shown in Fig. 14, where the covariance matrix
obtained from the MCS is plotted: the only significant values are associated to the vertical displacements of the element
with three nodes. Similar to the previous example, the perturbation method case 2 solution agrees well with the MCS
simulation regarding the covariance matrix, whereas the case 1 solution does not give good results and, once again,
spreads the uncertainties along the beam (see Fig. 15(a)). This is confirmed by Fig. 16(a) obtained from several values of sEI

and several numbers of samples r for case 1: the error in all cases is greater than 90%. Fig. 16(b) shows that for the
perturbation method case 2 solution, for rZ10 and sEI r20%, the error on the covariance matrix is almost constant and
equal to 49%. This error may be considered as high but, for all these cases, the covariance matrix representation is similar
to the one shown in Fig. 15(b), which is quite similar to the MCS result; however, the main peaks are underestimated by
25% and many small parasitic peaks appear where no such peaks are present in the MCS simulation solution.

Fig. 17(a) and (b) shows that the mean matrix is very well estimated by the solutions given either by the case 1
approach or the case 2 approach, even when very few samples are used and for large uncertainties on the rigidity. This is in
good agreement with the previous conclusion: the mean matrix is mainly controlled by the eigenfrequencies which have,
in this example, a small uncertainty.

7. Conclusions

A probabilistic model updating method is developed to deal with uncertainties of measured eigenfrequencies and
eigenvectors. The mean optimized stiffness matrix and the covariance matrix are calculated. A first case (case 1) assuming
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Fig. 14. Covariance matrix of Y from MCS, sEI ¼ 10%, r¼100, random local rigidity.

Fig. 15. Covariance matrix of Y, sEI ¼ 10%, r¼100, random local rigidity. (a) Solution for case 1. (b) Perturbation method based solution for case 2.
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that the uncertainty on the eigenvectors is negligible has been considered whereas a second case (case 2) has taken into
account the uncertainties on both the eigenfrequencies and the eigenvectors. In case 2, a perturbation method is used to
derive an estimation of the covariance matrix.

The results are tested on three examples involving random uncertainty on the rigidity along a beam: depending on the
example, the uncertainty on the eigenvectors and the eigenfrequencies may be weak or strong. The solutions provided by
the probabilistic analysis are compared to Monte-Carlo Simulation solutions.

The mean optimized stiffness matrix seems to be sensitive to the eigenfrequency uncertainties only. Thus the solution
provided by the case 1 analysis gives results in a good agreement with the MCS results: the accuracy depends mainly on
the uncertainty on the eigenfrequencies whereas it is only weakly sensitive to the number of samples used. The results for
the mean matrix are not as good when the perturbation method case 2 solution is used, but they still remain acceptable.

The covariance matrix appears to be very sensitive to the eigenvector uncertainty. The covariance matrix obtained from
the case 1 solution is in poor agreement with the MCS solution when the eigenvector uncertainty is not weak. When the
rigidity uncertainty distribution is almost uniform along the beam, the uncertainty on the eigenvectors is weak and then
the case 1 solution may give a rather good estimation of the covariance matrix. The perturbation method case 2 solution
takes into account the eigenvector uncertainty: then a quite good agreement with the MCS solution is reached for all of the
examples. Furthermore the perturbation method (case 2 solution) allows the characterization of the distribution of the
uncertainties (almost uniform/non-uniform/localized).
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Appendix A. Matrix variate normal distribution properties

Following Gupta and Nagar [52], the characteristic function will be used to derive some expectations such as
Efxi1 j1

. . . xir jr
g.

Consider:
�
 X, an n�p random matrix: X �N n,pðX ,CÞ, where X is the mean of X.

�
 Z, an n�p matrix.

�
 DX, an n� p random matrix: DX �N n,pð½0�,CÞ, where ½0� is the n� p null matrix.
The characteristic function is

fXðZÞ ¼ Efexp trðı Z0 XÞg ðA:1Þ

fXðZÞ ¼ EfexpðıvecðZÞ0vecðXÞÞg ðA:2Þ

fXðZÞ ¼ expðıvecðZÞ0vecðX Þ�1
2vecðZÞ0CvecðZÞÞ ðA:3Þ

fXðZÞ ¼ expðhðZÞÞ ðA:4Þ

with

ı¼
ffiffiffiffiffiffiffi
�1
p

ðA:5Þ

hðZÞ ¼ ı
Xn

i ¼ 1

Xp

j ¼ 1

xijzij�
1

2

Xn

i ¼ 1

Xp

j ¼ 1

Xn

k ¼ 1

Xp

l ¼ 1

zijCðj�1Þnþ i,ðl�1Þnþkzkl ðA:6Þ

Indeed, according to (28), the covariance between the elements Xij and Xkl is Ca,b with
�
 a¼ ðj�1Þnþ i and b¼ ðl�1Þnþk
�
 or, equivalently:

j¼
a�1

n

� �
þ1

i¼ a�ðj�1Þn

8><>: l¼
b�1

n

� �
þ1

k¼ b�ðl�1Þn

8><>:

The following characteristic function property will be used:

r
		 Yr

( )

@ fXðZÞ

@zi1j1
. . . @zir jr

			
Z ¼ 0

¼ ırE
k ¼ 1

xikjk
ðA:7Þ

A.1. Efxijg

@fXðZÞ

@zij
¼ expðhðKÞÞ

@hðZÞ

@zij
ðA:8Þ

From (A.6), we have

@hðZÞ

@zij
¼ ıxij�

Xn

k ¼ 1

Xp

l ¼ 1

Cðj�1Þnþ i,ðl�1Þnþk zkl ðA:9Þ

Thus

Efxijg ¼
1

ı

@hðZÞ

@zij

				
Z ¼ 0

¼ xij ðA:10Þ
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A.2. Efxijxklg

@2fXðZÞ

@zij @zkl
¼ expðhðZÞÞ

@hðZÞ

@zij

@hðZÞ

@zkl
þ
@2hðZÞ

@zij @zkl


 �
ðA:11Þ

From (A.9) we have

@2hðZÞ

@zij@zkl
¼�Cðj�1Þnþ i,ðl�1Þnþk ðA:12Þ

Thus

Efxijxklg ¼
1

ı2
@2fXðZÞ

@zij@zkl

				
Z ¼ 0

¼ xijxklþCðj�1Þnþ i,ðl�1Þnþk ðA:13Þ

A.3. Efxijxklxmqxrsg

To simplify the equations, the following notations will be used:

hi1j1 ...ir jr ¼
@rhðZÞ

@zi1j1
. . . @zir jr

ðA:14Þ

@ij ¼ @zij ðA:15Þ

The fX third partial derivative has to be calculated:

@3fXðZÞ

@ij@kl@mq
¼ ehðZÞ½hijhklhmq

þhij klhmq
þhij mqhkl

þhkl mqhij
þhij kl mq

� ðA:16Þ

However from (A.12) we have

@3hðZÞ

@ij@kl@mq
¼ 0 ðA:17Þ

Then all the derivatives greater than the second order cancel. Therefore

@3fXðZÞ

@ij@kl@mq
¼ ehðZÞ½hijhklhmq

þhij klhmq
þhij mqhkl

þhkl mqhij
� ðA:18Þ

Then

@4fXðZÞ

@ij@kl@mq@rs
¼ ehðZÞ½hijhklhmqhrs

þhij klhmqhrs
þhij mqhklhrs

þhkl mqhijhrs
þhij rshklhmq

þhijhkl rshmq
þhijhklhmq rs

þhij klhmq rs
þhij mqhkl rs

þhij rshkl mq
� ðA:19Þ

From relations (A.9), (A.12) and (A.19) we have

Efxijxklxmqxrsg ¼
@4fXðZÞ

@ij@kl@mq@rs

				
Z ¼ 0

¼ xijxklxmqxrsþCðj�1Þnþ i,ðl�1ÞnþkxmqxrsþCðj�1Þnþ i,ðq�1ÞnþmxklxrsþCðl�1Þnþk,ðq�1Þnþmxijxrs

þCðj�1Þnþ i,ðs�1Þnþ rxklxmqþCðl�1Þnþk,ðs�1Þnþ rxijxmqþCðq�1Þnþm,ðs�1Þnþ rxijxkl

þCðj�1Þnþ i,ðl�1ÞnþkCðq�1Þnþm,ðs�1Þnþ rþCðj�1Þnþ i,ðq�1ÞnþmCðl�1Þnþk,ðs�1Þnþ r

þCðj�1Þnþ i,ðs�1Þnþ rCðl�1Þnþk,ðq�1Þnþm ðA:20Þ

Appendix B. Some useful expectations of a product of matrices

B.1. EfXX0g

From relation (A.13), the ik element of EfXX0g is

EfXX0gik ¼
Xp

j ¼ 1

Efxijxkjg ¼
Xp

j ¼ 1

xijxkjþ
Xp

j ¼ 1

Cðj�1Þnþ i,ðj�1Þnþk ðB:1Þ

If C ¼S�C, this relation may be rewritten as

EfXX0g ¼ XX
0
þtrðSÞC ðB:2Þ
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B.2. EfXX0KXX0g

The im element of EfXX0KXX0g is

EfXX0KXX0gim ¼
Xp

j ¼ 1

Xn

k ¼ 1

Xn

l ¼ 1

Xp

q ¼ 1

KklEfxijxkjxlqxmqg ðB:3Þ

This expression may be evaluated from (A.20):

EfXX0KXX0gim ¼
Xp

j ¼ 1

Xn

k ¼ 1

Xn

l ¼ 1

Xp

q ¼ 1

xijxkjKklxlqxmqþCðj�1Þnþ i,ðj�1ÞnþkKklxlqxmqþCðj�1Þnþ i,ðq�1Þnþ lKklxkjxmq

þCðj�1Þnþk,ðq�1Þnþ lKklxijxmqþCðj�1Þnþ i,ðq�1ÞnþmKklxkjxlqþCðj�1Þnþk,ðq�1ÞnþmKklxijxlq

þCðq�1Þnþ l,ðq�1ÞnþmKklxijxkjþCðj�1Þnþ i,ðj�1ÞnþkKklCðq�1Þnþ l,ðq�1ÞnþmþCðj�1Þnþ i,ðq�1Þnþ lKklCðj�1Þnþk,ðq�1Þnþm

þCðj�1Þnþ i,ðq�1ÞnþmKklCðj�1Þnþk,ðq�1Þnþ l ðB:4Þ

When C ¼S�C, EfXX0KXX0g can easily be derived from relation (B.3) which may be rewritten as

EfXX0KXX0gim ¼
Xp

j ¼ 1

Xn

k ¼ 1

Xn

l ¼ 1

Xp

q ¼ 1

xijxkjKklxlqxmqþCikSjjKklxlqxmqþCilSjqKklxkjxmq

þCklSjqKklxijxmqþCimSjqKklxkjxlqþCkmSjqKklxijxlqþClmSqqKklxijxkj

þCikSjjKklClmSqqþCilSjqKklCkmSjqþCimSjqKklCklSjq ðB:5Þ

Therefore we have

EfXX0KXX0g ¼ XX
0
KXX

0
þtrðSÞCKXX

0
þCKXSX

0
þtrðCKÞXSX

0
þtrðSX

0
KX ÞCþXSX

0
KC

þtrðSÞXX
0
KCþtrðSÞ2CKCþtrðSSÞCKCþtrðSSÞtrðCKÞC ðB:6Þ

B.3. EfXO2X0g

X and O2 are uncorrelated, and O2 is a diagonal matrix. Then the il element of EfXO2X0g is

EfXO2X0gil ¼
Xp

k ¼ 1

Efxikxlkg EfO2
kkg

¼
Xp

k ¼ 1

xik xlkO
2

kkþCðk�1Þnþ i,ðk�1Þnþ lO
2

kk ðB:7Þ

If C ¼S�C, this relation may be rewritten as

EfXO2X0gil ¼ ðXO
2 X
0
Þilþ

Xp

k ¼ 1

Cil SkkO
2

kk ðB:8Þ

Therefore

EfXO2X0g ¼ XO2 X
0
þtrðSO2

ÞC ðB:9Þ

B.4. EfDX B DXg

B is a p� n matrix. As the mean matrix of DX is the null matrix, the il element of EfDX B DXg is

EfDX B DXgil ¼
Xp

j ¼ 1

Xn

k ¼ 1

EfDxijDxklgBjk ¼
Xp

j ¼ 1

Xn

k ¼ 1

BjkCðj�1Þnþ i,ðl�1Þnþk ðB:10Þ

If C ¼S�C, this relation may be rewritten as

EfDX B DXg ¼CB0S ðB:11Þ

B.5. EfDX B DX0g

B is a p� p matrix. Then the il element of EfDX B DX0g is

EfDX B DX0gil ¼
Xp

j ¼ 1

Xp

k ¼ 1

EfDxij DxlkgBjk ¼
Xp

j ¼ 1

Xp

k ¼ 1

BjkCðj�1Þnþ i,ðk�1Þnþ l ðB:12Þ
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If C ¼S�C, this relation may be rewritten as

EfDX B DX0g ¼ trðB SÞC ðB:13Þ

B.6. EfDX0 B DXg

B is an n� n matrix. Then the il element of EfDX0 B DXg is

EfDX0 B DXgil ¼
Xn

j ¼ 1

Xn

k ¼ 1

EfDxji DxklgBjk ¼
Xn

j ¼ 1

Xn

k ¼ 1

BjkCði�1Þnþ j,ðl�1Þnþk ðB:14Þ

If C ¼S�C, this relation may be rewritten as

EfDX0 B DXg ¼ trðBCÞS ðB:15Þ

Appendix C. Estimation of covðYÞ: perturbation method

By neglecting the second order terms; and using (9) and (39), Y� ~Y may be calculated as

Y� ~Y ¼�KX DX0M�K DX X
0
M�MX DX0K�M DX X

0
KþMXX

0
KX DX0MþMXX

0
K DX X

0
M

þMX DX0KXX
0
MþM DX X

0
KXX

0
MþMXO2 DX0MþM DX O2 X

0
MþMXDO2 X

0
M ðC:1Þ

Y� ~Y ¼
X5

i ¼ 1

ðAi DX BiþB0i DX0A0iÞþMXDO2 X
0
M ðC:2Þ

with

A1 ¼�K , B1 ¼ X
0
M

A2 ¼�M, B2 ¼ X
0
K

A3 ¼MXX
0
K , B3 ¼ X

0
M

A4 ¼M, B4 ¼ X
0
KXX

0
M

A5 ¼M, B5 ¼O2 X
0
M

Then the covariance matrix is

covðYÞ ¼ EfvecðY� ~Y ÞvecðY� ~Y Þ0g ðC:3Þ

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

EfvecðAiDXBiÞvecðAjDXBjÞ
0
þvecðAiDXBiÞvecðB0jDX0A0jÞ

0

þvecðB0iDX0A0iÞvecðAjDXBjÞ
0
þvecðB0iDX0A0iÞvecðBj

0DX0A0jÞ
0
g

þEfvecðMX DO2 X
0
MÞvecðMX DO2 X

0
MÞ0g ðC:4Þ

where it has been taken into account the independence between X and O2, and the null mean for DX and DO2. By using
relation (10), this latter expression may be transformed:

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

EfðB0i � AiÞvecðDXÞvecðDXÞ0ðBj � A0jÞþðB
0
i � AiÞvecðDXÞvecðDX0Þ0ðA0j � BjÞ

þðAi � B0iÞvecðDX0ÞvecðDXÞ0ðBj � A0jÞþðAi � B0iÞvecðDX0ÞvecðDX0Þ0ðA0j � BjÞg

þcovðYÞ9case 1 ðC:5Þ

where

covðYÞ9case 1 ¼ ððMX Þ � ðMX ÞÞcovðO2
ÞððMX Þ0 � ðMX Þ0Þ ðC:6Þ

is the covariance matrix (27) obtained for case 1 with X ¼ X .
Using the permutation matrix Pnp, vecðDX0Þ is expressed in function of vecðDXÞ [52]:

vecðDX0Þ ¼Pnp vecðDXÞ ðC:7Þ
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where Pnp is an np�np-matrix:

Pnp ¼
Xn

i ¼ 1

Xp

j ¼ 1

Hði,jÞ � Hði,jÞ0 ðC:8Þ

where element (k,l) of the n�p-matrix Hði,jÞ is [52]

Hði,jÞk,l ¼ dikdjl ðC:9Þ

Then (C.5) is rewritten as

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

EfðB0i � AiÞvecðDXÞvecðDXÞ0ðBj � A0jÞþðB
0
i � AiÞvecðDXÞvecðDXÞ0P0npðA

0
j � BjÞ

þðAi � B0iÞPnpvecðDXÞvecðDXÞ0ðBj � A0jÞþðAi � B0iÞPnpvecðDXÞvecðDXÞ0P0npðA
0
j � BjÞg

þcovðYÞ9case 1 ðC:10Þ

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

ðB0i � AiÞcovðXÞðBj � A0jÞþðB
0
i � AiÞcovðXÞP0npðA

0
j � BjÞ

þðAi � B0iÞPnpcovðXÞðBj � A0jÞþðAi � B0iÞPnpcovðXÞP0npðA
0
j � BjÞþcovðYÞ9case 1 ðC:11Þ

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

½ðB0i � AiÞþðAi � B0iÞPnp�covðXÞ½ðBj � A0jÞþP0npðA
0
j � BjÞ�þcovðYÞ9case 1 ðC:12Þ

Finally the covariance matrix of Y may be written as

covðYÞ ¼
X5

i ¼ 1

X5

j ¼ 1

Di covðXÞD0jþD covðO2
ÞD0 ðC:13Þ

where

8 i¼ 1 . . .5, Di ¼ ðB
0
i � AiÞþðAi � B0iÞPnp ðC:14Þ

D¼ ðMX Þ � ðMX Þ ðC:15Þ
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