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This paper proposes a hyperelastic finite element-based lattice approach for the description of buckling

behaviour in single wall carbon nanotubes (SWCNTs). A one-term incompressible Ogden-type

hyperelastic model is adopted to describe the equivalent mechanical response of C–C bonds in SWCNTs

under axial compression. The material constants of the model are chosen by matching the linearised

response with the elastic constants adopted in the AMBER force field and by establishing equivalence

between the Ogden strain energy and the variation of the interatomic strain energy obtained from

molecular mechanics simulations. Numerical experiments are carried out and the results are compared

to atomistic simulations, demonstrating the predictive capabilities of the present model in capturing

initial buckling strain, deformation mechanisms and post-buckling behaviour under very large

compressive deformations.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Over the last few years, the investigation of carbon nanotubes
by means of computational simulations has brought substantial
progress, particularly in relation to the understanding of their
mechanical behaviour [1–3]. In the context of numerical models,
two main categories can be found extensively in the current
literature. The first category corresponds to the atomistic
approach [1,3–6], in which classical molecular dynamics and
tight-binding molecular dynamics constitute the most popular
techniques. Although these strategies have been demonstrated to
be successful in capturing complex deformation mechanisms in
atomistic systems, they suffer from the drawback of excessive
computing costs and therefore, their use has been limited to the
analysis of small to moderate size problems. The second category
is represented by finite elements simulations [2,7–11]. Particu-
larly in this category, the lattice approach [2,12] has been
demonstrated to be a suitable technique for the analysis of carbon
nanotubes. This approach establishes a linkage between struc-
tural and molecular mechanics at the C–C bond level, and
provides a way to model the deformation of carbon nanotubes
by means of conventional finite element analyses using classical
beam elements. Curiously, despite the extensive work carried out
in this context, a review of the current literature on the finite
element-based lattice approach shows that the adoption of a
hyperelastic framework to describe the atomic covalent bonds in
ll rights reserved.
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ikari).
SWCNTs at large strains continues to be largely ignored. More-
over, the little research reported in this context [13,14] has been
restricted exclusively to the study of carbon nanotubes under
axial tension. In Ref. [15], the authors also noticed the need of
more efforts to better reproduce the bond energy terms within
the range of large deformations.

In an attempt to encourage others researchers in this field to
make use of such concepts our main objective in this paper is to
adopt a hyperelastic framework in the constitutive modelling of
C–C bonds in order to capture the main features of buckling
behaviour in SWCNTs under axial compression. We anticipate
here that with the use of such a hyperelastic model, the predic-
tion of the initial buckling strain is achieved successfully. In
addition, the model is able to reproduce the main mechanisms
of deformation and to capture the post-buckling response under
large strains.

We note that for very large compressive strains before buck-
ling, the response provided by hyperelastic and linear elastic
models may become very different. For instance, the importance
of considering finite strain constitutive formulations in the
calculation of minimum critical buckling loads has been noticed
in Ref. [16]. The need of analyses and designs based on more
general frameworks taking into account finite strains and the
development of geometric instabilities has also been reported in
Ref. [17].

We remark here that, in a recent publication [14], the authors
adopted a similar approach to model C–C bonds in SWCNTs under
tension. The results showed good predictive capabilities of the
model. However, the strain energy associated with angular
deformation, bending and torsion was calculated under purely
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mechanical considerations rather than adopting an atomistic
criteria. Here, this drawback is circumvented by allowing the
present model to recover the AMBER force model [18] constants
for stretching, angle bending and torsion in the range of infinite-
simal strains. Moreover, we explore the suitability of this hyper-
elastic description when the radius and the length of carbon
nanotubes are varied in a detailed set of numerical experiments.
The paper is organised as follows. Section 2 presents the descrip-
tion of the equivalent mechanical response of C–C bonds in
SWCNTs by means of a hyperelastic framework. The validation
of the present model is given in Section 3. Finally, Section 4
summarises our conclusions.
2. Hyperelastic description

A generic finite hyperelastic model is characterised by the
existence of a strain energy density function C, which defines the
evolution of the Kirchhoff stress tensor, s, in terms of the current
Eulerian logarithmic strain tensor, e. The constitutive equation for
the Kirchhoff stress tensor is given by [19,20]

s¼
@C
@e

: ð1Þ

The strain tensor e can be represented as a function of the left

stretch tensor, V , by means of the expression e¼ ln V . Further-
more, if the strain energy function C is assumed to be isotropic, it
is possible to adopt a representation for V in terms of the
principal stretches, li, i¼ 1 . . .3. Hence, we can write the consti-
tutive equation for the eigenvalues ti of the Kirchhoff stress
tensor as

ti ¼
@C

@ ln ðliÞ
: ð2Þ

The particular choice of the strain energy density C is
commonly considered to be a matter of mathematical or experi-
mental convenience. Here, due to its simplicity and predictive
accuracy for large deformations in conventional materials, an
Ogden hyperelastic isotropic material model [21] is chosen for the
mechanical modelling of C–C bonds. A one-term incompressible
version of the Ogden strain energy density function is adopted,
whose expression is given by

C¼
2w
a2
fðl1Þ

a
þðl2Þ

a
þðl3Þ

a
�3g, ð3Þ

where w and a are material parameters to be determined.

2.1. Mechanical response for infinitesimal strains. Choice of the

constant w and the actual shear stiffness GAs

In order to capture the mechanical response of C–C bonds in
the range of infinitesimal strains, we proceed to match the
linearised response of the present hyperelastic model with the
linear elastic constants adopted in the AMBER force model.

The value of the constant w in Eq. (3) is related to the linear
elastic shear modulus G, through the condition w¼ G (we refer
here to Refs. [22,23]). In the limit of incompressibility, the shear
modulus becomes E=3 in isotropic solids. Thus, we obtain the
relationship:

w¼ E

3
: ð4Þ

By establishing equivalence between the interatomic energies
and their mechanical counterparts by means of the lattice
representation [2], in which C–C bonds are assumed to behave
as structural beam elements with circular cross-section of dia-
meter d, and length L, it is straightforward to obtain the
expression:

E¼
4KrL

pd2
: ð5Þ

The length L is given by the equilibrium bond length between
carbon atoms and is considered here as 0.142 nm [24]. The para-
meter Kr is the bond stretching constant and is assumed to be
652.2 nN nm�1 [25]. The C–C bond equivalent diameter adopted in
this work is d¼0.10 nm. As shall be seen later in this section, the
adoption of this value allows us to reproduce a phenomenological
response similar to that found numerically in molecular simulations
[15]. We also note that a value of d¼0.1 nm has been previously
identified in graphene sheets under non-linear out-of-plane bending
[24,12]. By evaluating the expressions (4) and (5) with the above
data, the resultant values for the Young modulus and Ogden
constant are E¼11.8 TPa and w¼ 3:93 TPa, respectively.

If we take into account the shear effects present in the
deformation of C–C bond beams [24], the mechanical bending
stiffness can be expressed as

Ky ¼
EIð4þfÞ
Lð1þfÞ

, with f¼
12EI

GAsL
2

, ð6Þ

where the factor GAs is referred to as the actual shear stiffness. The
parameter I is the second moment of area and is defined for a
circular cross-section as I¼ pd4=64. Furthermore, if we establish
equivalence between the mechanical bending strain energy and
the interatomic angle bending energy, we obtain that the bending
stiffness Ky is equivalent to the AMBER angle bending force
constant, considered here as 1.3905 nN nm rad�2 [25]. With the
above data at hand, we can obtain that the actual shear stiffness is
GAs ¼ 141:24 nN.

By taking into account isotropic condition Eq. (4), the standard
expression for the mechanical torsional stiffness can be expressed
as

Kt ¼
wJ

L
, ð7Þ

where J is the polar second moment of area, defined as J¼ pd4=32.
By replacing the values of w, J and L into Eq. (7), we obtain
Kt ¼ 0:272 nN nm, which is in agreement with the AMBER tors-
ional force constant reported in the literature, equal to
0.278 nN nm rad�2 [24].

With the choice of the above values for the material constant w
and the actual shear stiffness GAs, we enable the present hyper-
elastic model to recover the AMBER bond stretching, angle
bending and torsional force constants, in the infinitesimal strains
regime.

2.2. Choice of the constant a

The choice of the constant a in Eq. (3) is made by investigating
the influence of this parameter on the strain energy obtained in
an armchair (5,5) SWCNT finite element model, with 5 nm length.
We use the commercial finite element software ABAQUS [26] to
carry out all our simulations. Because of the development of local
instabilities during the non-linear deformation process, we adopt
the automatic stabilisation method provided by ABAQUS in order to
capture the buckling and post-buckling response.

The finite element mesh consists of 410 nodes and 605 beam
elements. We select the two-noded hybrid beam element, which
will be adopted in all of the subsequent analyses presented in this
paper. Transverse shear strains (Timoshenko beam theory) are
considered in the beam element formulation. This type of hybrid
beam element is compatible with the adoption of a hyperelastic
Ogden model. The Z-axis corresponds to the axial (longitudinal)
direction of the tube, whereas X and Y correspond to the
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transverse directions. Zero prescribed displacements are imposed
on all of the degrees of freedom of the nodes located at one of the
ends of the tube, at Z¼0. On the opposite end, at Z¼5 nm, we
apply incremental compressive displacements in the axial direc-
tion until buckling occurs. The prescribed displacements on the
remaining degrees of freedom at this end are set to zero. Because
the covalent bond among atoms is the dominant atomic interac-
tion, we do not consider explicitly the effects of van der Waals
forces in this paper [27].

We proceed to study the influence of the constant a on the
amount of strain energy when this parameter is equal to �5.0,
2.0 and 10.0. The results obtained from our finite element
simulations are compared in Fig. 1 with that obtained from
molecular mechanics simulations [15]. We remark that for con-
sistency, all the results reported in Ref. [15] and presented in this
paper have been obtained by means of the application of
prescribed displacements rather than forces.

We observe in Fig. 1 that the variation of a has little influence
on the amount of energy when small strains are considered.
Furthermore, we observe that a reduction/increase of a is accom-
panied by an increase/reduction in the critical buckling strain.
Particularly, for a¼ 2:0 our model shows a clear first instant of
buckling at 0.082 strain, which is in good agreement with the
predicted value reported in Ref. [15], equal to 0.081. In addition,
for this particular choice of a we illustrate in Fig. 2 the morpho-
logical agreement between the buckling mechanism in the finite
element and molecular mechanics models, demonstrating the
agreement between the phenomenological response of both
approaches. Consequently, a¼ 2:0 will be adopted in all of the
following analyses.
Fig. 1. Strain energy per atom for a (5,5) SWCNT with 5 nm length. Comparison

between the Ogden strain energy calculated from finite element simulations

considering three different values for a and the strain energy obtained from

molecular mechanics simulations [15].

Fig. 2. Comparison of buckling mechanisms in a (5,5) SWCNT with 5.0 nm length

element model.
3. Validation of the model

Our purpose in this section is to validate the present hyper-
elastic model with published data. All of the considerations made
in Section 2.2 in terms of modelling are applied here. Constants
w¼ 3:93 TPa and a¼ 2:0 are used in the model, along with a C–C
bond equivalent diameter of d¼0.10 nm and an actual shear
stiffness of GAs ¼ 141:24 nN. The commercial software ABAQUS
[26] is used in all our computational simulations.

3.1. Compression of a zig-zag (9,0) SWCNT

In this first numerical experiment, we analyse a zig-zag (9,0)
SWCNT, with 5 nm length, compressed up to the first buckling
point. The corresponding finite element mesh consists of 432
nodes and 639 beam elements. The resultant strain energy per
atom calculated with the present hyperelastic model is shown in
Fig. 3, along with the strain energy calculated by means of
molecular mechanics simulations [15] for the same geometry.
We observe here a good agreement between both approaches.
The evolution of the deformation energy is well predicted with
nearly perfect matching up to 0.07 strain, with only a slight
discrepancy in the critical buckling strains. Such critical strains
are 0.082 and 0.078 for the finite element and the molecular
mechanics models, respectively, revealing only a 5% difference.

3.2. Variation of the radius in carbon nanotubes

Here, we explore the suitability of the present hyperelastic
description for SWCNTs within a wide range of radii, between
2 and 24 Å approximately. We compare the initial buckling
strains obtained with the proposed hyperelastic model and those
critical strains obtained from Refs. [28,15] (among others) in
Fig. 4. Here, we can observe a good agreement between the
buckling strains predicted by our numerical simulations and
those calculated with molecular mechanics simulations [15],
molecular dynamics models [3,5,29] and with generalized tight-
binding molecular dynamics and ab initio electronic structure
methods [30], which demonstrate the good predictive capabilities
of the present model. For the smaller radii between 3 and 7 Å, our
numerical predictions tend to fit very well to the results achieved
in Ref. [15] in armchair and zig-zag carbon nanotubes. For greater
radii, our critical strains show a good agreement, although slightly
overestimated, with the values presented in Ref. [28] and
obtained from Ref. [5]. This slight overestimation can be attrib-
uted to the fact that in Ref. [5], the authors used much longer
carbon nanotubes in their simulations. Nevertheless, more infor-
mation on large carbon nanotubes is needed here in order to
achieve a better comparison. Table 1 also summarises the differ-
ent carbon nanotubes analysed in this subsection by means of the
proposed model along with their corresponding critical strains.

3.3. Variation of the length in carbon nanotubes

In this subsection we study the suitability of the proposed
hyperelastic model for SWCNTs for a wide range of lengths. Here,
we calculate the initial buckling strains of an armchair (10,10)
. (a) Molecular mechanics simulation [15] and (b) present hyperelastic finite



Fig. 3. Variation of the strain energy per atom during compression of a (9,0)

SWCNT of 5 nm length. Comparison between the present hyperelastic finite

element model and the results reported by molecular mechanics simulations [15].

Fig. 4. Variation of the initial buckling strains according to the carbon nanotubes

radius. Results obtained from the present hyperelastic model and those obtained

from Refs. [28,15], among others.

Table 1
Summary of the carbon nanotubes ana-

lysed with the present hyperelastic model

and shown in Fig. 4.

Chiral

vector

Approx. length

(nm)

Critical

strain

(3,3) 4 0.158

(4,4) 5 0.118

(8,0) 4 0.099

(5,5) 5 0.082

(9,0) 5 0.082

(7,7) 6 0.072

(10,10) 5 0.067

(12,12) 6 0.057

(15,15) 8 0.044

(20,20) 8 0.034

(25,25) 10 0.028

(30,30) 10 0.023

(35,35) 10 0.021

Fig. 5. Critical strains for (10,10) SWCNTs with different lengths.

Fig. 6. Three typical configurations of the deformed (7,7) SWCNT.
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SWCNT with lengths ranging between 2.5 and 14 nm, approxi-
mately. Our numerical results are presented in Fig. 5 and
compared with those values obtained from molecular dynamics
simulations [5]. The comparison reveals an excellent agreement
between these two approaches. The difference between the
critical strain calculated with finite elements and with molecular
dynamics vary from 2.3% to 7.4% with an average value of 4.2%.

3.4. Post-buckling response of an armchair (7,7) SWCNT

Fig. 6 illustrates the variation of the strain energy per atom and
the deformation mechanisms from our finite element simulations
during the compression of a (7,7) SWCNT of 6 nm length.
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Furthermore, the strain energy reported in Ref. [27], using Brenner’s
first [31] and second [32] generation potential, and also the strain
energy calculated in Ref. [3], for the same geometry, are also
presented here. The finite element mesh consists of 686 nodes and
1015 beam elements.

In a first nearly quadratic regime, the results obtained with our
simulation and those obtained from Refs. [3,27], using Brenner’s
second generation potential, show perfect matching, up to 0.03
strain. Here, the deformation is uniform as shown in inset (a).

As the compressive deformation progresses these curves tend to
diverge up to 0.05 strain in which the molecular dynamics simula-
tion from Ref. [3] and the atomic-scale finite element model from
Ref. [27] using Brenner’s second generation potential reach the first
instant of buckling. At this stage, Yakobson’s simulation displays
(although not shown here) two identical flattenings perpendicular
to each other, non-symmetrically located along the tube axis. The
first buckling mechanism in our simulation is found at a later stage,
at 0.072 strain, coinciding closely with the second buckling strain
reported by Yakobson, at 0.076. At this point, if we compare the
morphological patterns in both cases we will observe that they
match perfectly. In any case, our first critical strain of 0.072 and that
reported by Yakobson (0.05) are depicted in Fig. 4, revealing a slight
underestimation for Yakobson’s result when other references are
considered (see results for a radius about 4.75 Å). Inset (b) shows
two orthogonal views of the first buckling deformation mechanism
predicted by our numerical simulation, characterised by a three
axial half-waves symmetric configuration with a still straight axis.
Furthermore, we observe that despite the small difference detected
at about 0.05 strain between the amount of energy reported by
Yakobson and our model, at a strain about 0.07 the results predicted
by both simulations tend to converge into the same amount of
stored energy. In contrast, despite the fact that Leung’s simulations
seem to show a similar deformation mechanism (not shown here),
the amount of energy reported in both cases, with Brenner’s first
and second generation potential, is substantially lower.

Further increase of the compressive deformation results in a
new mechanism of deformation, represented by a buckling side-
ways in which the corresponding flattenings serve as hinges. Inset
(c) plots this stage (with two perpendicular views) in our finite
element simulation, revealing the preservation of only one plane
of symmetry after buckling. Yakobson’s simulation predicts this
critical strain at 0.09. However, our numerical model varies
gradually (discontinuity not visible in the curve) but during a
transition which occurs at about this level of strain. In any case,
we find again a morphological agreement between both meth-
odologies. Moreover, the amount of energy calculated in these
two simulations shows almost a perfect match to over 0.12 strain,
where a new buckling mechanism is triggered. Yakobson reported
over this level of deformation an entirely squashed asymmetric
configuration. Our numerical model predicts after 0.125 strain
(refer to Fig. 6, circle labelled with letter d) a morphological
pattern (not shown here) similar to that shown in inset (c) but
much more distorted. Beyond this point, a gradual transition in
the slope of our curve is observed, revealing a slightly lower slope
when compared to Yakobson’s results. Here, the van der Waals
interactions and other different atomic energy terms are crucial in
order to describe accurately the mechanical response of carbon
nanotubes for even further levels of deformations.
4. Conclusions

The buckling behaviour of single wall carbon nanotubes
(SWCNTs) has been investigated by means of a finite element-based
lattice approach. A one-term incompressible Ogden-type hyperelas-
tic model has been chosen to describe the equivalent mechanical
response of C–C bonds in SWCNTs under axial compression. Finite
element simulations have been carried out on SWCNT models and
the results have been compared to published data, demonstrating
the predictive capability of the present hyperelastic model. The
proposed description has been able to capture key features in the
buckling behaviour of carbon nanotubes such as initial buckling
strain, deformation mechanisms and post-buckling behaviour under
large deformations. In addition, the suitability of this hyperelastic
description has also been assessed successfully for a wide range of
carbon nanotubes geometries, revealing the potential applications of
our approach on the study of fullerenes.
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