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Abstract. The stochastic finite element analysis of elliptic type partial differential
equations is considered. A reduced method of the spectral stochastic finite element
method using polynomial chaos is proposed. The method is based on the spec-
tral decomposition of the deterministic system matrix. The reduction is achieved
by retaining only the dominant eigenvalues and eigenvectors. The response of the
reduced system is expanded as a series of Hermite polynomials, and a Galerkin error
minimization approach is applied to obtain the deterministic coefficients of the expan-
sion. The moments and probability density function of the solution are obtained by a
process similar to the classical spectral stochastic finite element method. The method
is illustrated using three carefully selected numerical examples, namely, bending of a
stochastic beam, flow through porous media with stochastic permeability and trans-
verse bending of a plate with stochastic properties. The results obtained from the
proposed method are compared with classical polynomial chaos and direct Monte
Carlo simulation results.

Keywords. Stochastic differential equations; polynomial chaos; reduced methods;
spectral decomposition; numerical methods.

1. Introduction

Due to the significant development in computational hardware it is now possible to solve high
resolution models in various computational physics problems, ranging from fluid mechanics to
nano-bio mechanics. However, the spatial resolution is not enough to determine the credibility
of a numerical model. A correct representation of the physical model as well as its parameters is
also crucial. Since neither of these may be exactly known, over the past three decades there has
been increasing research activities to model the governing partial differential equations within
the framework of stochastic equations. We refer to few recent review papers, for example by
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Nouy (2009); Charmpis et al (2007); Stefanou (2009) for comprehensive details. Consider a
bounded domain D ∈ R

d with piece-wise Lipschitz boundary ∂D, where d ≤ 3 is the spatial
dimension. Further, we define a probability space (�,F, P), where ω ∈ � is a sample point
from the sampling space �, F is the complete σ -algebra over the subsets of � and P is the
probability measure. We analyse the stochastic elliptic partial differential equation (PDE)

−∇ [a(x, ω)∇u(x, ω)] = p(x); x in D (1)

with the associated Dirichlet condition

u(x, ω) = 0; x on ∂D. (2)

Here a : R
d × � → R is a random field (Vanmarcke 1983), which can be viewed as a set of

random variables indexed by x ∈ R
d . We assume the random field a(x, ω) to be stationary and

square integrable. Depending on the physical problem, the random field a(x, ω) can be used to
model different physical quantities. As an example, for a slow flow of an incompressible, viscous
fluid through a porous media, a(x, ω) would be the random field describing the permeability of
the medium. The purpose of this paper is to investigate a new solution approach for Eq. (1) after
the discretization using the stochastic finite element method (Ghanem & Spanos 1991; Kleiber
& Hien 1992; Matthies et al 1997; Manohar & Adhikari 1998).

Among the various techniques to solve stochastic partial differential equations, spectral
stochastic finite element methods (SSFEM) have received significant attention. Although this
method has been applied to various practical problems, one of the possible drawbacks is the
high computational cost associated with large systems. As a result, various reduction methods
have been proposed over the past decade. The reduction of the system can be done before or
after applying the spectral decomposition such as the polynomial chaos (PC) expansion. Here
the response is expressed as a linear combination of a set of vectors where the coefficients are
expanded with PC. For example, Sachdeva et al (2006) used the first basis vectors spanning the
preconditioned stochastic Krylov subspace, and each vector was expressed as a linear combi-
nation of a deterministic vector and a PC. An orthogonalization of the deterministic response
and its first-order derivative with respect to parameters and design parameters, calculated at
calibration points was used by Maute et al (2009). A Galerkin based reduced spectral func-
tion approach was proposed by Adhikari (2011). A different condensation method focused on
dynamic systems was developed by Guedri et al (2006), where the vectors used were a reduced
basis, e.g., a Ritz basis of fixed or free normal modes, and a static displacement where the
uncertainty in the dynamic stiffness matrix is taken into account. In Acharjee & Zabaras (2006)
the generalized PC was applied to the diffusion equation, and the vectors used were the ones
from the proper orthogonal decomposition obtained from the underlying deterministic diffusion
problem.

The method proposed in this paper is based on a space reduction of the original sys-
tem combined with a polynomial chaos approach. In section 2 a brief overview of spectral
stochastic finite element method (SSFEM) is presented. The reduction technique is devel-
oped in section 3. The post processing of the results to obtain the response moments, and an
error estimation of the proposed method with respect to SSFEM are discussed in section 4.
Based on the theoretical results, a simple computational approach is proposed in section 5.
The new approach is applied to the stochastic mechanics of a beam in section 6, to a flow
through a stochastic porous medium in section 7 and to the stochastic mechanics of a plate in
section 8. From the theoretical developments and numerical results, some conclusions are drawn
in section 9.
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2. Overview of the spectral stochastic finite element method

2.1 Discretization of the stochastic PDE

Consider a(x, ω) is a Gaussian random field with a covariance function Ca : R
d × R

d → R

defined in the domain D. Since the covariance function is square bounded, symmetric and posi-
tive definite, it can be represented by a spectral decomposition in an infinite dimensional Hilbert
space. Using this spectral decomposition, the random process a(x, ω) can be expressed (see for
example, Ghanem & Spanos (1991) and Papoulis & Pillai (2002)) in a generalized series of
Fourier type known as the Karhunen–Loève expansion

a(x, ω) = a0(x) +
∞∑

i=1

√
νiξi (ω)ϕi (x). (3)

Here a0(x) is the mean function, ξi (ω) are uncorrelated standard Gaussian random vari-
ables, νi and ϕi (x) are eigenvalues and eigenfunctions satisfying the integral equation∫
D Ca(x1, x2)ϕ j (x1)dx1 = ν jϕ j (x2), ∀ j = 1, 2, · · · . Truncating the series (3) up to the M th

term, substituting a(x, ω) in the governing PDE (1) and applying the boundary conditions, the
discretized equation can be written as

[
A0 +

M∑

i=1

ξi (ω)Ai

]
u(ω) = f. (4)

The necessary technical details to obtain the discrete stochastic algebraic equations from the
stochastic partial differential equation (1) has become standard in the literature and therefore
omitted here. Excellent references, for example Ghanem & Spanos (1991); Matthies & Keese
(2005) and Babuska et al (2005), are available on this topic. In Eq. (4) A0 is a symmetric posi-
tive definite matrix, Ai ∈ R

n×n; i = 1, 2, . . . , M are symmetric matrices, u(ω) ∈ R
n is the

solution vector and f ∈ R
n is the force vector. We assume that the eigenvalues of A0 are distinct.

The number of terms M in Eq. (4) can be selected based on the ‘amount of information’ to be
retained. This in turn is related to the number of eigenvalues retained, since the eigenvalues, νi ,
in Eq. (3) are arranged in a decreasing order. One of the main aims of a stochastic finite element
analysis is to obtain u(ω) for ω ∈ � from Eq. (4) in an efficient manner and is the main topic of
this paper.

2.2 Brief review of the solution techniques

The solution of the set of stochastic linear algebraic equations (4) is a key step in the stochastic
finite element analysis. As a result, several methods have been proposed. These methods include,
first- and second-order perturbation methods (Kleiber & Hien 1992; Liu et al 1986; Adhikari
1999, 2000), Neumann expansion method (Yamazaki et al 1988; Adhikari & Manohar 2000),
Galerkin approach (Grigoriu 2006) and linear algebra based methods (Falsone & Impollonia
2002; Li et al 2006; Feng 2007). More recently very efficient collocation methods have been pro-
posed by Foo & Karniadakis (2010) and Ma & Zabaras (2009). Another class of methods which
have been used widely in the literature are known as the spectral methods (see Nouy (2009)
for a recent review). These methods include the polynomial chaos (PC) expansion (Ghanem
& Spanos 1991; Ghosh et al 2005), stochastic reduced basis method (Nair & Keane 2002),
and Wiener–Askey chaos expansion (Xiu & Karniadakis 2002; Wan & Karniadakis 2006) and
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reduced spectral function method (Adhikari 2011). According to the polynomial chaos expan-
sion, second-order random variables u j (ω) can be represented by the mean-square convergent
expansion

u j (ω) = u( j)
i0

h0 +
∞∑

i1=1

u( j)
i1

h1(ξi1(ω))

+
∞∑

i1=1

i1∑

i2=1

u( j)
i1,i2

h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

u( j)
i1i2i3

h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

i3∑

i4=1

u( j)
i1i2i3i4

h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(5)

where u( j)
i1,...,i p

and u( j)
i0

are deterministic constants to be determined and hp(ξi1(ω), . . . , ξi p (ω))

is the pth order Homogeneous Chaos. When ξi (ω) are Gaussian random variables, the functions
hp(ξi1(ω), . . . , ξi p (ω)) are the pth order hermite polynomial, defined as orthogonal with respect
to the Gaussian probability density function. The same idea can be extended to non-Gaussian
random variables, provided more generalized functional basis are used (Xiu & Karniadakis 2002;
Wan & Karniadakis 2006). When we have a random vector, as in the case of the solution of
Eq. (4), then it is natural to ‘replace’ the constants u( j)

i1,...i p
, u( j)

i0
by vectors u( j)

i1,...i p
, u( j)

i0
∈ R

n .
Suppose the series is truncated after P number of terms.

Concisely, the polynomial chaos expansion for the solution of Eq. (4) can be written as

u(ω) =
P∑

k=1

Hk(ξ(ω))uk, (6)

where Hk(ξ(ω)) are the polynomial chaoses. The unknown vectors uk can be obtained by sub-
stituting u(ω) from the above expressions into Eq. (4) and minimizing the error using a Galerkin
approach (Ghanem & Spanos 1991). It can be shown that we need to solve a n P × n P system
of linear equations to obtain all uk ∈ R

n:
⎡

⎢⎢⎢⎣

A1,1 · · · A1,P
A2,1 · · · A2,P

...
...

...

AP,1 · · · AP,P

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1
u2
...

uP

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1
f2
...

fP

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (7)

The value of P depends on the number of basic random variables M and the order of the PC
expansion r as

P =
r∑

j=0

(M + j − 1)!
j !(M − 1)! . (8)

Since P increases very rapidly with the order of the chaos r and the number of random variables
M , the final number of unknown constants Pn becomes very large. As a result several methods
have been developed (see for example Nair & Keane (2002); Sarkar et al (2009) and Blatman &
Sudret (2010)) to reduce the computational cost. We investigate here the possibility of an alter-
native approach, where the system matrices are transformed into reduced dimensional matrices.
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3. Development of the reduced polynomial chaos approach

Following the spectral stochastic finite element method, an approximation to the solution of
Eq. (4) can be expressed as a linear combination of functions of random variables and deter-
ministic vectors. Recently Nouy (2007, 2008) discussed the possibility of an optimal spectral
decomposition. The aim is to use small number of terms to reduce the computation time without
loosing accuracy. A new approach is proposed here to reduce the dimension of the linear system
of equation (7) arising in the PC method.

To illustrate the motivation behind the proposed reduced method, first consider the determi-
nistic system

A0u0 = f. (9)

Because A0 is a symmetric and positive definite matrix, its eigenvalues are positive and its
eigenvectors form a complete orthonormal basis. The eigenvalue problem can be expressed as

A0φk = λ0k φk; k = 1, 2, . . . n. (10)

For notational convenience, define the matrix of eigenvalues and eigenvectors

�0 = diag
[
λ01 , λ02 , . . . , λ0n

] ∈ R
n×n and � = [

φ1, φ2, . . . , φn
] ∈ R

n×n . (11)

Eigenvalues are ordered in the ascending order so that λ01 < λ02 < . . . < λ0n . Since � is an
orthogonal matrix, we have �−1 = �T so that the following identities can be easily established

�T A0� = �0; A0 = �−T �0�
−1 and A−1

0 = ��−1
0 �T . (12)

These equations are also valid for the case where multiplicities in eigenvalues arise. Using these,
the solution of Eq. (9) can be expressed as

u0 = A−1
0 f = ��−1

0 (�T f) =
n∑

k=1

φT
k f

λ0k

φk . (13)

The series (13) can be truncated based on the magnitude of the eigenvalues as the higher terms
becomes smaller. Therefore one could only retain the dominant terms in the series. If the system
has an eigenvalue with multiplicities and small magnitude, all the series terms corresponding to
this eigenvalue are retained in the truncated series. A similar model reduction technique has been
widely used within the proper orthogonal decomposition method (Lenaerts et al 2002) where
the eigenvalues of a symmetric positive definite matrix are used. One can select a small value ε

such that λ01/λ0p < ε for some value of p. Therefore, truncating the series in (13) one can have

u0 ≈
p∑

j=1

φT
j f

λ0 j

φ j . (14)

We use this simple idea to develop the reduced PC (RPC) approach.
We form the reduced matrix of dominant eigenvalues and eigenvectors as

�0p = diag
[
λ01 , λ02 , . . . , λ0p

] ∈ R
p×p and �p = [

φ1, φ2, . . . ,φ p
] ∈ R

n×p. (15)
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Let us introduce the transformation

u(ω) = �py(ω), (16)

where y ∈ R
p is the new unknown random vector. Substituting in the original equation (4) and

premultiplying by �T
p we have

[
�0p +

M∑

i=1

ξi (ω)Ãi

]
y(ω) = f̃, (17)

where the transformed reduced matrices and vector are given by

Ãi = �T
p Ai�p ∈ R

p×p; i = 1, 2, . . . , M and f̃ = �T
p f. (18)

The main idea is to expand the reduced random vector y(ω) with a polynomial chaos expansion.
For a selected order of PC, the polynomial chaoses Hk(ξ(ω)) will be identical to the ones used
in the full system. Therefore, we have

y(ω) =
P∑

k=1

Hk(ξ(ω))yk . (19)

The unknown vectors yk can be obtained by substituting y(ω) from the above expressions into
the reduced Eq. (17) and minimizing the error using the standard Galerkin approach (Ghanem
& Spanos 1991). It can be shown that we need to solve a pP × pP system of linear equation to
obtain all yk ∈ R

p:
⎡

⎢⎢⎢⎣

Ã1,1 · · · Ã1,P

Ã2,1 · · · Ã1,P
...

...
...

ÃP,1 · · · ÃP,P

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1
y2
...

yP

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̃1

f̃2
...

f̃P

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (20)

The computational complexity of the matrix inversion problem scales in cubically with the
dimension of the matrix in the worse case (Wilkinson 1988). For many practical problems
p � n, therefore O(P3 p3) � O(P3n3). As a result the RPC can offer significant computational
reduction. This will be discussed further in the numerical examples later in the paper.

4. Moments of the response and error analysis

The mean and the covariance of the reduced system can be obtained using the standard PC
approach. Suppose ȳ = E

[
y(ω)

]
. The covariance matrix of y(ω) can be obtained using the

orthogonality property of the polynomial chaoses as

�y =
(

P∑

k=1

E
[

H2
k (ξ(ω))

]
ykyT

k

)
− y1yT

1 . (21)

The expressions of E
[
H2

k (ξ(ω))
]

can be obtained, for example from Ghanem & Spanos (1991).
Note that these calculations take less time than calculating the moments of the response using
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full PC, as the dimension of yk is in general much smaller than the dimension of uk . The mean
and the covariance matrix of the response of the original system can be obtained as

ū = �pȳ and �u = �p�y�
T
p . (22)

The probability density function of y can be obtained by simulating Eq. (19). The samples of u
can be generated easily using the samples of y. To estimate the error between full PC and the
proposed RPC, two different error analyses are given to try to evaluate the effect of neglecting
the projection of the response on the eigenvectors not included in the new basis, that is, the
eigenvectors corresponding to the largest eigenvalues. The first error estimate is based on the
Schur complement, and gives an exact relationship between the approximation method and the
full PC response. The second one is an heuristic approximation of the error, to understand the
physical meaning of the neglected terms. The error is expected to be small when the projection
of the response in the sub-space spanned by the deterministic eigenvectors corresponding to the
higher eigenvalues is relatively smaller.

4.1 Rigorous error analysis

If the PC method is applied to the original system where all the KL expansion matrices have
been premultiplied by �T , the change of variables u = �y∗ is introduced and f∗ = �T f, the
following system of equations is obtained

(
E
[
�2
]

⊗ �0 +
M∑

i=1

ci ⊗ �T Ai�

)⎧⎪⎨

⎪⎩

y∗
1
...

y∗
P

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

f∗1
...

f∗P

⎫
⎪⎬

⎪⎭
. (23)

The kth diagonal entry of the diagonal matrix E
[
�2
]

is E
[
�2

k

]
, where �k is the kth Hermite

polynomial used in the expansion. The jk terms of matrices ci are given by ci jk = E
[
ξi� j�k

]
.

The terms of the SSFEM deterministic matrix can be rearranged such that the matrix can be
partitioned as follows

{
B11 B12
B21 B22

}{
yp∗
y2∗

}
=
{

fp∗
f2∗
}

, with

{
yp∗
y2∗

}
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗
1p
...

y∗
Pp

y∗
12
...

y∗
P2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

{
fp∗
f2∗
}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃1
...

f̃P

f∗12
...

f∗P2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

The submatrices are given by

B11 = E
[
�2
]

⊗ �0p +
M∑

1

ci ⊗ Ãi , B12 =
M∑

1

ci ⊗ �T
p Ai�2. (25)

B21 =
M∑

1

ci ⊗ �T
2 Ai�p and B22 = E

[
�2
]

⊗ �02 +
M∑

1

ci ⊗ �T
2 Ai�2. (26)
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The vectors appearing in (23) have been partitioned and rearranged in new vectors such that

y∗
j =

{
y∗

jp

y∗
j2

}
, with yp∗ =

⎧
⎪⎨

⎪⎩

y∗
1p
...

y∗
Pp

⎫
⎪⎬

⎪⎭
and y2∗ =

⎧
⎪⎨

⎪⎩

y∗
12
...

y∗
P2

⎫
⎪⎬

⎪⎭
. (27)

The forcing term from (23) is related to the one in (24) through

f∗k =
{

f̃k
f∗k2

}
, with fp∗ =

⎧
⎪⎨

⎪⎩

f̃1
...

f̃P

⎫
⎪⎬

⎪⎭
and f2∗ =

⎧
⎪⎨

⎪⎩

f∗12
...

f∗P2

⎫
⎪⎬

⎪⎭
. (28)

Making use of the Schur complement (see, for example, Zhang (2005)), the partitioned solution
can be written as

{
yp∗
y2∗

}
=

⎧
⎪⎨

⎪⎩

(
B11 − B12B−1

22 B21

)−1 (
fp∗ − B12B−1

22 f2∗
)

(
B22 − B21B−1

11 B12

)−1 (
f2∗ − B21B−1

11 fp∗
)

⎫
⎪⎬

⎪⎭
. (29)

The response calculated by the proposed reduced method is given by yp = B−1
11 fp∗. As it can

be observed, in the proposed method it is assumed that the non-diagonal block matrices are zero
and that higher eigenvalues or the uncertainty linked to them have no effect on the response. The
error associated to the proposed method with respect to the full system is given by

ε = (u∗ − u)T (u∗ − u), (u∗ − u) =
(

�

[
y∗

p
y∗

2

]
− �

[
yp
0

])
= �

([
yp∗ − yp

y2∗
])

. (30)

An approximation can be introduced to the expression of yp∗ using the Neumann expansion

yp∗ ≈
( ∞∑

s=0

(B−1
11 B12B−1

22 B21)
s

)
B−1

11

(
fp∗ − B12B−1

22 f2∗) (31)

and we obtain

yp∗ − yp ≈
( ∞∑

s=1

(B−1
11 B12B−1

22 B21)
s

)
B−1

11

(
fp∗ − B12B−1

22 f2∗)+ B−1
11

(
−B12B−1

22 f2∗) . (32)

These expressions, although correct, do not allow to grasp the physical meaning of neglecting
the projection of the response on eigenvectors corresponding to the higher eigenvalues. The
following approximate error analysis is given to fulfill this requirement.

4.2 Approximate error analysis

We consider an approximate error analysis to get an idea of the nature of the approximations
involved in the proposed RPC. Let us partition the matrices of the eigenvalues and eigen-
vectors as

�0 = [
�0p |�02

]
and � = [

�p|�2
]
. (33)



Reduced polynomial chaos expansion 327

Here the matrices �02 ∈ R
(n−p)×(n−p) and �2 ∈ R

n×(n−p) denote the blocks that have not
been used in the reduced method. Following the analogy of Eq. (13) and using the partitions in
Eq. (33), the response can be expressed as

u0 =
[
��−1

0 �T
]

f =
([

�p|�2
] [

�0p |�02

]−1 [
�p|�2

]T
)

f

=
[
�p�

−1
0p

�T
p

]
f +

[
�2�

−1
02

�T
2

]
f = �py0 +

[
�2�

−1
02

�T
2

]
f, (34)

where y0 = �−1
0P

�T
P f. Clearly in the proposed reduced approach when only y0 is considered, the

second term is neglected.
Suppose, the error associated with the PC expansion of u(ω) and y(ω) are respectively εu and

εy . The additional error arising in the evaluation of y(ω) comes from neglecting the term similar
to the second term of (34), given by

ε2 =
[
�2�

−1
02

�T
2

]
f. (35)

Taking the l2 norm we have

‖ε2‖ = Trace
(
(
[
�2�

−1
02

�T
2

]
f)(
[
�2�

−1
02

�T
2

]
f)T
)

= Trace
(
�T

2 �2�
−1
02

�T
2 ffT �2�

−1
02

)
.

(36)

Recalling that �T
2 �2 is an identity matrix we have

‖ε2‖ = Trace
(
�−2

02
�T

2 ffT �2

)
. (37)

Since �p is an orthonormal matrix, the error norm is invariant with respect to rotation in �p.
That is the error norm for y(ω) and �py(ω) are identical. Therefore, from Eq. (34) the error
norm of y(ω) and u(ω) can be approximately related as

‖εu‖ �
∥∥εy

∥∥+ Trace
(
�−2

02
�2ffT �T

2

)
. (38)

This expression shows that the difference between the error norm of u(ω) and y(ω) will be small
when the eigenvalues in the diagonal matrix �02 are large.

5. Summary of the computational method

The reduced polynomial chaos (RPC) for the solution of the stochastic elliptic PDE (1) can be
implemented as follows:

(i) Obtain the system matrices Ai , i = 0, 1, 2, . . . , M and the forcing vector f by discretizing
the governing stochastic partial differential equation using the well-established stochastic
finite element methodologies.

(ii) Solve the eigenvalue problem associated with the mean matrix A0

A0� = �0�. (39)

(iii) Select a small value of ε, say ε = 10−3. Obtain the number of the reduced orthonormal
basis p such that λ01/λ0p < ε.
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(iv) Create the reduced matrix of eigenvalues and eigenvectors

�0p = diag
[
λ01 , λ02 , . . . , λ0p

] ∈ R
p×p and �p = [

φ1, φ2, . . . ,φ p
] ∈ R

n×p. (40)

(v) Calculate the transformed matrices and vector

Ãi = �T
p Ai�p ∈ R

p×p; i = 1, 2, . . . , M and f̃ = �T
p f. (41)

(vi) Obtain the reduced polynomial chaos expansion

y(ω) =
P∑

k=1

Hk(ξ(ω))yk, (42)

where the vectors yk ∈ R
p can be obtained by solving the pP × pP system of linear

equation: ⎡

⎢⎢⎢⎣

Ã1,1 · · · Ã1,P

Ã2,1 · · · Ã2,P
...

...
...

ÃP,1 · · · ÃP,P

⎤

⎥⎥⎥⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1
y2
...

yP

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f̃1

f̃2
...

f̃P

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (43)

(vii) Calculate the mean and the covariance matrix of the response of the original system

ū = �pȳ and �u = �p�y�
T
p , (44)

where

�y =
(

P∑

k=1

E
[

H2
k (ξ(ω))

]
ykyT

k

)
− y1yT

1 . (45)

The proposed RPC method is now applied to three numerical examples to verify the efficiency
of the method.

6. Transversal deformation of a beam with stochastic properties

The method described is applied to the problem of a bending beam with stochastic flexural rigi-
dity. We consider the numerical example of the clamped-free beam shown in figure 1, subjected
to a deterministic transversal load at its tip of P = 0.4658 N. The system is such that the finite
element model of the beam has 50 elements and the associated deterministic matrix is of size
n = 100. The length of the Euler Bernoulli beam is 1 m, and for the deterministic case, Young’s
modulus is E = 69 109 N/m2 and the cross-section is a rectangle of length 40 mm and height

P

L

EI

Figure 1. A clamped-free beam with random bending rigidity subjected to a point load at the end.
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Figure 2. Ratio of eigenvalues and eigenvectors for the beam problem.

4 mm, its moment of inertia is I = 9 10−11 m4. The flexural rigidity of the beam, E I , is consi-
dered as a random field with mean E I = 6.21 Nm2, standard deviation 0.2E I and exponential
covariance function with correlation length the length of the beam. Two terms are kept in the KL
expansion of the system stiffness matrix. The order of the Polynomial Chaos used is four, that
is, 15 polynomials are used in the expansion of the response.

The solution is obtained with different methods to compare their performance. MCS method
is applied using 10000 samples. The PC method, called here full PC, is applied, and the linear
system to be solved is of size 1500. Two reduced systems are considered, using the first 3 and
6 eigenvectors. The ratio between the first and the nth eigenvalue is shown in figure 2, together
with the first four eigenvectors for the transverse displacement. The two reduced PC system
matrices are of sizes 45 and 90 for transformed stiffness matrices of sizes 3 and 6, respectively.
Values of the mean and standard deviation of the vertical displacement for all the nodes are
shown in figure 3. The displacement is normalized by P L3/3E I such that the deterministic

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Position along the beam (m)

M
ea

n 
of

 n
or

m
al

iz
ed

 d
ef

le
ct

io
n

MCS
Full PC
reduced PC with 6 dimensions
reduced PC with 3 dimensions

(a) Mean

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

Position along the beam (m)

St
an

da
rd

 d
ev

ia
tio

n 
of

 n
or

m
al

iz
ed

 d
ef

le
ct

io
n MCS

Full PC
reduced PC with 6 dimensions
reduced PC with 3 dimensions

(b) Standard deviation

Figure 3. Mean and standard deviation of the normalized vertical displacement for the beam problem.
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Figure 4. Percentage error of mean and standard deviation of the normalized vertical displacement,
between full PC and reduced PC.

vertical displacement at the tip is unity. The error associated with using RPC instead of the full
PC is shown in figure 4 for all the nodes of the beam. The percentage error is represented as

ε% = 100 × |fPC − RPC|
fPC

, (46)

where fPC are the results from full PC and RPC are the ones from the reduced PC. It is
observed that the error is higher at position x = 0 m, as values near the origin are close to
zero. It is also observed that errors at the tip of the beam are negligible. As expected, the
proposed method generates a response with an accuracy similar to the one of full PC, but at
lower cost. This cost is described in table 1, where the CPU time of calculations for the four
methods is given. Figure 5a shows the pdf of the tip vertical displacement for MCS, full PC
and the two reduced systems. The error of the vertical displacement associated with using a
reduced system instead of the full PC for the tip node is shown in figure 5b, for different
orders of the reduced system. One can observe that with 6 dimensions, the proposed RPC pro-
duce results are comparable with the full PC with dimension 100. Figure 5b shows that the
error compared to the full PC reduces significantly when the size of the reduced system is
beyond 10.

Table 1. CPU time (s) of calculations for the full PC and in the proposed reduced method. The cost of
calculating complete eigensolutions is 0.0073s.

MCS Full PC (n = 100) RPC (n = 3) RPC (n = 6)

CPU time (s) 1.1508 0.0238 0.0063 0.0071
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Figure 5. The pdf of the normalized vertical displacement at tip of the beam obtained with MCS, full PC
and reduced PC with n = 3 and n = 6. Percentage errors of mean and standard deviation of the normalized
tip displacement using different reduced systems.

7. Flow through a stochastic medium

A numerical example of flow through a porous media is now considered to investigate possible
efficiency of the proposed method for higher spatial dimensional problem compared to the pre-
vious example. The two-dimensional domain is a rectangle of length L = 1 m and width W =
0.6 m, as shown in figure 6. The domain is divided with a uniform mesh of 70 by 42 square ele-
ments. The domain is subjected to a constant flux qb = 1 cm/s along the portion of its boundary

h=0

q =0 

q = 0 

q = 1 cm/s 

x

y

L = 1m 

W = 0.6m 

Figure 6. Flow through a rectangular porous media. The porous media is assumed to have stochastically
inhomogeneous hydraulic conductivity.
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Figure 7. Ratio of eigenvalues for the flow through porous media problem.

verifying y = −0.3 m and x ∈ [0.3 , 0.5] m (last 14 elements on x direction), in coordinates of
the KL expansion. The head is fixed at value hb = 0 cm along the portion of the boundary such
that x = −0.5 m, y ∈ [0.1714 , 0.3] m (last 9 elements in y direction). The deterministic system
has n = 584 degrees of freedom. A Gaussian hydraulic conductivity (k) with 2D exponential
covariance function is considered. The 2D covariance function is obtained by multiplying a 1D
exponential covariance function depending on x , with correlation length bx = L/5; and a 1D
exponential covariance function depending on y, with correlation length by = W /5. Two terms
of the KL expansion in each direction are kept, that is, the KL expansion has four matrices for
the whole system. The mean value of the hydraulic conductivity is given by k = 1 cm/s, and its
standard deviation is σ = 0.2k. The stiffness element matrices are given by

K11i j =
∫ a

0

∫ b

0
a11

d Ni

dx

d N j

dx
ϕ(x, y) dxdy. (47)

K22i j =
∫ a

0

∫ b

0
a22

d Ni

dy

d N j

dy
ϕ(x, y) dxdy. (48)
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Figure 8. First four eigenvectors of the stiffness matrix for the flow through porous media problem.
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(a) MCS, 10k
samples.

(b) Full PC
(n = 584).
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Figure 9. Contour of the mean of head (cm) obtained with MCS, full PC and reduced systems using the
first five and twenty eigenvectors respectively. x and y axis are respectively the positions in x direction with
x ∈ [−0.5, 0.5] and y direction with y ∈ [−0.3, 0.3].

The stiffness matrix of the system is given by K = K11 + K22, where K11 and K22 are
obtained by assembling the respective matrices given above. The details of the finite element
model can be found, for example, in Reddy (1993). The random variables appearing in the
stiffness matrix are a11 = a22 = k. The eigenfunction ϕ(x, y) = 1 for the deterministic
stiffness matrix, and it depends on the covariance function when considering a KL expansion
matrix. The polynomial chaos used is of fourth order, so that the total number of polynomials
is 70.

As before, the response is obtained using different methods to compare their performance.
MCS is applied using 10000 samples. The size of the linear system to be solved when applying
full PC is 40880. The two reduced systems considered use the first 5 and 20 eigenvectors, respec-
tively. The ratio between the first and the nth eigenvalue is shown in figure 7, and the contours
of the first four eigenvectors are shown in figure 8. The two reduced PC system matrices are of
sizes 350 and 1400 for the transformed stiffness matrices of sizes 5 and 20, respectively. Con-
tour plots of the mean and standard deviation obtained with the different methods are shown in
figures 9 and 10. The contours of the percentage errors in mean and standard deviation between
the reduced systems and the full PC are shown in figure 11. The percentage error is calculated
with Eq. (46). As before, the accuracy of the response with the proposed method is similar to
the one of full PC, but is obtained at a lower cost. This cost is described in table 2, where the
CPU time of calculations for the four methods is given. The pdf of the response at coordinate
(x, y) = (0.1714, −0.2857) is shown in figure 12 for MCS, full PC and the two reduced order

(a) MCS, 10k
samples.

(b) Full PC
(n = 584).

(c) RPC (n = 5). (d) RPC (n = 20).
0
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2

3

4
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Figure 10. Contour of the standard deviation of head (cm) obtained with MCS, full PC and reduced
systems using the first five and twenty eigenvectors, respectively. x and y axis are respectively the positions
in x direction with x ∈ [−0.5, 0.5] and y direction with y ∈ [−0.3, 0.3].
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Figure 11. Contour of percentage error (ε%) of mean and standard deviation (σ ) of RPC (with n = 5 and
n = 20) compared to full PC. x and y axis are respectively the positions in x direction with x ∈ [−0.5, 0.5]
and y direction with y ∈ [−0.3, 0.3].

Table 2. CPU time (s) of calculations for the full PC and in the proposed reduced method. The cost of
calculating complete eigensolutions is 119.7236s.

MCS full PC (n = 584) RPC (n = 5) RPC (n = 20)

CPU time (s) 8.3371×103 192.1206 0.8293 0.9569
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Figure 12. Pdf of head and percentage errors of mean and standard deviation of head at (x, y) =
(0.1714,−0.2857).
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y

        x

L = 1m W = 0.6m 

P= 1N / m 

Figure 13. A rectangular elastic plate with stochastic bending rigidity subjected to a line load along
one edge.

models. One can observe that with 20 dimensions, the proposed RPC produce results comparable
with the full PC with dimension 584. Figure 12b shows that the error compared to the full PC
reduces significantly when the size of the reduced system is beyond 50.

8. Bending of an elastic plate with stochastic properties

Numerical example of a plate bending problem is given to investigate the efficiency of the pro-
posed method. The domain is a rectangular plate of length L = 1 m and width W = 0.6 m, as
shown in figure 13. The plate is clamped along its width (coordinate x = −0.5 m) and a uniform
distributed load of value P = 1 N/m is applied at x = 0.5 m. The plate has 30 elements in x
direction and 18 elements in y direction. The deterministic system stiffness matrix is of dimen-

sion n = 1710. The variable D = Et3

12(1−μ2)
is modelled as a Gaussian random field, where its 2D
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Figure 14. Ratio of eigenvalues for the plate bending problem.
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Figure 15. First four eigenvectors of the stiffness matrix for the plate bending problem. Only the degrees
of freedom corresponding to vertical displacement are represented.

(a) MCS, 10k samples. (b) Full PC (n = 1710). (c) RPC (n = 2). (d) RPC (n = 5).
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Figure 16. Contours of the mean of vertical displacement (m) obtained with MCS, full PC and reduced
systems using the first two and five eigenvectors respectively. x and y axis are the positions in x direction
with x ∈ [−0.5, 0.5] and y direction with y ∈ [−0.3, 0.3].

(a) MCS, 10k samples. (b) Full PC (n = 1710). (c) RPC (n = 2). (d) RPC (n = 5).
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Figure 17. Contours of the standard deviation of vertical displacement (m) obtained with MCS, full PC
and reduced PC using the first two and five eigenvectors respectively. x and y axis are respectively the
positions in x direction with x ∈ [−0.5, 0.5] and y direction with y ∈ [−0.3, 0.3].
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Figure 18. Contour of percentage error (ε%) of mean and standard deviation (σ ) of vertical displacement.
x and y axis are respectively the positions in x direction with x ∈ [−0.5, 0.5] and y direction with y ∈
[−0.3, 0.3].
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Table 3. CPU time (s) of calculations for the full PC and in the proposed reduced method. The cost of
calculating complete eigensolutions is 38.0243s.

MCS full PC (n = 1710) RPC (n = 2) RPC (n = 5)

CPU time 1.6054×104 389.2569 0.3751 0.5074

covariance function is obtained by multiplying an 1D exponential covariance function depending
on x , with correlation length bx = 0.2 m; and another 1D exponential covariance function
depending on y, with correlation length by = 0.12 m. The mean D̄ of D is calculated with
E = 200 GPa, t = 3 mm and μ = 0.3, and its standard deviation is σ = 0.2D̄. Two terms are
kept in each 1D KL expansion, therefore, the KL expansion is the sum of a deterministic matrix
and four matrices multiplied by independent random variables. Details on the FE method can be
found, for example, in Dawe (1984).

The vertical displacement of the system is calculated with four methods: a MCS using 10000
samples, full PC and two reduced systems, where the system is reduced using the two and five
first eigenvectors, respectively. The ratio between the first and the nth eigenvalue is shown in
figure 14. First four eigenvectors for the vertical displacement are shown in figure 15. The two
reduced PC system matrices are of sizes n = 140 and n = 350 for transformed stiffness matri-
ces of sizes two and five, respectively. Contours of the mean and standard deviation for the four
methods are shown respectively in figures 16 and 17. The percentage error associated with using
RPC instead of full PC is shown in figure 18. The percentage error is given by Eq. (46). As
before, it is observed that the percentage error between both methods is small, while the com-
putation time is very different, as shown in table 3. Coordinate (x, y) = (0.1667, 0) is chosen
to show some features of the method, as the pdf of the vertical displacement at figure 19a. At
this position, the percentage errors of mean and standard deviation of the vertical displacement
for different reduced systems compared to full PC are shown in figure 19b. One can observe that
with 5 dimensions, the proposed RPC produce results comparable with the full PC with dimen-
sion 1710. Figure 19b shows that the error compared to the full PC reduces significantly when
the size of the reduced system is beyond 20.
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Figure 19. Pdf and percentage error of mean and standard deviation of vertical displacement, at position
(x, y) = (0.1667, 0).
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9. Conclusions

We consider here the discretized stochastic elliptic partial differential equations. In the classical
spectral stochastic finite element approach, each element of the response vector is projected into
a basis of polynomials orthogonal with respect to a given pdf, and the associated vectors of coef-
ficients multiplying each polynomial are obtained using a Galerkin type of error minimization
approach. Here an alternative approach is investigated. The solution is firstly projected into a
finite dimensional orthonormal vector basis, and each element of the associated reduced response
vector is then projected into the basis of orthogonal polynomials. As before, the constants aris-
ing from the projections are obtained using a Galerkin type of error minimization approach. This
error minimization approach is two-fold as both projections, in the vector space and in the func-
tions space, need to be taken into account. The dimension of the linear system to be solved with
the classical spectral stochastic finite element approach is obtained by multiplying the number of
polynomials used in the projection by the dimension of the system stiffness matrix. In the pro-
posed approach, the dimension of the linear system to be solved is obtained by multiplying the
number of polynomials by the number of vectors in the projection basis used. The vectors used
in the projection basis are chosen amongst the eigenvectors of the deterministic stiffness matrix,
and are the ones corresponding to the p smaller eigenvalues, so that p is the size of the reduced
system.

The reduced system can be considered as a preconditioned submatrix of the original sys-
tem, so that an approximate relation between the errors of the two methods can be derived. The
method has been applied to three different systems with random parameters, a bending beam,
a flow through porous media with random permeability and a bending plate. For the three sys-
tems, a reduction of the system with the method lead to a reduction in computation time with
respect to the classical spectral stochastic finite element approach. The accuracy remained simi-
lar to that of the original method, in spite of the reduction in the spatial dimension. Keeping the
computational cost fixed, the proposed reduced polynomial chaos (RPC) approach allows one
to solve a system of larger dimension, or to consider higher order polynomial chaos expansion.
Future work will consider coupling RPC with existing stochastic model reduction methods and
generalized polynomial chaos.
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