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This paper studies the effects of spatially uncertain material properties of composite
helicopter rotors on vibratory hub load predictions. The flap, lag and torsional stiffnesses
of the rotor blades are considered to vary spatially along the axis of the rotor blades.
The spatial uncertainty analysis is performed with rotors modeled as both isotropic rotors
and dissimilar rotor systems. In isotropic rotor systems, the uncertainty is considered to
be similar for all of the four blades and the uncertainty effects on the 4/rev vibratory
hub loads are studied. To reduce the computational expense of uncertainty analysis, a
high dimensional model representation (HDMR) method is developed to approximate the
vibratory loads as functions of blade stiffness properties modeled as random fields. In
the HDMR formulation, a Karhunen−Loève expansion and a low order expansion are
used to represent the input and outputs, respectively. Monte Carlo simulations are then
performed with the developed HDMR models. The proposed approach decouples the
computationally expensive aeroelastic simulations of uncertainty analysis. MCS, performed
with computationally less expensive HDMR models, shows that spatial uncertainty has
considerable influence on the 4/rev vibratory hub loads. In the uncertainty analysis of
dissimilar rotor systems, the spatial uncertainty of each blade of the rotor is assumed to be
independent of the other blades. Spatial uncertainties of the rotor with dissimilar blades
have considerable influence on the 1/rev and 2/rev vibratory hub loads in addition to the
4/rev vibratory hub loads. The 1/rev and 2/rev harmonics of longitudinal and lateral
vibratory hub forces, and 1/rev of vertical vibratory hub force and all three vibratory hub
moments are highly sensitive to spatially uncertain material properties.

I. Introduction

The quantification of uncertainty in aeroelastic response prediction enhances the reliable and robust
design of aerospace vehicles and can considerably reduce the cost of flight test experiments.1–8 A recent

review on uncertainty quantification in aeroelasticty is given by Pettit.1 Structural, aerodynamic and control
parameters used in the aeroelastic design process are uncertain in nature due to manufacturing defects or
service time degradation. From the structural perspective, the material properties of composites which are
extensively used in aircraft structures are uncertain. Uncertainty in composite effective material properties
occur because of variations associated with the fiber and matrix material properties, fiber volume ratio, ply
orientation, fiber waviness or undulation, voids, incomplete curing of resin, excess resin between plies, and
variation in ply thickness.9,10 Thus the consideration of randomness in composite material properties is very
important for reliable aeroelastic predictions. Helicopter rotor blades, which play a dominant role in the
overall vehicle performance, are typically made of composites and involve complex manufacturing processes.
Further, the helicopter rotor system operates in a highly unsteady aerodynamic environment leading to
severe vibratory loads.11 Repeated exposure to this severe loading condition can deteriorate the structural

∗Research Assistant, College of Engineering, Swansea University, UK, Email: s.m.masanam@swansea.ac.uk, AIAA Senior
Member.

†Newton Fellow, College of Engineering, Swansea University, UK.
‡Professor of Aerospace Engineering, College of Engineering, Swansea University, UK, Senior Member AIAA.
§Professor of Aerospace Structures, College of Engineering, Swansea University, UK.

1 of 20

American Institute of Aeronautics and Astronautics

52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference<BR> 19th
4 - 7 April 2011, Denver, Colorado

AIAA 2011-2048

Copyright © 2011 by S Murugan, R Chowdhury, S Adhikari, and MI Friswell.  Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



or material characteristics of composite rotor blades. Therefore, the effect of uncertain material properties
of composite rotor blades on the aeroelastic response has to be quantified.

Murugan et al.12–15 studied the effects of uncertain material properties on the aeroelastic response
predictions of composite helicopter rotors. The aeroelastic response of helicopter rotor blades has shown
significant scatter from the baseline values due to material uncertainty. You et al.16 studied the influence of
uncertain material properties and fabrication/ manufacturing uncertainties modeled as random variables on
the aeroelastic response of composite rotor blades. Murugan et al.12,13,15 assumed the effects of randomness
in material properties to be uniform throughout the span of the rotor blade. However, composite material
properties can vary considerably along the span of the blade.3,9 Sriramula and Chryssanthopoulos9 reviewed
studies that considered effects of spatial variability in vibration, buckling and reliability problems of com-
posite structures. Therefore, it is important to study the effects of spatially uncertain material properties
on the aeroelastic response predictions of rotor blade. Uncertainty analysis of helicopter can be studied with
rotors modeled as an isotropic rotor or as a dissimilar rotor. In an isotropic rotor system, all the blades are
considered to have similar structural properties whereas in a dissimilar rotor, each or multiple blades are
assumed to have properties different from other blades.

Aeroelastic uncertainty analyses are, generally, performed with direct Monte Carlo simulations which
are computationally expensive.12,13,17 Response surface methods and polynomial chaos expansion are used
to reduce the computational cost of uncertainty analysis with parametric uncertainties modeled as random
variables.5,8, 17 However, there are very few studies focussed on developing a non-intrusive uncertainty
analysis method to study the effects of spatial uncertainties on the aeroelastic response. In this study,
the Karhunen−Loève (K-L) expansion18 is used to discretize the input random field and high dimensional
model representation (HDMR)19 is used to approximate the output response in terms of functions of lower
dimensions as an efficient uncertainty propagation model. The present approach has several advantages. First
is the reduction in data processing. The exponentially growing number of function evaluations is represented
via polynomially growing tables20,21 for each function component (terms in the general expansion). This
property improves the computational efficiency for high dimensional problems. The second advantage is
the reduction of computational complexity. HDMR is generated by a family of projection operators.19

Consequently, the method splits any problem into easier low-dimensional subproblems. The third advantage
is that HDMR is a mean square convergent series expansion, because of the inherent orthogonal properties
of HDMR component functions.19

The HDMR approach discussed above decouples the computationally expensive aeroelastic simulations
and the stochastic analysis. The effects of spatial variation in the stiffness properties of rotor blade are
studied with HDMR based MCS. Uncertainty analysis is performed with rotors modeled as isotropic rotor
systems and dissimilar rotor systems. In the isotropic rotor system, spatial uncertainty analysis is performed
with direct MCS and MCS based on HDMR models. Numerical results from the HDMR models are compared
with direct MCS and the effects of spatial uncertainty on vibratory hub loads are studied. In the dissimilar
rotor system, uncertainty effects are studied with MCS. The helicopter aeroelastic model and HDMR models
used in this study are discussed in the following sections.

II. Helicopter Aeroelastic Model

A comprehensive aeroelastic analysis code, UMARC, based on the finite element method, is used to
evaluate the helicopter blade response.22 UMARC has been extensively used by industry and academia for
helicopter aeroelastic response predictions.23,24 The aeroelastic formulation is briefly given in the following.
The helicopter is modeled as a non-linear representation of composite rotor blades coupled to a rigid fuselage
with 6-degrees of freedom. The rotor blade is modeled as a slender elastic beam undergoing flap bending
displacement (w), lag bending displacement (v), elastic twist (ϕ), and axial deflection (u) with a rotational
speed of Ω as shown in Fig. 1(a). The effect of moderate deflections is included by retaining second order
non-linear terms. For a given blade, the governing equations are derived using a generalized Hamilton’s
principle applicable to non-conservative system as∫ ψ2

ψ1

(δU − δT − δW )dψ = 0 (1)

Here, δU is the virtual strain energy and δT is the virtual kinetic energy of the elastic blade. Also, δW is
the virtual work done by the external aerodynamic forces acting on the blade and ψ = Ωt is the azimuth
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angle of the blade around the rotor disk. The Leishman-Beddoes unsteady aerodynamic model with the
Bagai and Leishman free wake model is used for aerodynamic load calculations.22 The blade is discretized
into beam finite elements, each with fifteen degrees of freedom. These degrees of freedom correspond to
cubic variations in axial and bending (flap and lag) deflections, and quadratic variations in elastic torsion.
The finite element equations are reduced in size by using a normal mode transformation. This results in the
system of non-linear ordinary differential equation with periodic coefficients given below.

Mp̈(ψ) +C(ψ)ṗ(ψ) +K(ψ)p(ψ) = F(p, ṗ, ψ) (2)

Here M, C, K, F, and p represent the finite element mass matrix, damping matrix, structural stiffness
matrix, finite element force vector, and modal displacement vector, respectively. Non-linearities in the model
occur primarily due to Coriolis terms and due to moderate deflections in the strain-displacement relations.
Equation (2) governs the dynamics of the rotor blade. These equations are then solved using the finite
element in time method in combination with the Newton-Raphson method. The solution to these equations
are then used to calculate rotor blade loads using the force summation method where aerodynamic forces
are added to the inertial forces. The blade loads are integrated over the blade length and transformed to the
fixed frame to estimate hub loads. The steady hub loads are then used to obtain the forces acting on the
rotor and combined with fuselage and tail rotor forces to obtain the helicopter rotor trim equations:

FT (ΘT ) = 0 (3)

Here, the symbol ΘT represents the flight control angles evaluated in the trim process.11 These non-linear
trim equations are also solved using the Newton-Raphson method. The helicopter rotor trim equations and
the blade response equations in (2) and (3) are solved simultaneously to obtain the blade steady response
and hub loads. This coupled solution procedure is important to capture the aeroelastic interaction between
the aerodynamic forces and the blade deformations. Further details of the aeroelastic analysis are available
in the UMARC theory manual.22

A. Isotropic and Dissimilar Rotor System

The aeroelastic analysis discussed above varies for the isotropic rotor system and the dissimilar rotor system.
In an isotropic rotor system, the harmonics of vibratory loads (nNb/rev, where n is an integer) that are
multiples of the number of blades (Nb) are transmitted to the fuselage. In a dissimilar rotor system, all the
n/rev harmonics of vibratory loads are transmitted to the fuselage. For a dissimilar rotor, the steady and
vibratory components of blade loads of each blade are calculated individually using the force summation
method.25 The fixed-frame hub loads are then obtained by summing the contributions from each blade and
the trim analysis is performed as discussed above.

III. Random Field Discretization

The representation and discretization of spatial uncertainty as a random field is discussed in this section.
A random field over ε is formally defined as a indexed set of random variables {κx (θ)}x∈Ω, where κx (θ)
are random variables with values in ε, defined on a probability space (Θ,B, P ). It should be noted that a
probability space consists of three parts: (i) a sample space, Θ, which is the set of all possible outcomes; (ii)
a set of events, where each event is a set containing zero or more outcomes (the collection of all such events
is a σ-algebra B); and (iii) the assignment of probabilities to the events, that is, a function from events to
probability levels, using the probability measure function, P . Ω can be a finite or countable set, in which
case the stochastic process is called a discrete stochastic process, or an uncountable set such as an interval
Ω ⊂ R or even a domain Ω ⊂ Rd. In the case where Ω is a spatial domain, the random process is called a
random field. A stochastic process can be equivalently seen as a measurable function

κ : (x, θ) ∈ Ω×Θ 7→ κ (x, θ) ∈ ε (4)

or alternatively as a random variable with values in a space of functions defined on Ω with values in ε. The
equivalence between these different interpretations requires some technical considerations. In the following,
we restricts the presentation to scalar random processes, i.e. ε = R.

The characterization of a random process requires the probabilistic characterization of a set of ran-
dom variables, eventually uncountable. A random process can be completely characterized by its finite
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Figure 1. Composite helicopter rotor blade.

dimensional probability laws, which are the joint probability laws of all finite sets of random variables
{κx1 (θ) , . . . , κxn (θ)} , n ∈ N, xi ∈ Ω. Moreover, the random process is homogeneous if its mean µ (x, θ) and
variance σ2 (x, θ) are constant and its autocorrelation coefficient ρ (x, x′) is a function of x − x′ only. This
autocorrelation function may take many distinct forms. One such form is the exponential type,

ρ (x, x′) = e−α1|x(1)−x′
(1)|−α2|x(2)−x′

(2)| (5)

where x(i) denotes the i
th coordinate of x and α1, α2 are known as correlation lengths.

In the following, we consider the representation and discretization of second-order processes. A wide va-
riety of discretization schemes are available in the literature.26–28 The Karhunen-Loève (K-L) decomposition
which is classically used in the context of spectral stochastic methods is discussed here. K-L decomposi-
tion28 applies to second order stochastic processes κ ∈ L2 (Ω) ⊗ L2 (Θ, dP ). The random process κ (x, θ) is
decomposed in the form

κ (x, θ) = κ̄ (x) +
∞∑
i=1

√
λiψi (x) ζi (θ) (6)

where κ̄ (x) is the mean value of κ (x, θ), the functions ψi (x) form a particular Hilbertian basis of L2 (Ω),
ζi ∈ L2 (Θ, dP ) are centered uncorrelated random variables with unit variance and λi are positive constants.
Couples (ψi, λi) ∈ L2 (Ω)× R+ are solutions of the eigenproblem∫

Ω

Γκ (x, x
′)ψi (x

′) dx′ = λiψi (x) (7)

where Γκ is the covariance function of κ (x, θ), defined by

Γκ (x, y) = E [(κ (x, θ)− κ̄ (x)) (κ (x′, θ)− κ̄ (x′))] (8)

In practice, the infinite series in Eq. (6) must be truncated, yielding a truncated K-L approximation

κ̃ (x, θ) = κ̄ (x) +
P∑
i=1

√
λiψi (x) ζi (θ) (9)
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which approaches κ (x, θ) in the mean square sense as the positive integer P → ∞. For linear or exponential
covariance functions and simple domains, the eigensolutions can be evaluated analytically. According to
Eq. (9), the K-L approximation provides a parametric representation of κ (x, θ) and, hence, of κ̃ (x, θ) with
P random variables. The K-L expansion has uniqueness and error-minimization properties that make it a
convenient choice over other available methods. Generally speaking, if ζi (θ) contains non-Gaussian random
variables, then it is difficult to obtain a representation in independent random variables, as un-correlation
and independence are not equivalent. Obtaining a representation in independent random variables for a
non-Gaussian field κ (x, θ) usually involves nonlinear transformations of the random variables.29–31

IV. High Dimensional Model Representation

The High Dimensional Model Representation of an arbitraryM -dimensional response f (x), x ∈ RM can
be derived by partitioning the identity operator I, called IM in the M-dimensional case and also in the 1D
case hereafter, with respect to the projectors P1,P2, . . . ,PM . This can be expressed as19

IM =
M∏
m=1

(Pm + (I1 − Pm))

=
M∏
m=1

Pm︸ ︷︷ ︸
1 term

+
M∑
m=1

(I1 − Pm)
∏
s ̸=m

Ps︸ ︷︷ ︸ M

1

terms

+
M∑
m=1

M∑
s=m+1

(I1 − Pm)(I1 − Ps)
∏

p ̸=m,s

Pp︸ ︷︷ ︸ M

2

terms

+ · · ·+
M∑
m=1

Pm
∏
s ̸=m

(I1 − Ps)︸ ︷︷ ︸ M

M − 1

terms

+

M∏
m=1

(I1 − Pm)︸ ︷︷ ︸
1 term

(10)

which is composed of 2M mutually orthogonal terms and Pm (I1 − Pm) = 0. The orthogonal representation
of Eq. 10 is a manifestation of the HDMR and can be rewritten as,32,33

f (x) = f0 +
M∑
i=1

fi (xi) +
∑

1≤i<j≤M

fij (xi, xj) + . . .+ f123...M (xi, x2, . . . , xM ) =
M∑
l=0

ηl (x) (11)

where f0 is a constant term representing the zeroth-order component function or the mean response of output
function f (x). fi is the first-order term expressing the effect of variable xi acting alone upon the output f (x),
and this function is generally nonlinear. The function fij (xi, xj) is a second-order term which describes the
coupled effects of the variables xi and xj upon the response. The higher order terms gives the coupled effects
of increasing numbers of input variables on the output. The last term f123...M (xi, x2, . . . , xM ) contains any
residual dependence of all the input variables locked together in a cooperative way to influence the output.
Once all of the relevant component functions in Eq. (11) are determined and suitably represented, then
the component functions constitute the HDMR, thereby replacing the original computationally expensive
method of calculating the response by the computationally efficient meta model.

To generate the HDMR approximation of any function, more precisely the cut-center based HDMR,
first a reference point x̄ = (x̄1, x̄2, . . . , x̄M ) has to be defined in the variable space. In the convergence
limit, where all correlated functions in Eq. (11) are considered, the cut-HDMR is invariant to the choice
of reference point x̄. However in practice the choice of reference point x̄ is important for the cut-HDMR,
especially if only the first few terms, say up to first- and second-order, in Eq. (11) are considered. Sobol34

showed that the reference point x̄ at the middle of the input domain appears to be the optimal choice. The
expansion functions are determined by evaluating the input-output responses of the system relative to the
defined reference point in the input variable space. This process reduces to the following relationship for the
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component functions in Eq. (11):

f0 =

∫
dxf (x)

fi (xi) =

∫
dxif (x)− f0

fij (xi, xj) =

∫
dxijf (x)− fi (xi)− fj (xj)− f0

(12)

where,
∫
dxi means to integrate over all M variables except xi and

∫
dxij means to integrate over all

M variables except xi and xj , etc. These integrals are generally evaluated using numerical integration
techniques. Substituting the component functions defined in Eq. (12) into Eq. (11), the general expression
of the HDMR can be expressed as

f (x) =
∑

1≤i1<...<iβ≤M

f
(
xi1 , . . . , xiβ ; x̄

i1,...,iβ
)
− (M − β)

∑
1≤i1<...<iβ−1≤M

f
(
xi1 , . . . , xiβ−1

; x̄i1,...,iβ−1
)

+
(M − β + 1)!

2! (M − β − 1)!

∑
1≤i1<...<iβ−2≤M

f
(
xi1 , . . . , xiβ−2

; x̄i1,...,iβ−2
)
−

. . .∓ (M − 2)!

(β − 1)! (M − β − 1)!

∑
1≤i≤M

f
(
xi; x̄

i
)
± (M − 1)!

β! (M − β − 1)!
f (x̄) (13)

where β is the order of the HDMR approximation, 1 ≤ β ≤ (M − 1) and the + or − sign of the last term
in Eq. (13) corresponds to β being even or odd, respectively. Considering the weak role of the higher-order
correlation effects, the approximation is likely to converge at a lower HDMR order, say, β ≪ M . The
particular form of Eq. (13) for β = 1, 2, or 3 corresponds to first-, second- or third-order HDMR can be
explicitly given as

f̂ (x) =
∑

1≤i≤M

f
(
xi; x̄

i
)
− (M − 1) f (x̄) , β = 1 (14)

f̂ (x) =
∑

1≤i<j≤M

f
(
xi, xj ; x̄

i,j
)
− (M − 2)

∑
1≤i≤M

f
(
xi; x̄

i
)
+

(M − 1)!

2! (M − 3)!
f (x̄), β = 2 (15)

f̂ (x) =
∑

1≤i<j<k≤M

f
(
xi, xj , xk; x̄

i,j,k
)
− (M − 3)

∑
1≤i<j≤M

f
(
xi, xj ; x̄

i,j
)

+
(M − 2)!

2! (M − 4)!

∑
1≤i≤M

f
(
xi; x̄

i
)
+

(M − 1)!

3! (M − 4)!
f (x̄), β = 3

(16)

The term f
(
xi; x̄

i
)
is a function of the single xi component (i.e., a cut along xi through the reference

point in the function space), while the other variables, xj ≡ x̄j , j ̸= i, are fixed at the reference point. In the
same manner, f

(
xi, xj ; x̄

i,j
)
is the observed response for all the variables, xk ≡ x̄k, k ̸= i, j, fixed at the cut

center except for xi and xj . A similar interpretation would apply to higher order HDMR terms. In HDMR-
based approximation, the notions of first-, second-order, etc. are used to define the constant term, terms
with one variable or two variables only. It is recognized that the lower order (e.g., first-order or second-order)
function expansions in the HDMR, do not generally translate to linear or quadratic functions.35 Each of the
lower-order terms in the HDMR is sub-dimensional, but they are not necessarily low degree polynomials. The
computational savings afforded by the HDMR are easily estimated. If the HDMR converges at β order with
acceptable accuracy and considering s sample points for each variable, then the total number of numerical

analyses needed to determine the HDMR is
β∑
k=0

[M !/k! (M − k)!](s− 1)
k
.

V. Numerical Results

The effects of spatial uncertainty on the vibratory hub loads of a composite hingeless helicopter rotor
are studied in this section. Uncertainty analysis is performed for two cases of rotors. In the first case,
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the uncertain stiffness properties are assumed to be similar for all of the four rotor blades which results
in an isotropic rotor system. Therefore, the integer multiples of 4/rev vibratory loads are the only loads
transmitted from blades to the fuselage.11 In the second case, uncertain stiffness properties of each of the four
blades are considered to be independent from the other blades. Here, as discussed in the previous section,
the uncertainty effects on 1/rev to 5/rev vibratory blade loads transmitted to the fuselage are studied.

The rotor blade is considered as a uniform blade equivalent of the BO-105 rotor blade and its properties
are given in Table 1. The cross-section of rotor blade is modeled as a composite box beam with a breadth of
0.144 m, and height of 0.081 m as shown in Fig. 1(b). All of the four walls of the box beam are considered
to be made of a laminate with stacking sequence [03/± 153/± 452]s. Each wall of the box beam is therefore
made of a balanced symmetric laminate with 26 plies of graphite/epoxy material, where each ply is 0.127
mm thick. The box-beam type representation of the rotor blade is extensively used in rotorcraft aeroelastic
analysis and optimization studies.13,36 Initially, a baseline analysis is carried out with the nominal material
properties and the results of uncertainty analysis are compared with these baseline results.

Most studies on uncertainty analysis of composite structures consider E1, E2, G12 and ν12 as statistically
independent random variables.10 In this study, the composite material properties, E1, E2, G12 and ν12,
are considered as independent random variables with normal distributions. The COVs for each of the
above material properties is taken from reference10 and listed in Table 2. Initially, the effect of uncertain
material properties on the cross-sectional stiffnesses such as flap bending (EIy), lag bending (EIz) and
torsional stiffness (GJ) of rotor blade are evaluated. With the statistical measures of uncertainty in cross-
sectional stiffness, the spatial variations of stiffness properties along the blade span are modeled. The
stiffness properties are considered to be spatially varying along the axis of the blade (ξ), as an independent,
homogeneous, log-normal random fields. That is, the torsional stiffness GJ (ξ) is given as c1 exp [α1 (ξ)],
bending stiffnesses, EIy (ξ) as c2 exp [α2 (ξ)] and EIz (ξ) as c2 exp [α2 (ξ)]. HDMR models are developed to
approximate the aeroelastic outputs in terms of the blade stiffnesses as random fields. Uncertainty analysis
of isotropic and dissimilar rotor systems are discussed in the following sections.

Table 1. Baseline hingeless rotor blade properties.

Number of blades 4

Radius, R (m) 4.94

Hover tip speed, ΩR (m/s) 198.12

Mass per unit length, mo (kg/m) 6.46

Lock number 6.34

Solidity 0.10

CT /σ 0.07

Table 2. Scatter in material properties.

Material properties Mean COV (%)

E1 (GPa) 141.96 7.0

E2 (GPa) 9.79 4.0

G12 (GPa) 6.00 11.0

ν12 0.42 4.0

A. Case I: Spatial Uncertainty with Similar Blades

Uncertainty effects on the blade cross-sectional stiffnesses are evaluated with 5000 random samples of material
properties with the COVs listed in Table 2.13 With these random material properties, the flap bending, lag
bending and torsional stiffnesses of the rotor blade show COVs of 6.51, 6.51, and 6.04 percent, respectively,
as given in Table 3. The variation of the stiffness properties along the axis of rotor blade are now modeled
with the above uncertainty results. The rotor blade is divided into 10 beam elements and the random fields
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Table 3. Statistics of cross-sectional stiffness values

Stiffness Baseline value COV

(Non-dimensional) (%)

GJ/moΩ
2R4 0.003817 6.04

EIy/moΩ
2R4 0.008335 6.51

EIz/moΩ
2R4 0.023174 6.51

are used to approximate the spatial variations. For a four bladed rotor considered in this study, the impact
of spatial uncertainty on the 4/rev (per revolution) vibratory loads which are longitudinal shear (Fx), lateral
shear (Fy), and vertical shear (Fz) along with the rolling moment (Mx), pitching moment (My), and yawing
moment (Mz) are studied.22 The 4/rev forces are normalized by the rotor steady thrust and the 4/rev
moments are normalized by the rotor steady yawing moment. The baseline values of vibratory hub loads, at
an advance ratio of 0.3, are given in Fig. 2.
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Figure 2. Baseline vibratory forces and moments.

1. HDMR of Aeroelastic Model

The HDMR models to approximate the aeroelastic response are discussed in this section. Based on the theory
discussed in sections III and IV, the proposed methodology for the HDMR approximation is implemented
using the following steps:

1. Represent the random field inputs in terms of standard random variables by a K-L expansion.

2. Select the reference point x̄, generally as the mean of the input variables.

3. Determine f0, which is a constant term, representing the response at reference point x̄.

4. Generate regularly spaced sample points for each variable, as x1i = x̄i − (s− 1) ki/2, x
2
i = x̄i −

(s− 3) ki/2, . . ., x
(s+1)/2
i = x̄i, . . ., x

s−1
i = x̄i + (s− 3) ki/2, x

s
i = x̄i + (s− 1) ki/2, along the variable

axis xi with reference x̄i and regular spacing ki, which is the standard deviation of xi. Here, s denotes
the number of HDMR sample points, and must be odd. More details about the choice of reference
points and other details can be found in.33

5. Estimate the responses at the sample points for each variable using the computational model.

6. Construct the HDMR approximation using following steps:
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• Interpolate each of the low dimensional (e.g., first-order) HDMR expansion terms f
(
xi; x̄

i
)
as

f
(
xi; x̄

i
)
=

s∑
j=1

φj (xi) f
(
xji ; x̄

i
)
. The response values are calculated in previous step and φj (xi)

represents interpolation/shape functions. In this study, moving least squares interpolation func-
tions are used and the details of which can be found in Ref.37

• Sum the interpolated values of HDMR expansion terms. This leads to the first-order HDMR
approximation of the function f (x) as follows:

f̂ (x) =
∑

1≤i≤M

s∑
j=1

φj (xi) f
(
xji ; x̄

i
)
− (M − 1) f (x̄) β = 1 (17)

7. Perform Monte Carlo simulations using the approximated response function f̂ (x).

8. Estimate the output statistics.

Numerical parameters of the above steps are discussed here. Normalized mean and COVs of the random
fields, (i.e, flap bending, lag bending and torsional stiffness) are µGJ = 1.0, µEIy = 1.0, µEIz = 1.0; and

υGJ = 0.060, υEIy = 0.065, υEIz = 0.065, respectively. c1 = µGJ

/√
1 + υ2GJ , c2 = µEIy,z

/√
1 + υ2EIy,z

and

α1 (ξ), α2 (ξ) are zero-mean, homogeneous, Gaussian random fields. The variance and covariance function

of the random fields are σ2
α1

= ln
(
1 + υ2GJ

)
, σ2

α2
= ln

(
1 + υ2EIy,z

)
and Γα1 (ξ1, ξ2) = σ2

α1
exp (−|ξ1 − ξ2|/b),

Γα2 (ξ1, ξ2) = σ2
α2

exp (−|ξ1 − ξ2|/b), respectively. b is the correlation parameter that controls the rate at
which the covariance decays. The degree of variability associated with the random process can be related to
its coefficient of variation. The frequency content of the random field is related to the L/b ratio in which L
is the length of the blade. L/b = 0.5 is chosen in this study. In this example, the normalized length of the
blade is L = 1 and it is divided into 10 elements.

The eigensolutions of the covariance function are obtained by solving the integral equation (Eq. 7)
analytically. The eigenvalues and eigenfunctions are given as follows:

λi =
2σ2

αb

ω2
i + b2

λ∗i =
2σ2

αb

ω∗
i
2 + b2

ψi (ξ) =
cos (ωiξ)√
a+ sin(2ωiξ)

2ωi

for i = odd

ψi (ξ) =
sin (ω∗

i ξ)√
a− sin(2ω∗

i ξ)
2ω∗

i

for i = even

(18)

The symbol ωi presents the period of the random field. The random field is discretized into ten standard
random variables, and the ten-term K-L expansion (Eq. (9)) is used to generate sample functions of the
input random field. Realizations of the cross-sectional stiffnesses of the blade are numerically simulated
using the K-L expansion method. The response quantities of the blade are represented by HDMR expansion
with seven sample points. Thus, total number of function evaluations ((s− 1)×M + 1 = (7− 1)× 10 + 1)
required for HDMR is 61. It should be noted that the HDMR-based approach requires conditional responses
at selected sample points and the sample points are chosen along each of the variable axis. It is found from
the authors’ previous studies that s = 5 or 7 works well for most of the problem.21,27,37 Therefore, results
for s = 7 is used in this paper to construct HDMR-based metamodels.

2. Uncertainty Analysis with HDMR models

To evaluate the accuracy of the developed HDMR models, MCS with 1000 samples is performed with the
HDMR models and the actual aeroelastic computational code, and the results are compared. Probability
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distribution functions (PDF) of the vibratory hub force Fz and vibratory hub moment Mz from the direct
MCS and HDMR based MCS with 1000 samples are shown in Figs. 3. It is observed that the PDFs from
MCS based on HDMR models are able to approximate, with reasonable accuracy, the PDFs from direct
MCS.

The HDMR models are now used to evaluate the effects of the spatial uncertainty on the six vibratory
hub loads with one hundred thousand samples. The PDFs of baseline vibratory forces and moments are
shown in Fig. 4. The longitudinal vibratory force shows a deviation of -20 to 20 percent from its baseline
value, the lateral force a deviation of -5 to 10 percent, and the vertical force a deviation of -60 to 40 percent.
The vertical vibratory force is dominant among all three forces, as shown in Fig. 4, and is highly sensitive
to the uncertainties. The rolling and pitching moments show a scattering of around -2 to 1 percent from
their baseline values. However, the vibratory yawing moment shows scattering of around -20 to 60 percent.
Further, the PDFs of 4/rev loads given in Fig. 4 show non-Gaussian type distributions. The results from
this study show that parametric uncertainty plays a major role in reliable aeroelastic predictions and have
to be incorporated in the design and optimization of composite aircraft structures. The CPU time for the
aeroelastic simulations with 1000 samples is approximately 10 CPU hours in a PC with a quad core processor.
Therefore, for one hundred thousand samples, it would take approximately 1000 CPU hours which is very
expensive compared to MCS with HDMR models that takes only a few minutes. Further, the HDMR models
are developed with 61 aeroelastic simulations which take approximately 1 CPU hour only. Therefore, the
development of approximation models such as HDMR methods can significantly reduce the computational
cost of stochastic analysis.

−40 −20 0 20 40
0

0.1

0.2

0.3

0.4

0.5

% deviation from baseline

P
ro

ba
bi

lit
y 

of
 o

cc
ur

en
ce

 

 

Direct MCS
HDMR MCS

−20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

% deviation from baseline

P
ro

ba
bi

lit
y 

of
 o

cc
ur

en
ce

 

 

Direct MCS
HDMR MCS

Figure 3. Comparison of the uncertainty results of direct MCS and HDMR based MCS of isotropic rotor
system.

B. Case II: Spatial Uncertainty with Dissimilar Blades

In this section, the spatial uncertainty modeled on each rotor blade is different from the other blades. This
results in a rotor with dissimilar blades which transmits all harmonics of vibratory loads acting on the blades
to the fuselage. The spatial uncertainty of the dissimilar rotor with four blades is modeled with the following
assumptions.
Case 1: Uncertainty assumed for one blade and the remaining blades are assumed to have its baseline values.
Case 2: Uncertainty assumed for two blades which are diagonally opposite to each other.
Case 3: Uncertainty assumed for two consecutive blades.
Case 4: Uncertainty assumed for three blades.
Case 5: Uncertainty assumed for all four blades.

The effects of spatial uncertainty on the vibratory load predictions are different for each of the above
assumption. A sensitivity analysis is performed for each of the above assumed conditions. Further, the
magnitude of the effects of the uncertain flap, lag and torsional stiffness can be different from each other.
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This sensitivity analysis can be used to find the highly sensitive uncertain variables and reduce the number of
design variables used in the surrogate models. The flap, lag and torsion stiffness of rotor blades are assumed
to be spatially uncertain with the COVs given in Table 3. The effects of the spatial uncertainty on the 1/rev
to 5/rev vibratory loads transmitted to the fuselage for cases 1 to 5 are given in Figs. 5 to 7. The vibratory
loads of 1/rev, 2/rev, 3/rev and 5/rev are non-dimensionalized with their corresponding 4/rev loads. This
study shows that the uncertain dissimilar rotor system can induce 1/rev and 2/rev vibratory hub forces
with magnitudes of 10-60 percent of the 4/rev loads. Further, the vibratory loads are highly sensitive to the
uncertainties in lag and torsional stiffness compared to the flap stiffness. Figure 8 shows that the uncertainty
in flap, lag and torsional stiffnesses of all four blades can significantly induce the 1/rev and 2/rev vibratory
forces as comparable to 4/rev forces. Further, these study shows that the uncertainty effects mainly depend
on the type of blade stiffness (flap, lag or torsion) rather than the number of uncertain blades. However,
these sensitivity analysis results are based on the simulation with only one random sample for each of the
above cases considered.

An uncertainty analysis based on Monte Carlo simulations is performed to identify the n/rev vibratory
hub forces and moments which are highly sensitive to the uncertainty. Monte Carlo simulations of the
dissimilar rotor is performed with 100 samples with uncertain flap, lag and torsional stiffness of all four
blades. The MCS is performed with the COVs of flap, lag and torsional stiffness as 6.51, 6.51 and 3.5
percent and the results are shown in Figs. 9 and 10. The results show that the 1/rev and 2/rev forces of
Fx and Fy, and 1/rev and 4/rev forces of Fz are highly sensitive to the uncertainty. Similarly, the 1/rev
vibratory moments of Mx, My, and Mz, and 4/rev of Mz are highly sensitive to the spatially uncertain
rotor blades. HDMR models of these specified vibratory forces and moments can be developed as discussed
in the previous sections and this work is in progress. HDMR models can be used to perform MCS with
sufficient samples to obtain the probability distributions of the vibratory loads of dissimilar rotor systems.

VI. Conclusions

The effects of spatially uncertain flap, lag and torsional stiffness of blade properties on the vibratory
hub loads has been studied. The spatial uncertainty analysis is performed with rotors modeled as isotropic
rotors and dissimilar rotors. In the isotropic rotor system, the uncertainty is considered to be same for all
the four blades and the uncertainty effects on the 4/rev vibratory hub loads are studied. A high dimensional
model representation of the computational aeroelastic model is developed to reduce the computational cost
of uncertainty analysis, and Monte Carlo simulations are then performed with these developed models.
Uncertainty analysis of the dissimilar rotor system is studied with each of the rotor blades possessing different
spatially uncertain stiffness properties. The effects of spatially uncertain blades of the dissimilar rotor on
the 1/rev to 5/rev vibratory hub loads are studied with MCS. The following conclusions are drawn from this
study:

1. Spatial uncertainty of the rotor with similar blades have considerable influence on the 4/rev vibratory
hub loads of the helicopter. Longitudinal and lateral vibratory forces show deviations up to 20 percent
from their baseline value. The vertical vibratory force is highly sensitive to uncertainty with maximum
deviations up to 60 percent from its baseline value. The rolling and pitching moments are less sensitive
to uncertainty whereas the vibratory yawing moment shows a scattering of up to 60 percent. The
PDFs of 4/rev vibratory hub loads loads show non-Gaussian type distributions.

2. High dimensional model representations of the response are found to approximate the computational
aeroelastic model for uncertainty analysis. Monte Carlo simulations with the HDMR models and direct
simulations produce similar results. Therefore, Monte carlo simulations with a very large number of
samples (one hundred thousand) are performed with HDMR models in few minutes which can take
approximately 1000 CPU hours with the direct simulations. Further, it is found that HDMR models
with s = 7 are found to produce good meta-model approximations.

3. Spatial uncertainty of rotors with dissimilar blades have considerable influence on the 1/rev and 2/rev
vibratory hub loads in addition to the 4/rev vibratory hub loads. The 1/rev and 2/rev harmonics of
longitudinal and lateral vibratory hub forces, and the 1/rev vertical vibratory hub force are highly
sensitive to spatial uncertainties. Similarly, the 1/rev harmonics of the rolling, pitching and yawing
vibratory hub moments are highly sensitive to spatial uncertainties of the rotor blades.
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Figure 4. Effects of spatial uncertainty on 4/rev vibratory loads of isotropic rotor system with HDMR based
MCS.
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Figure 5. Effects of spatially uncertain flap stiffness on the vibratory hub forces (VHF) and moments (VHM)
of dissimilar rotor blades.
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Figure 6. Effects of spatially uncertain lag stiffness on the vibratory hub forces (VHF) and moments (VHM)
of dissimilar rotor blades.
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Figure 7. Effects of spatially uncertain torsional stiffness on the vibratory hub forces (VHF) and moments
(VHM) of dissimilar rotor blades.
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Figure 8. Effects of spatially uncertain stiffnesses (flap, lag or torsion) on the vibratory hub forces (VHF) and
moments (VHM) of dissimilar rotor blades.
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Figure 9. MCS of 1/rev, 2/rev, 3/rev, and 4/rev vibratory hub forces (Fx, Fy, Fz) of spatially uncertain
dissimilar rotor blades.
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Figure 10. MCS of 1/rev, 2/rev, 3/rev, and 4/rev vibratory hub moments (Mx, My, Mz) of spatially uncertain
dissimilar rotor blades.
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