
Abstract

The stochastic finite element analysis of elliptic type partial differential equations are
considered. An alternative approach by projecting the solution of the discretized equa-
tion into a finite dimensional orthonormal vector basis is investigated. It is shown that
the solution can be obtained using a finite series comprising functions of random vari-
ables and orthonormal vectors. These functions, called as the spectral functions, can
be expressed in terms of the spectral properties of the deterministic coefficient ma-
trices arising due to the discretization of the governing partial differential equation.
An explicit relationship between these functions and polynomial chaos functions has
been derived. Based on the projection in the orthonormal vector basis, a Galerkin error
minimization approach is proposed. The constants appearing in the Galerkin method
are solved from a system of linear equations which has the same dimension as the
original discretized equation. A hybrid analytical and simulation based computational
approach is proposed to obtain the moments and pdf of the solution. The method is
illustrated using a stochastic beam problem. The results are compared with the di-
rect Monte Carlo simulation results for different correlation lengths and strengths of
randomness.

Keywords: stochastic dynamics; uncertainty propagation; series expansion.

1 Introduction

Due to the significant development in computational hardware it is now possible to
solve very high resolution models in various computational physics problems, ranging
from fluid mechanics to nano-bio mechanics. However, the spatial resolution is not
enough to determine the credibility of a numerical model. The physical model as
well its parameters are also crucial. Since neither of these may not be exactly known,
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over the past three decades there has been increasing research activities to model the
governing partial differential equations within the framework of stochastic equations.
We refer to few recent review papers [1–3]. Consider a bounded domain D ∈ Rd with
piecewise Lipschitz boundary ∂D, where d ≤ 3 is the spatial dimension. Further,
consider that (Ω,F, P ) is a probability space where ω ∈ Ω is a sample point from
the sampling space Ω, F is the complete σ-algebra over the subsets of Ω and P is the
probability measure. We consider the stochastic elliptic partial differential equation
(PDE)

−∇ [a(r, ω)∇u(r, ω)] = p(r); r in D (1)

with the associated Dirichlet condition

u(r, ω) = 0; r on ∂D (2)

Here a : Rd × Ω → R is a random field [4], which can be viewed as a set of random
variables indexed by r ∈ Rd. We assume the random field a(r, ω) to be stationary and
square integrable. Depending on the physical problem the random field a(r, ω) can
be used to model different physical quantities. As an example, for a slow flow of an
incompressible, viscous fluid through a porus media a(r, ω) would be the random field
describing the permeability of the medium. The purpose of this paper is to investigate
a new solution approach for Eq. (1) after the discretization using the stochastic finite
element method [5, 6].

2 Overview of spectral stochastic finite element method

2.1 Discretisation of the stochastic PDE

Consider a(r, ω) is a Gaussian random field with a covariance function Ca : Rd ×
Rd → R defined in the domain D. Since the covariance function is square bounded,
symmetric and positive definite, it can be represented by a spectral decomposition in
an infinite dimensional Hilbert space. Using this spectral decomposition, the random
process a(r, ω) can be expressed [see for example, 5, 7] in a generalized fourier type
of series known as the Karhunen-Loève expansion

a(r, ω) = a0(r) +
∞∑
i=1

√
νiξi(ω)φi(r) (3)

Here a0(r) is the mean function, ξi(ω) are uncorrelated standard Gaussian random
variables, νi and φi(r) are eigenvalues and eigenfunctions satisfying the integral equa-
tion

∫
D
Ca(r1, r2)φj(r1)dr1 = νjφj(r2), ∀ j = 1, 2, · · · . Truncating the series (3)

upto the M -th term, substituting a(r, ω) in the governing PDE (1) and applying the
boundary conditions, the discretized equation can be written as[

A0 +
M∑
i=1

ξi(ω)Ai

]
u(ω) = f (4)
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The necessary technical details to obtain the discrete stochastic algebraic equations
from the stochastic partial differential equation (1) has become standard in the lit-
erature and therefore omitted here. Excellent references, for example [5, 9, 10] are
available on this topic. In Eq. (4) A0 is a symmetric nonnegative definite matrix,
Ai ∈ Rn×n; i = 1, 2, . . . ,M are symmetric matrices, u(ω) ∈ Rn is the solution vector
and f ∈ Rn in the input vector. We assume that the eigenvalues of A0 are distinct.
For most practical application uncertainties are small compared to the deterministic
values. Therefore, we normally have

∥A0∥ ≥

∥∥∥∥∥
M∑
i=1

ξi(ω)Ai

∥∥∥∥∥ ;∀ ω ∈ Ω (5)

Here by ∥•∥ we imply the Frobenius matrix norm [11], defined as ∥A∥ = Trace
(
AAT

)
for any A ∈ Rn×n. The number of terms M in Eq. (4) can be selected based on the
‘amount of information’ to be retained. This in turn is related to the number of eigen-
values retained, since the eigenvalues, νi, in Eq. (3) are arranged in a decreasing order.
One of the main aim of a stochastic finite element analysis is to obtain u(ω) for ω ∈ Ω
from Eq. (4) in an efficient manner and is the main topic of this paper.

2.2 Brief review of the solution techniques

The solution of the set of stochastic linear algebraic equations (4) is a key step in the
stochastic finite element analysis. As a result, several methods have been proposed.
These methods include, first- and second-order perturbation methods [12, 13], Neu-
mann expansion method [14, 15], Galerkin approach [16] and linear algebra based
methods [17–19]. More recently very efficient collocation methods have been pro-
posed [20, 21]. Another class of problems which have been used widely in the liter-
ature is known as the spectral methods (see [1] for a recent review). These methods
include the polynomial chaos (PC) expansion [5], stochastic reduced basis method and
[22], Wiener−Askey chaos expansion [23, 24]. According to the polynomial chaos ex-
pansion, second-order random variables uj(θ) can be represented by the mean-square
convergent expansion

uj(ω) = u
(j)
i0
h0 +

∞∑
i1=1

u
(j)
i1
h1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

u
(j)
i1,i2

h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

u
(j)
i1i2i3

h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

u
(j)
i1i2i3i4

h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . .

(6)

where u(j)
i1,...,ip

are deterministic constants to be determined and hp( ξi1(ω), . . . , ξip(ω) )

is the pth order Homogeneous Chaos. When ξi(ω) are Gaussian random variables, the
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functions hp(ξi1(ω), . . . , ξip(ω) ) are the pth order hermite polynomial so that it be-
comes othronormal with respect to the Gaussian probability density function. The
same idea can be extended to non-Gaussian random variables, provided more gener-
alized functional basis are used [23, 24]. When we have a random vector, as in the
case of the solution of Eq. (4), then it is natural to ‘replace’ the constants u

(j)
i1,...ip

by

vectors u(j)
i1,...ip

∈ Rn. Suppose the series in truncated after P number of terms. The
value of P depends on the number of basic random variables M and the order of the
PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
(7)

After the truncation, there are P number of unknown vectors of dimension n. Then
a mean-square error minimization approach can be applied and the unknown vectors
can be solved using the Galerkin approach [5]. Since P increases very rapidly with
the order of the chaos r and the number of random variables M , the final number
of unknown constants Pn becomes very large. As a results several methods have
been developed (see for example [22, 25, 26]) to reduce the computational cost. Here
we investigate the possibility of an alternative approach, where instead of projecting
the solution in the space of orthonormal polynomials, the solution is projected in an
orthonormal vector basis.

3 Spectral decomposition in the vector space

Following the spectral stochastic finite element method, or otherwise, an approxima-
tion to the solution of Eq. (4) can be expressed as a linear combination of functions
of random variables and deterministic vectors. Recently Nouy [27, 28] discussed the
possibility of an optimal spectral decomposition. The aim is to use small number of
terms to reduce the computation without loosing the accuracy. Here an orthonormal
vector basis is considered.

3.1 Expansion in the orthonormal vector basis

In order to propose the approach, some basic results in linear algebra are necessary.
We refer to Luenberger [29] for further technical details.

Definition 1. (Linearly independent vectors) A set of vectors {ϕ1,ϕ2, . . . ,ϕn} is lin-
early independent if the expression

∑n
k=1 αkϕk = 0 if and only if αk = 0 for all

k = 1, 2, . . . , n.

A finite set S of linearly independent vectors is said to be a complete basis for
the space X if S generates X . A vector space having a finite basis is said to be
finite dimensional. Here we consider finite dimensional basis vectors. Suppose H is
a Hilbert space which is a subset of Rn. For two vectors u, v ∈ H ∈ Rn we define
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the inner product norm as (u, v) = uTv. Finite dimensional basis vectors have the
following spanning property.
Remark 1. (The spanning property) Suppose {ϕ1,ϕ2, . . . ,ϕn} is a complete basis
in the Hilbert space H . Then for every nonzero u ∈ H , it is possible to choose
α1, α2, . . . , αn ̸= 0 uniquely such that u = α1ϕ1 + α2ϕ2 + . . . αnϕn.

Definition 2. (Orthonormal vectors) A set of vectors {ϕ1,ϕ2, . . . ,ϕn} is said to a be
orthonormal set in H if (ϕj,ϕk) = δjk for any j, k ≤ n, j ̸= k where δjk is Kroneker’s
delta function.

Remark 2. An orthonormal set of nonzero vectors is a linearly independent set.

Orthonormal set of vectors are preferred in a Hilbert space over any other set of
linearly independent vectors. They can be created from any set of independent vec-
tors using the Gram-Schmidt orthonormalization procedure. Here we generate the
orthonormal set from the eigenvectors of a symmetric positive definite matrix.

The motivation of the proposed approach comes form the fact that any vector in
H can be expanded in a finite basis. Therefore, fixing a value of ω, say ω = ω1, the
solution of Eq. (4) u(ω1) can be expanded in a complete basis according to Remark 1
as u(ω1) = α

(1)
1 ϕ1 +α

(1)
2 ϕ2 + . . . α

(1)
n ϕn. Repeating this for ω1, ω2, . . . eventually the

whole sample-space can be covered and it would be possible to expand u(ω), ∀ω ∈
Ω as a linear combination of ϕ1,ϕ2, . . . ,ϕn. Based on this idea, one of the main
contribution of this paper is the following result:

Theorem 1. There exist a finite set of functions Γk : (Rm × Ω) → (R × Ω) and an
orthonormal basis ϕk ∈ Rn for k = 1, 2, . . . , n such that the series

û(ω) =
n∑

k=1

Γk(ξ(ω))ϕk (8)

converges to the exact solution of the discretized stochastic finite element equation (4)
with probability 1.

Proof. The first step is to generate a complete orthonormal basis. We use the eigen-
vectors ϕk ∈ Rn of the matrix A0 such that

A0ϕk = λ0kϕk; k = 1, 2, . . . n (9)

We assume that the eigenvalues are distinct so that ϕk for k = 1, 2, . . . n forms a com-
plete orthonormal basis. Note that any in principle orthonormal basis can be sued.
This choice is selected due to the analytical simplicity as will be seen later. For nota-
tional convenience, define the matrix of eigenvalues and eigenvectors

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ Rn×n and Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rn×n (10)

Eigenvalues are ordered in the ascending order so that λ01 < λ02 < . . . < λ0n . Since
Φ is an orthogonal matrix we have Φ−1 = ΦT so that the following identities can be
easily established

ΦTA0Φ = Λ0; A0 = Φ−TΛ0Φ
−1 and A−1

0 = ΦΛ−1
0 ΦT (11)

5



We also introduce the transformations

Ãi = ΦTAiΦ ∈ Rn×n; i = 0, 1, 2, . . . ,M (12)

Note that Ã0 = Λ0, a diagonal matrix and

Ai = Φ−T ÃiΦ
−1 ∈ Rn×n; i = 1, 2, . . . ,M (13)

Suppose the solution of Eq. (4) is given by

û(ω) =

[
A0 +

M∑
i=1

ξi(ω)Ai

]−1

f (14)

Using Eqs. (10)–(13) and the orthonormality of Φ one has

û(ω) =

[
Φ−TΛ0Φ

−1 +
M∑
i=1

ξi(ω)Φ
−T ÃiΦ

−1

]−1

f = ΦΨ (ξ(ω))ΦT f (15)

where

Ψ (ξ(ω)) =

[
Λ0 +

M∑
i=1

ξi(ω)Ãi

]−1

(16)

and the M -dimensional random vector

ξ(ω) = {ξ1(ω), ξ2(ω), . . . , ξM(ω)}T (17)

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i, i = 1, 2, . . . ,M (18)

Here the diagonal matrix

Λi = diag
[
Ã
]
= diag [λi1 , λi2 , . . . , λin ] ∈ Rn×n (19)

and the matrix containing only the off-diagonal elements ∆i = Ãi − Λi is such that
Trace (∆i) = 0. Using these, from Eq. (16) one has

Ψ (ξ(ω)) =

Λ0 +
M∑
i=1

ξi(ω)Λi︸ ︷︷ ︸
Λ(ξ(ω))

+
M∑
i=1

ξi(ω)∆i︸ ︷︷ ︸
∆(ξ(ω))


−1

(20)

where Λ (ξ(ω)) ∈ Rn×n is a diagonal matrix and ∆ (ξ(ω)) is an off-diagonal only
matrix. Since Φ is an orthogonal matrix we have

∥∥∥Ãi

∥∥∥ =
∥∥ΦTAiΦ

∥∥ = ∥Ai∥ There-

fore, from Eq. (5) one has ∥Λ0∥ ≥
∥∥∥∑M

i=1 ξi(ω)Ãi

∥∥∥. Using this and following Eqs.
(18) and (20), we have

∥Λ (ξ(ω))∥ ≥ ∥∆ (ξ(ω))∥ (21)
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Because Λ (ξ(ω)) is a diagonal matrix, the norm of the inverse is the same as the
inverse of the norm, that is ∥∥Λ−1 (ξ(ω))

∥∥ =
1

∥Λ (ξ(ω))∥
(22)

Using the Cauchy-Schwarz inequality and the relationship in (21) we have∥∥Λ−1 (ξ(ω))∆ (ξ(ω))
∥∥ ≤

∥∥Λ−1 (ξ(ω))
∥∥ ∥∆ (ξ(ω))∥ =

∥∆ (ξ(ω))∥
∥Λ (ξ(ω))∥

≤ 1 (23)

We rewrite Eq. (20) as

Ψ (ξ(ω)) =
[
Λ (ξ(ω))

[
In +Λ−1 (ξ(ω))∆ (ξ(ω))

]]−1 (24)

Due to the inequality relationship in Eq. (23) the eigenvalues of Λ−1 (ξ(ω))∆ (ξ(ω))
are less than 1 and the above expression can be represented using a Neumann type of
matrix series [14] as

Ψ (ξ(ω)) =
∞∑
s=0

(−1)s
[
Λ−1 (ξ(ω))∆ (ξ(ω))

]s
Λ−1 (ξ(ω)) (25)

Taking an arbitrary r-th element of û(ω), Eq. (15) can be rearranged to have

ûr(ω) =
n∑

k=1

Φrk

(
n∑

j=1

Ψkj (ξ(ω))
(
ϕT

j f
))

(26)

Defining

Γk (ξ(ω)) =
n∑

j=1

Ψkj (ξ(ω))
(
ϕT

j f
)

(27)

and collecting all the elements in Eq. (26) for r = 1, 2, . . . , n one has

û(ω) =
n∑

k=1

Γk (ξ(ω))ϕk (28)

Now assume the series in Eq. (25) is truncated after m-th term. We define the
truncated function

Ψ(m) (ξ(ω)) =
m∑
s=0

(−1)s
[
Λ−1 (ξ(ω))∆ (ξ(ω))

]s
Λ−1 (ξ(ω)) (29)

From this one can obtain a sequence for different m

û(m)(ω) =
n∑

k=1

Γ
(m)
k (ξ(ω))ϕk; m = 1, 2, 3, . . . (30)
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Since ω ∈ Ω is arbitrary, comparing (4) and (14) we observe that û(m)(ω) is the
solution of Eq. (4) for every ω when m → ∞. This implies that

Prob
{
ω ∈ Ω : lim

m→∞
û(m)(ω) = û(ω)

}
= 1 (31)

Therefore, û(ω) is the solution of Eq. (4) in probability 1 and this proves the theorem.

Remark 3. (Convergence) The series in (30) approaches to the exact solution of the
governing Eq. (4) for every ω ∈ Ω for m → ∞. For this reason it converges in proba-
bility 1. The convergence in probability 1 is a stronger convergence than, for example,
mean-square convergence often used in the stochastic finite element analysis. Since
the convergence in probability 1 automatically implies the mean-square convergence,
the series is in Eq. (28) is also a mean-square convergent series.

Definition 3. The functions Γk (ξ(ω)) , k = 1, 2, . . . n are called the spectral functions
as they are expressed in terms of the spectral properties of the coefficient matrices of
the governing discretized equation.

3.2 Mathematical relationship with the polynomial chaos expan-
sion

The original polynomial chaos expansion (6) proposed by Winner [30] for scalar func-
tions is optimal because there is no nontrivial vector basis in R1. This fact is not nec-
essarily true when the same series is directly extended to finite dimensional vectors.
We therefore make difference between the original scalar polynomial chaos and vector
polynomial chaos. The ‘vector version’ of the polynomial chaos expansion (6) have
been used widely in literature. After the finite truncation, concisely such an expression
can be written as

û(ω) =
P∑

k=1

Hk(ξ(ω))uk (32)

where in general P ≫ n according to Eq. (7). Equation (32) originated from pro-
jecting a random function in an othonormal functional basis. Since û(ω) ∈ Rn, an
alternative view of Eq. (32) could be taken as the projection in a vector basis in Rn.
According to Remark 1, using the spanning property of a complete basis in Rn it is
always possible to project û(ω) in a finite dimensional vector basis for any ω ∈ Ω.
Therefore, in a vector polynomial chaos expansion (32), all uk for k > n must be
linearly dependent. Based on the idea of linearly dependency, our main result in this
direction is the following:

Theorem 2. There exist a finite set of functions Γ̃k : (Rm × Ω) → (R × Ω) and an
orthonormal basis ϕk ∈ Rn for k = 1, 2, . . . , n such that a vector polynomial chaos
expansion can be expressed by

û(ω) =
n∑

k=1

Γ̃k(ξ(ω))ϕk (33)
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Proof. The orthonormal basis ϕk ∈ Rn has been identified in Eq. (9). Therefore, we
only have to prove the existence of the functions Γ̃k(ξ(ω)) from the vector polynomial
chaos expansion. Stacking uj for all j = 1, 2, . . . , n in a vector, the scalar polynomial
chaos expansion (6) can be expressed for a vector valued function as

u(ω) = ui0h0 +
∞∑

i1=1

ui1h1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

ui1,i2h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4 h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(34)

where ui1,...,ip ∈ Rn are deterministic vectors to be determined. Using the spanning
property of the orthonormal basis ϕk ∈ Rn in Remark 1, each of the ui1,...,ip can be
uniquely expressed as

ui1,...,ip = α
(1)
i1,...,ip

ϕ1 + α
(2)
i1,...,ip

ϕ2 + . . .+ α
(n)
i1,...,ip

ϕn (35)

Substituting this in Eq. (34) and collecting all the coefficients associated with each
orthonormal vector ϕk the theorem is proved where

Γ̃k(ξ(ω)) = α
(k)
i0
h0 +

∞∑
i1=1

α
(k)
i1
h1(ξi1(ω))

+
∞∑

i1=1

i1∑
i2=1

α
(k)
i1,i2

h2(ξi1(ω), ξi2(ω)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

α
(k)
i1i2i3

h3(ξi1(ω), ξi2(ω), ξi3(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

α
(k)
i1i2i3i4

h4(ξi1(ω), ξi2(ω), ξi3(ω), ξi4(ω)) + . . . ,

(36)

The fact that linearly depended vectors can be ‘grouped’ in this way may offer
computational advantage as the number of truly independent vectors to be determined
is only n. We have the following result in the regard:

Corollary 1. The spectral functions in Eq. (8) and the polynomial chaos functions in
Eq. (36) are equal, that is Γk(ξ(ω)) = Γ̃k(ξ(ω)),∀k = 1, 2, . . . , n.

Proof. From Theorem 1 and Theorem 2 we have

û(ω) =
n∑

k=1

Γk(ξ(ω))ϕk =
n∑

k=1

Γ̃k(ξ(ω))ϕk (37)
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Rearranging the last two terms in the preceding expression, one obtains

n∑
k=1

[
Γk(ξ(ω))− Γ̃k(ξ(ω))

]
ϕk = 0 (38)

Since the set {ϕ1,ϕ2, . . . ,ϕn} is linearly independent, according to Definition 1 their
linear combination can be 0 if and only if the coefficients are 0 for all k, that is, iff[

Γk(ξ(ω))− Γ̃k(ξ(ω))
]
= 0 or Γk(ξ(ω)) = Γ̃k(ξ(ω)); k = 1, 2, . . . , n (39)

Remark 4. Suppose the polynomial chaos expansion is truncated after P terms. From
Eqs. (36) and (39) one observes that each of the spectral functions in effect groups to-
gether linear combination of P polynomial chaoses. Although both are expressed via
infinite series, the difference is that the spectral functions Γk(ξ(ω)) are completely de-
fined in closed-form by the spectral properties of the governing matrices, while each of
the polynomial chaos function Γ̃k(ξ(ω)) in (36) contain P unknown constants α(k)

i1,...,ip
.

Therefore, for all k = 1, 2, . . . , n, there are in total nP number of unknown coeffi-
cients to be determined if polynomial chaos function Γ̃k(ξ(ω)) are to be used. The
explicit relationship proved in Corollary 1 shows that this computational expense may
be avoided if the proposed spectral functions Γk(ξ(ω)) are used as they are a-priori
known. The spectral function approach can be viewed as a method of eliminating
the need to compute large number of linearly dependent vectors appearing in a vector
polynomial chaos expansion.

3.3 Properties of the spectral functions

The main problem from the computational point of view is that each of the spectral
function is represented in terms of an infinite series. Clearly this series has to be
truncated for practical purposes. In this section we discuss some important properties
of these functions. From the series expansion in Eq. (25) we have

Ψ (ξ(ω)) = Λ−1 (ξ(ω))−Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω))

+Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω)) + . . . (40)

Since Λ (ξ(ω)) is a diagonal matrix, its inverse is simply a diagonal matrix containing
the inverse of each of the diagonal elements. Also recall that the diagonal of ∆ (ξ(ω))
contains only zeros. For further analytical results, truncating the series upto different
terms, we define spectral functions of different order.

Definition 4. The first-order spectral functions Γ
(1)
k (ξ(ω)), k = 1, 2, . . . , n are ob-

tained by retaining one term in the series (40).
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Retaining one term in (40) we have

Ψ(1) (ξ(ω)) = Λ−1 (ξ(ω)) or Ψ
(1)
kj (ξ(ω)) =

δkj

λ0k +
∑M

i=1 ξi(ω)λik

(41)

Using the definition of the spectral function in Eq. (27), the first-order spectral func-
tions can be explicitly obtained as

Γ
(1)
k (ξ(ω)) =

n∑
j=1

Ψ
(1)
kj (ξ(ω))

(
ϕT

j f
)
=

ϕT
k f

λ0k +
∑M

i=1 ξi(ω)λik

(42)

From this expression it is clear that Γ(1)
k (ξ(ω)) are non-Gaussian random variables

even if ξi(ω) are Gaussian random variables. Since we assumed that all eigenvalues
λ0k are distinct, every Γ

(1)
k (ξ(ω)) in Eq. (42) are different for different values of k.

Definition 5. The second-order spectral functions Γ(2)
k (ξ(ω)), k = 1, 2, . . . , n are ob-

tained by retaining two terms in the series (40).

Retaining two terms in (40) we have

Ψ(2) (ξ(ω)) = Λ−1 (ξ(ω))−Λ−1 (ξ(ω))∆ (ξ(ω))Λ−1 (ξ(ω)) or (43)

Ψ
(2)
kj (ξ(ω)) =

δkj

λ0k +
∑M

i=1 ξi(ω)λik

−
∑M

i=1 ξi(ω)∆ikj(
λ0k +

∑M
i=1 ξi(ω)λik

)(
λ0j +

∑M
i=1 ξi(ω)λij

)
(44)

Using the definition of the spectral function in Eq. (27), the second-order spectral
functions can be obtained in closed-form as

Γ
(2)
k (ξ(ω)) =

ϕT
k f

λ0k +
∑M

i=1 ξi(ω)λik

−
n∑

j=1

(
ϕT

j f
)∑M

i=1 ξi(ω)∆ikj(
λ0k +

∑M
i=1 ξi(ω)λik

)(
λ0j +

∑M
i=1 ξi(ω)λij

)
(45)

The second-order function can be viewed as adding corrections to the first-order ex-
pression derived in Eq. (42). This is again a non-Gaussian random variable.

4 Error minimization in the Hilbert space: The Galerkin
approach

In Theorem 1 we proved the existence of the spectral functions such that a projection
in an orthonormal basis converges to the exact solution in probability 1. The spectral
functions are expressed in terms of a convergent infinite series. Approximate first and
second order spectral functions by truncating the infinite series have been derived.
We have also proved that they have the same functional form as the exact solution
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of Eq. (4). This motivates us to use these functions as ‘trial functions’ to construct
an approximate solution. The idea is to make the error arising due to the truncation
minimum according to certain norm. We develop a Galerkin approach in the Hilbert
space where the error is made orthogonal to the spectral functions. We recall that the
Hilbert space L2 (Rn,H) is empowered with the inner product norm ⟨u(ω), v(ω)⟩ =∫
Ω
P (dω)uT (ω)v(ω). This norm is used in our next result.

Theorem 3. There exist a set of finite functions Γ̂k : (Rm × Ω) → (R×Ω), constants
ck ∈ R and orthonormal vectors ϕk ∈ Rn for k = 1, 2, . . . , n such that the series

û(ω) =
n∑

k=1

ckΓ̂k(ξ(ω))ϕk (46)

converges to the exact solution of the discretized stochastic finite element equation
(4) in the mean-square sense provided the vector c = {c1, c2, . . . , cn}T satisfies the
following n× n algebraic equations:

S c = b (47)

with

Sjk =
M∑
i=0

ÃijkDijk; ∀ j, k = 1, 2, . . . , n (48)

where

Ãijk = ϕT
j Aiϕk, Dijk = E

[
ξi(ω)Γ̂j(ξ(ω))Γ̂k(ξ(ω))

]
, bj = E

[
Γ̂j(ξ(ω))

] (
ϕT

j f
)
.

(49)

Proof. The functions Γ̂k(ξ(ω)) can be the first-order (42), second-order (45) or any
higher-order spectral functions and ϕk are the eigenvectors introduced earlier in Eq.
(9). Substituting the approximate expression of û(ω) in the governing equation (4),
the error vector can be obtained as

ε(ω) =

(
M∑
i=0

Aiξi(ω)

)(
n∑

k=1

ckΓ̂k(ξ(ω))ϕk

)
− f ∈ Rn (50)

where ξ0 = 1 is used to simplify the first summation expression. The expression (46)
is viewed as a projection where

{
Γ̂k(ξ(ω))ϕk

}
∈ Rn are the basis functions and ck

are the unknown constants to be determined. We wish to obtain the coefficients ck
such that the error norm χ2 = ⟨ε(ω), ε(ω)⟩ is minimum. This can be achieved using
the Galerkin approach so that the error is made orthogonal to the basis functions, that
is, mathematically

ε(ω)⊥
(
Γ̂j(ξ(ω))ϕj

)
or

⟨
Γ̂j(ξ(ω))ϕj, ε(ω)

⟩
= 0 ∀ j = 1, 2, . . . , n (51)
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Imposing this condition and using the expression of ε(ω) from Eq. (50) one has

E

[
Γ̂j(ξ(ω))ϕ

T
j

(
M∑
i=0

Aiξi(ω)

)(
n∑

k=1

ckΓ̂k(ξ(ω))ϕk

)
− Γ̂j(ξ(ω))ϕ

T
j f

]
= 0 ∀ j

(52)
Interchanging the E [•] and summation operations, this can be simplified to

n∑
k=1

(
M∑
i=0

(
ϕT

j Aiϕk

)
E
[
ξi(ω)Γ̂j(ξ(ω))Γ̂k(ξ(ω))

])
ck = E

[
Γ̂j(ξ(ω))

] (
ϕT

j f
)

(53)

or
n∑

k=1

(
M∑
i=0

ÃijkDijk

)
ck = bj (54)

where Ãijk , Dijk and bj are as defined in Eq. (49). This completes the proof.

Remark 5. (Comparison with the classical spectral SFEM) We compare this Galerkin
approach with the classical spectral stochastic finite element approach for further in-
sight. The number of equations to be solved for the unknown coefficients in Eq. (47)
is n, the same dimension as the original governing equation (4). The computational
reduction from Theorem 3 is arising from the fact that each of the spectral functions
groups P number of polynomial chaos functions exploiting the linear dependence of
the associated vectors as proved in Theorem 2 (see Eq. (36)). As a result, there are
only n unknown constants, as opposed to nP unknown constants arising in the poly-
nomial chaos expansion. However, the spectral functions Γ̂k(ξ(ω)) are highly non-
Gaussian in nature and do not in general enjoy any orthogonality properties like the
Hermite polynomials or any other orthogonal polynomials [23, 24, 31] with respect to
the underlying probability measure. The coefficient matrix S and the vector b in Eq.
(47) should be obtained numerically using the Monte Carlo simulation or other nu-
merical integration technique. In the classical PC expansion, however, the coefficient
matrix and the associated vector are obtained exactly in closed-form. In addition, the
coefficient matrix is a sparse matrix where the matrix S in Eq. (47) is a fully populated
matrix.

It can be observed that the matrix S in Eq. (47) is symmetric. Therefore, one need
to determine n(n+1)/2 number of coefficients by numerical methods. Any numerical
integration method, such as the Gaussian quadrature method, can be used to obtain the
elements of Dijk and bj in Eq. (49). In this paper Monte Carlo simulation is used. The
samples of the spectral functions Γ̂k(ξ(ω)) can be simulated from Eq. (42) or Eq.
(45). These can be used to compute Dijk and bj from Eq. (49). The simulated spectral
functions can also be ‘recycled’ to obtain the statistics and probability density function
(pdf) of the solution. In summary, compared to the classical spectral stochastic finite
element method, the proposed Galerkin approach results in a smaller size matrix but
requires numerical integration techniques to obtain its entries. The numerical method
proposed here therefore can be considered as a hybrid analytical-simulation approach.
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5 Post processing and response statistics

For the practical application of the method developed here, the efficient computation
of the response moments and pdf is of crucial importance. A simulation based algo-
rithm is proposed in this section. After obtaining the coefficient vector c by solving
Eq. (47), the statistical moments of the solution can be obtained from Eq. (46) using
the Monte Carlo simulation. The spectral functions used to obtain the vector c itself,
can be reused to obtain the statistics and pdf of the solution. The mean vector can be
obtained as

ū = E [û(ω)] =
n∑

k=1

ckE
[
Γ̂k(ξ(ω))

]
ϕk (55)

The covariance of the solution vector can be expressed as

Σu = E
[
(û(ω)− ū) (û(ω)− ū)T

]
=

n∑
k=1

n∑
j=1

ckcjΣΓkj
ϕkϕ

T
j (56)

where the elements of the covariance matrix of the spectral functions are given by

ΣΓkj
= E

[(
Γ̂k(ξ(ω))− E

[
Γ̂k(ξ(ω))

])(
Γ̂j(ξ(ω))− E

[
Γ̂j(ξ(ω))

])]
(57)

6 Numerical example

In this section we apply the computational method to a beam with stochastic bending
modulus. We assume that the bending modulus is a homogeneous stationary Gaussian
random field of the form

EI(x, ω) = EI0(1 + a(x, ω)) (58)

where x is the coordinate along the length of the beam, EI0 is the estimate of the
mean bending modulus, a(x, ω) is a zero mean stationary Gaussian random field. The
autocorrelation function of this random field is assumed to be

Ca(x1, x2) = σ2
ae

−(|x1−x2|)/µa (59)

where µa is the correlation length and σa is the standard deviation. We use the base-
line parameters as the length L = 1m, cross-section 40.06 × 2.05 mm2 and Young’s
modulus E = 69 × 109 Pa (that of Aluminum). In study we consider deflection of
the tip of the beam due to P = 0.1N load. Two correlation lengths are considered in
the numerical studies, namely µa = L/3 and µa = L/10. The number of terms re-
tained (M ) in the Karhunen-Loève expansion (3) is selected such that νM/ν1 = 0.05
in order to retain 95% of the variability. For the two correlation lengths considered,
the number of terms M becomes 24 and 67. For the finite element discretization, the
beam is divided into 50 elements. Standard four degrees of freedom Euler-Bernoulli
beam model is used [8]. After applying the fixed boundary condition at the edge, we
obtain the number of degrees of freedom of the model n = 100.
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6.1 Results for larger correlation length

The proposed method is applied with 10,000-sample Monte Carlo Simulation (MCS).
The hybrid analytical-simulation method proposed here is compared with the direct
MCS obtained by solving Eq. (4) for each sample. In Figure 1 the mean and standard
deviation of the deflection of the beam are shown for four values of σa. We consider
σa = {0.05, 0.10, 0.15, 0.20} to simulate increasing uncertainty. This is done to check
the accuracy of the proposed method against the direct MCS results. It can be seen
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(b) Standard deviation of the deflection.

Figure 1: The mean and standard deviation of the deflection of the beam. The cor-
relation length of the random field describing the bending rigidity is assumed to be
µa = L/3. The number of random variable used: M = 24.

that the results from both the first and second-order spectral functions in conjunction
with the Galerkin approach produce accurate results for all the four values of σa.

The probability density function of the deflection is shown Figure 2 for the four
values of σa. As expected, the error corresponding to the second-order spectral func-
tion approach is smaller than the first-order approach. In this problem the size of the
system n = 100 and the number of random variables M = 24. If the second-order
PC was used, then from Eq. (7) one obtains P = 324. This implies that one would
need to solve a linear system of equation of size nP = 100 × 324 = 32400. For
the proposed Galerkin approach in Theorem 3, only a set of 100 equations are solved
to obtain the coefficients. This shows the efficiency of this approach without loosing
significant accuracy.

6.2 Results for smaller correlation length

When the correlation length becomes smaller, as expected for nano systems, the num-
ber of term to be retained in the Karhunen-Loève expansion (3) becomes large. In this
case use have used M = 67 number of random variables. The method developed in
the paper is applied with 10,000-sample Monte Carlo Simulation (MCS). In Figure 3
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(a) Probability density function for σa = 0.05.

0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
0

50

100

150

200

250

300

350

Deflection (m)

pd
f

 

 

MCS
1st order Galerkin
2nd order Galerkin

(b) Probability density function for σa = 0.1.
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(c) Probability density function for σa = 0.15.
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(d) Probability density function for σa = 0.2.

Figure 2: The probability density function of the deflection of the beam. The cor-
relation length of the random field describing the bending rigidity is assumed to be
µa = L/3. The pdfs are obtained with 10,000 sample MCS and four values of σa have
been used.

the mean and standard deviation of the deflection of the beam are shown for four val-
ues of σa. It can be seen that the results from both the first and second-order spectral
functions in conjunction with the Galerkin approach produce accurate results for all
the four values of σa even when the number of random variables are large.

The probability density function of the deflection is shown Figure 4 for the four
values of σa. As expected, the error corresponding to the second-order spectral func-
tion approach is smaller than the first-order approach. For this problem the size of the
system n = 100 and the number of random variables M = 67. If the second-order PC
was used, then from Eq. (7) one obtains P = 2345. This implies that one would need
to solve a linear system of equation of size nP = 100 × 2345 = 234, 500. For the
proposed Galerkin approach in Theorem 3, only a set of 100 equations are solved to
obtain the coefficients. Overall, when such a large number of random variables used,
the accuracy is slightly less compared to the previous case where relatively smaller
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(a) Mean of the deflection.
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(b) Standard deviation of the deflection.

Figure 3: The mean and standard deviation of the deflection of the beam. The cor-
relation length of the random field describing the bending rigidity is assumed to be
µa = L/10. The number of random variable used: M = 67.

number of random variables are used. The results obtained here show the compu-
tational efficiency of the proposed approach even for such large number of random
variables without loosing the accuracy significantly.

7 Conclusions

We consider discretised stochastic elliptic partial differential equations. In the classi-
cal spectral stochastic finite element approach, the solution is projected into an infinite
dimensional orthonormal basis functions and the associated constant vectors are ob-
tained using the Galerkin type of error minimization approach. Here an alternative
approach is investigated. The solution is projected into a finite dimensional complete
orthonormal vector basis and the associated coefficient functions are obtained. The
coefficient functions, called as the spectral functions, are expressed in terms of the
spectral properties of the deterministic matrices appearing in the discretized govern-
ing equation. It is proved that, if infinite order of terms in the functions are retained,
then the resulting series converges to the exact solution in probability 1. This is a
stronger convergence compared to the classical polynomial chaos which converges in
the mean-square sense in the Hilbert space.

The explicit closed-form relationship between the spectral functions and polyno-
mial chaos functions has been derived. It is shown that the spectral functions effec-
tively represent a sum of infinite number of polynomial chaos functions associated
with linearly dependent vectors. This significantly reduces the number of unknown
constants to be calculated. Since the spectral functions have to be truncated for nu-
merical calculations, a Galerkin error minimization approach has been developed. It
is shown that the number of unknown constants are obtained by solving a system of
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(a) Probability density function for σa = 0.05.
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(b) Probability density function for σa = 0.1.
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(c) Probability density function for σa = 0.15.
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(d) Probability density function for σa = 0.2.

Figure 4: The probability density function of the deflection of the beam. The cor-
relation length of the random field describing the bending rigidity is assumed to be
µa = L/10. The pdfs are obtained with 10,000 sample MCS as before.

linear equations which has the same dimension as the original discretized equation.
A numerical approach based on the first and second-order spectral functions has been
developed. Based on these, a hybrid analytical-simulation approach is proposed to
obtain the statistical properties of the solution. The method is applied to a stochas-
tic beam for illustration. The statistics of the deflection were obtained with 24 and
67 random variables and degrees of freedom n = 100. A second-order polynomial
chaos approach for these problems would require the solution of algebraic equations
of dimension 32,400 and 234,500 respectively. In comparison, the proposed Galerkin
approach using the Monte Carlo simulation requires the solution of algebraic equa-
tions of dimension n only. Promising accuracy compared to the direct Monte Carlo
simulation, especially with the second-order spectral function has been observed.
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