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Dynamic characteristics of linear structural systems are governed by the natu-
ral frequencies and the mode-shapes. In this paper moments and probability density
functions of the eigenvalues of linear stochastic dynamic systems are considered. It
is assumed that the mass and the stiffness matrices are smooth and at least twice dif-
ferentiable functions of a random parameter vector. The random parameter vector
is assumed to be non-Gaussian in general. Current methods tosolve such problems
are dominated by perturbation based methods. Here a new approach based on an
asymptotic approximation of the multidimensional integrals is proposed. A closed-
form expression is derived for a generalrth order moment of the eigenvalues. Two
approaches are presented to obtain the probability densityfunctions of the eigenval-
ues. The first is based on the maximum entropy method and the second is based
on fitting of a chi-square random variable. Both approaches result in simple closed-
form expressions which can be easily calculated. The proposed methods are applied
to a three degrees-of-freedom spring-mass system and the results are compared with
Monte Carlo simulations. Two different cases, namely (a) when all eigenvalues are
well separated, and (b) when some eigenvalues are closely spaced, are considered to
illustrate some inherent properties of the methodologies proposed in the paper.

Nomenclature

D(•)(x) Hessian matrix of(•) atx
d(•)(x) gradient vector of(•) atx
I identity matrix
K stiffness matrix
M mass matrix
x basic random variables
L(x) negative of the log-likelihood function
m number of basic random variables
N degrees-of-freedom of the system
n number of moments used for pdf construction
p(•) probability density function of(•)
α optimal point for perturbation method
µ mean of parameter vectorx
φj eigenvectors of the system
Σ covariance matrix
θ optimal point for asymptotic method
L Lagrangian
εm, εk strength parameters associated with mass and stiffness coefficients
ηj , γj , νj parameters ofχ2-approximated pdf ofλj

λj eigenvalues of the system

µ
(r)
j rth order moment of the eigenvalues

(•) deterministic value of(•)
Φ cumulative Gaussian distribution function
ρr Lagrange multipliers,r = 0, 1, 2, · · ·n
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σj standard deviation ofλj

(•)T matrix transpose
≈ approximately equal to
R space of real numbers
‖•‖ determinant of matrix(•)
E [•] mathematical expectation operator
∈ belongs to
7→ maps into
(̂•) mean of(•)
dof degrees-of-freedom
pdf probability density function

I. Introduction

Characterization of the natural frequencies and mode-shapes play a fundamental role in the analysis and design of
engineering dynamic systems. The determination of naturalfrequency and mode shapes require the solution of an
eigenvalue problem. Eigenvalue problems also arise in the context of the stability analysis of structures. This problem
could either be a differential eigenvalue problem or a matrix eigenvalue problem, depending on whether a continuous
model or a discrete model is used to describe the given vibrating system. Description of real-life engineering struc-
tural systems is inevitably associated with some amount of uncertainty in specifying material properties, geometric
parameters, boundary conditions and applied loads. For these reasons it is necessary to considerrandom eigenvalue
problems. Several studies have been conducted on this topic since themid-sixties. The study of probabilistic charac-
terization of the eigensolutions of random matrix and differential operators is now an important research topic in the
field of stochastic structural mechanics. The paper by Boyce1 and the book by Scheidt and Purkert2 are useful sources
of information on early work in this area of research and alsoprovide a systematic account of different approaches to
random eigenvalue problems. Several review papers3,4,5,6,7have appeared in this field which summarize the current
as well as the earlier works.

In this paper discrete linear systems or discretized continuous systems are considered. The random eigenvalue
problem of undamped or proportionally damped systems can beexpressed by

K(x)φj = λjM(x)φj . (1)

Hereλj andφj are the eigenvalues and the eigenvectors of the dynamic system.M(x) ∈ R
N×N andK(x) ∈ R

N×N ,
the mass and stiffness matrices, are assumed to be smooth, continuous and at least twice differentiable functions of
a random parameter vectorx ∈ R

m. The vectorx may consist of material properties, e.g., mass density, Poisson’s
ratio, Young’s modulus; geometric properties, e.g., length, thickness, and boundary conditions. Statistical properties
of the system are completely described by the joint probability density functionpx(x) : R

m 7→ R. For mathematical
convenience we express

px(x) = e−L(x) (2)

where−L(x) is often known as the log-likelihood function. For example,if x is am-dimensional multivariate Gaus-
sian random vector with meanµ ∈ R

m and covariance matrixΣ ∈ R
m×m then

L(x) =
m

2
ln(2π) +

1

2
ln ‖Σ‖ +

1

2
(x − µ)

T
Σ

−1 (x − µ) (3)

In this paper it is assumed that in general the random parameters are non-Gaussian and correlated, i.e.,L(x) can have
any general form provided it is a smooth, continuous and at least twice differentiable function. It is further assumed
thatM andK are symmetric and positive definite random matrices so that all the eigenvalues are real and positive.

The central aim of studying random eigenvalue problems is toobtain the joint probability density function of
the eigenvalues and the eigenvectors. Under very special circumstances when the matrixM−1K is GUE (Gaussian
unitary ensemble) or GOE (Gaussian orthogonal ensemble) anexact closed-form expression can be obtained for the
joint pdf of the eigenvalues.8 In general the system matrices for real structures are not GUE or GOE and consequently
some kind of approximate analysis is required. The current literature on random eigenvalue problems arising in
engineering systems is dominated by the mean-centered perturbation methods. These methods work well when the
uncertainties are small and the parameter distribution is Gaussian. In theory, any set of non-Gaussian random variables
can be transformed into a set of standard Gaussian random variables by using numerical transformations such as the
Rosenblatt transformation or the Nataf transformation. These transformations are often complicated, numerically
expensive and inconvenient to implement in practice.
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In this paper a new approach is presented to obtain the moments and probability density functions of the eigen-
values. The proposed approach does not require the Gaussianpdf assumption of the basic random variables often
employed in literature. Moreover, it also eliminates the need to use intermediate numerical transformations of the
basic random variables. In Section II perturbation based methods are reviewed in the context of non-Gaussian basic
random variables. In Section III a new method to obtain arbitrary order moments of the eigenvalues is proposed. Us-
ing these moments, some closed-form expressions of approximate pdf of the eigenvalues are derived in Section IV. In
Section V the proposed analytical methods are applied to a three-dof problem and the results are compared to Monte
Carlo simulation.

II. Review of Perturbation Based Methods

A. Mean-Centered Perturbation Method
The mass and the stiffness matrices are in general non-linear functions of the random vectorx. Denote the mean of

x asµ ∈ R, and consider that
M(µ) = M , and K(µ) = K (4)

are the ‘deterministic parts’ of the mass and stiffness matrices respectively. In generalM andK are different from the
mean matrices. The deterministic part of the eigenvalues,λj(µ) = λj is obtained from the deterministic eigenvalue
problemK φj = λj M φj .

The eigenvalues,λj(x) : R
m 7→ R are non-linear functions of the parameter vectorx. If the eigenvalues are not

repeated, then eachλj(x) is expected to be a smooth and twice differentiable functionsince the mass and stiffness ma-
trices are smooth and twice differentiable functions of therandom parameter vector. In the mean-centered perturbation
approach the functionλj(x) is expanded by its Taylor series about the pointx = µ as

λj(x) ≈ λj(µ) + dT
λj

(µ) (x − µ) +
1

2
(x − µ)

T Dλj
(µ) (x − µ) (5)

Here dλj
(µ) ∈ R

m and Dλj
(µ) ∈ R

m×m are respectively the gradient vector and the Hessian matrixof λj(x)
evaluated atx = µ, that is

{
dλj

(µ)
}

k
=

∂λj(x)

∂xk
|x=µ (6)

and
{

Dλj
(µ)

}
kl

=
∂2λj(x)

∂xk ∂xl
|x=µ. (7)

Expressions of the elements of the gradient vector and the Hessian matrix are given in Appendix A. Equation (5)
implies that the eigenvalues are effectively expanded about their corresponding deterministic valueλj .

Equation (5) represents a quadratic form in basic non-Gaussian random variables. The first-order perturbation,
which is often used in practice, is obtained from Eq. (5) by neglecting the Hessian matrix. In this case the eigenvalues
are simple linear functions of the basic random variables. This formulation is expected to produce acceptable results
when the random variation inx is small. If the basic random variables are Gaussian then first-order perturbation results
in a Gaussian distribution of the eigenvalues. In this case aclosed-form expression for their joint probability density
function can be obtained easily, see for example, Collins and Thomson,9 Anantha Ramu and Ganesan10,11,12,13and
Sankar et al.14 More recently Adhikari15,16 used a first-order perturbation method for complex eigenvalue problems
arising in non-proportionally damped systems.

If the second-order terms are retained in Eq. (5) and the basic random variables are Gaussian, eachλj(x) results
in a quadratic form in Gaussian random variables. Extensivediscussions on such quadratic forms can be found in the
books by Johnson and Kotz17(Chapter 29) and Mathai and Provost.18 Using the methods outlined in these references
it is possible to obtain moments, cumulants and the pdf ofλj(x). However, if the elements ofx are non-Gaussian then
the first-order perturbation or the second-order perturbation methods are not very helpful because there is no general
method to obtain the resulting pdf in a simple manner.

B. Perturbation Method Based on an Optimal Point
In the mean-centered perturbation method,λj(x) is expanded in a Taylor series aboutx = µ. This approach may

not be very suitable for all problems, especially ifx is non-Gaussian thenpx(x) may not be centered around the mean.
Recently Adhikari and Langley19 have proposed a method which searches for a pointx = α in thex-space such that
the Taylor series expansion ofλj(x) about this point

λj(x) ≈ λj(α) + dT
λj

(α) (x − α) +
1

2
(x − α)

T Dλj
(α) (x − α) (8)

3
American Institute of Aeronautics and Astronautics



is optimal in some sense. Here we extend the approach to the case when the basic random variables are non-Gaussian.
The optimal pointα can be selected in various ways. For practical applicationsthe mean of the eigenvalues is

often the most important. For this reason, the optimal pointα is selected such that the mean or the first moment of
each eigenvalue is calculated most accurately. The mathematical formalism presented here is not restricted to this
specific criteria and can be easily modified if any moment other than the first moment is required to be obtained more
accurately. Using Eq. (2) the mean ofλj(x) can be obtained as

λ̂j = E [λj(x)] =

∫

R
m

λj(x)px(x) dx =

∫

R
m

λj(x)e−L(x) dx =

∫

R
m

e−hj(x) dx (9)

where hj(x) = L(x) − lnλj(x). (10)

Evaluation of the integral (9), either analytically or numerically, is in general difficult because (a)λj(x) andL(x) are
complicated nonlinear functions ofx, (b) an explicit functional formλj(x) is not easy to obtain except for very simple
problems (usually an FE run is required to obtainλj for everyx), and (c) the dimension of the integralm is large.
For these reasons some kind of approximation is required. From Eq. (9) note that the maximum contribution to the
integral comes from the neighborhood wherehj(x) is minimum. Therefore, expand the functionhj(x) in a Taylor
series about a point wherehj(x) has its global minimum. By doing so the error in evaluating the integral (9) would be
minimized. Thus, the optimal point can be obtained from

∂hj(x)

∂xk
= 0 or

∂L(x)

∂xk
=

1

λj(x)

∂λj(x)

∂xk
, ∀k. (11)

Combining the above equation for allk, atx = α we have

dλj
(α) = λj(α)dL(α). (12)

Equation (12) implies that at the optimal point the gradientvectors of the eigenvalues and log-likelihood function
are parallel. The non-linear set of equations (12) have to besolved numerically. A good ‘first guess’ to start the
numerical solution process isα = µ as in the case of mean-centered perturbation method. Due to the explicit analytical
expression ofdλj

in terms of the derivative of the mass and stiffness matrices, expensive numerical differentiation of
λj(x) at each step is not needed. Moreover, for mostpx(x), a closed-form expression ofdL(x) is available. The form
of Eq. (8) is very similar to that of Eq. (5). As mentioned before, when the basic random variables are non-Gaussian,
determination of moments and the pdf is not straightforward. Some useful results for the case whenx is Gaussian have
been derived by Adhikari and Langley.19 In the next two sections a new method is proposed which is moresuitable
for non-Gaussian basic random variables.

III. Method Based on the Asymptotic Integral

A. Multidimensional Integrals in Unbounded Domains
In this section the moments of the eigenvalues are obtained based on an asymptotic approximation of the multidi-

mensional integral. Consider a functionf(x) : R
m 7→ R which is smooth and at least twice differentiable. Suppose

we want to evaluate an integral of the following form:

J =

∫

R
m

e−f(x) dx (13)

This is am-dimensional integral over the unbounded domainR
m. The maximum contribution to this integral comes

from the neighborhood wheref(x) reaches its global minimum. Suppose thatf(x) reaches its global minimum at an
unique pointθ ∈ R

m. Therefore, atx = θ

∂f(x)

∂xk
= 0,∀k or df (θ) = 0. (14)

Using this, expandf(x) in a Taylor series aboutθ and rewrite Eq. (13) as

J =

∫

R
m

e
−

{
f(θ)+ 1

2 (x−θ)
T Df(θ)(x−θ)+ε(x,θ)

}

dx

= e−f(θ)
∫

R
m

e−
1

2 (x−θ)
T Df(θ)(x−θ)−ε(x,θ) dx

(15)
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whereε (x,θ) is the error if only the terms up to second-order were retained in the Taylor series expansion. With
suitable scaling ofx the integral in (13) can be transformed to the so called ‘Laplace integral’. Under special conditions
such integrals can be well approximated using asymptotic methods. The relevant mathematical methods and formal
derivations are covered in detail in the books by Bleistein and Handelsman20 and Wong.21 Here we propose a somewhat
different version of asymptotic integrals. The errorε(x,θ) depends on higher of derivatives off(x) at x = θ. If they
are small compared tof (θ) their contribution will negligible to the value of the integral. So we assume thatfθ) is
large so that ∣∣∣∣

1

f (θ)
D(j)(f (θ))

∣∣∣∣ → 0 for j > 2 (16)

whereD(j)(f (θ)) is jth order derivative off(x) evaluated atx = θ. Under such assumptions it is easy to see that
ε(x,θ) → 0. Therefore the integral in (15) can be approximated as

J ≈ e−f(θ)
∫

R
m

e−
1

2 (x−θ)
T Df(θ)(x−θ) dx (17)

If θ is the global minima off(x) in R
m, the symmetric Hessian matrixDf (θ) ∈ R

m×m is also expected to be positive
definite. Now use the coordinate transformation

ξ = (x − θ) D−1/2
f (θ) (18)

The Jacobian of this transformation is
‖J‖ = ‖Df (θ)‖−1/2 (19)

Using Eq. (18), the integral in Eq. (17) can be evaluated as

J ≈ e−f(θ)
∫

R
m
‖Df (θ)‖−1/2

e
−

1

2

(
ξT ξ

)

dξ (20)

or J ≈ (2π)m/2e−f(θ) ‖Df (θ)‖−1/2 (21)

A similar approach was outlined by Papadimitriou et. al.22 for the calculation of response moments of a dynamic
system. This asymptotic analysis is somewhat different from the widely used Laplace’s method of asymptotic approx-
imation of integrals (Wong,21 Chapter IX, Theorem 3). Here it is assumed thatf (θ) itself is a large quantity, unlike a
free scaling parameter (λ), as in the case of Laplace type integrals. Equation (21) will now be used to obtain moments
of the eigenvalues.

B. Calculation of an Arbitrary Moment of the Eigenvalues
An arbitraryrth order moment of the eigenvalues can be obtained from

µ
(r)
j = E

[
λr

j(x)
]

=

∫

R
m

λr
j(x)px(x) dx

=

∫

R
m

e−(L(x)−r ln λj(x)) dx, r = 1, 2, 3 · · ·
(22)

The equation can be expressed in the form of Eq. (13) by choosing

f(x) = L(x) − r lnλj(x) (23)

Differentiating the above equation with respect toxk we obtain

∂f(x)

∂xk
=

∂L(x)

∂xk
− r

λj(x)

∂λj(x)

∂xk
(24)

The optimal pointθ can be obtained from (14) by equating the above expression tozero. Therefore atx = θ

∂f(x)

∂xk
= 0, ∀ k (25)

or
r

λj(θ)

∂λj(θ)

∂xk
=

∂L(θ)

∂xk
, ∀ k (26)

or dλj
(θ)r = λj(θ)dL(θ) (27)
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Equation (27) is very similar to Eq. (12) and needs to solved numerically to obtainθ. The elements of the Hessian
matrixDf (θ) can be obtained by differentiating Eq. (24) with respect toxl:

∂2f(x)

∂xk ∂xl
=

∂2L(x)

∂xk ∂xl
− r

(
− 1

λ2
j (x)

∂λj(x)

∂xl

∂λj(x)

∂xk
+

1

λj(x)

∂2λj(x)

∂xk ∂xl

)
(28)

=
∂2L(x)

∂xk ∂xl
+

1

r

{
r

λj(x)

∂λj(x)

∂xk

} {
r

λj(x)

∂λj(x)

∂xl

}
− r

λj(x)

∂2λj(x)

∂xk ∂xl
(29)

At x = θ we can use Eq. (26) so that Eq. (29) reads

∂2f(x)

∂xk ∂xl
|x=θ =

∂2L(θ)

∂xk ∂xl
+

1

r

∂L(θ)

∂xk

∂L(θ)

∂xl
− r

λj(θ)

∂2λj(θ)

∂xk ∂xl
. (30)

Combining this equation for allk andl we have

Df (θ) = DL(θ) +
1

r
dL(θ)dL(θ)

T − r

λj(θ)
Dλj

(θ) (31)

whereDλj
(•) is defined in Eq. (7). Using the asymptotic approximation (21), therth moment of the eigenvalues can

be obtained as

µ
(r)
j ≈ (2π)m/2λr

j(θ)e−L(θ)
∥∥∥∥DL(θ) +

1

r
dL(θ)dL(θ)

T − r

λj(θ)
Dλj

(θ)

∥∥∥∥
−1/2

. (32)

This is perhaps the most general formula to obtain the moments of the eigenvalues of linear stochastic dynamic
systems. The optimal pointθ needs to be calculated by solving non-linear set of equations Eq. (27) for eachλj andr.
If θ is not unique then it is required to sum the contributions arising from all such optimal points separately. Several
special cases arising from Eq. (32) are of practical interest:

• Random vector x has multivariate Gaussian distribution: In this caseL(x) is given by Eq. (3) and by differen-
tiating this we obtain

dL(x) = Σ
−1x (33)

and DL(x) = Σ
−1 (34)

The optimal pointθ can be obtained from Eq. (27) as

θ =
r

λj(θ)
Σdλj

(θ) (35)

Using Eq. (33) and Eq. (34), the Hessian matrix can be derivedfrom Eq. (31) as

Df (θ) = Σ
−1 +

1

r
Σ

−1θθT
Σ

−1 − r

λj(θ)
Dλj

(θ)

= Σ
−1

(
I +

1

r
θθT

Σ
−1

)
− r

λj(θ)
Dλj

(θ)

(36)

Therefore, therth moment of the eigenvalues can be obtained from Eq. (32) as

µ
(r)
j ≈ λr

j(θ)e−
1

2 (θ−µ)
T
Σ

−1

(θ−µ) ‖Σ‖−1/2 ‖Df (θ)‖−1/2
. (37)

Using Eq. (36) and recalling that for any two matricesA andB, ‖A‖ ‖B‖ = ‖AB‖ we have

µ
(r)
j ≈ λr

j(θ)e−
1

2 (θ−µ)
T
Σ

−1

(θ−µ)
∥∥∥∥I +

1

r
θθT

Σ
−1 − r

λj(θ)
ΣDλj

(θ)

∥∥∥∥
−1/2

. (38)

For the standardized Gaussian random vectorµ = 0 andΣ = I . In this case Eq. (38) reduces to the corre-
sponding equation derived previously by Adhikari and Langley.19
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• Mean of the eigenvalues: The mean of the eigenvalues can be obtained by substitutingr = 1 in Eq. (32), that is

λ̂j = µ
(1)
j = λj(θ)e−L(θ)

∥∥∥DL(θ) + dL(θ)dL(θ)
T − Dλj

(θ)/λj(θ)
∥∥∥
−1/2

. (39)

• Central moments of the eigenvalues: Once the mean in known, the central moments can be expressed in terms
of the raw momentsµ(r)

j using the binomial transform

E
[(

λj − λ̂j

)r]
=

r∑

k=0

(
r

k

)
(−1)r−kµ

(k)
j λ̂r−k

j . (40)

The probability density function of the eigenvalues is considered in the next section.

IV. Probability Density Function of the Eigenvalues

A. Maximum Entropy Probability Density Function
Once the moments of the eigenvalues are known, the pdf of the eigenvalues can be obtained using maximum entropy

method (MEM). Since Eq. (32) can be used to calculate any arbitrary order moment, the pdf can be obtained very
accurately by taking higher order moments. Here, followingKapur and Kesavan,23 a general approach is presented.

Since it is assumed thatM andK are symmetric and positive definite random matrices, all theeigenvalues are real
and positive. Suppose the pdf ofλj is given bypλj

(u) whereu is positive, that isu ∈ [0,∞]. Considering that only
first n moments are used, the pdf of each eigenvalue must satisfy thefollowing constraints:

∫
∞

0

pλj
(u)du = 1 (41)

and ∫
∞

0

urpλj
(u)du = µ

(r)
j , r = 1, 2, 3, · · · , n. (42)

Using Shannon’s measure of entropy

S = −
∫

∞

0

pλj
(u) ln pλj

(u)du (43)

we construct the Lagrangian

L = −
∫

∞

0

pλj
(u) ln pλj

(u)du − (ρ0 − 1)

[∫
∞

0

pλj
(u)du − 1

]
−

n∑

r=1

ρr

[∫
∞

0

urpλj
(u)du − µ

(r)
j

]
(44)

whereρr, r = 0, 1, 2, · · · , n are Lagrange multipliers. The functionpλj
(u) which maximizesL can be obtained using

the calculus of variations. Using the Euler-Lagrange equation the solution is given by

pλj
(u) = e−{ρ0+

∑ n
i=1

ρiu
i} = e−ρ0e−

∑ n
i=1

ρiu
i

, u ≥ 0. (45)

The Lagrange multipliers can be obtained from the constraint equations (41) and (42) as

eρ0 =

∫
∞

0

e−
∑ n

i=1
ρiu

i

du (46)

and

eρ0µ
(r)
j =

∫
∞

0

ure−
∑ n

i=1
ρiu

i

du, for r = 0, 1, 2, · · ·n. (47)

Closed-form expressions forρr are in general not possible for alln. If we taken = 2, then the resulting pdf can be
expressed by a truncated Gaussian density function

pλj
(u) =

1
√

2πσj Φ
(
λ̂j/σj

) e
−

(
u − λ̂j

)2

2σ2
j , u ≥ 0 (48)

whereσj is given by

σ2
j = µ

(2)
j − λ̂2

j . (49)

This truncated Gaussian density function ensures that the probability of any eigenvalues becoming negative is zero.
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B. Approximation by χ2 Probability Density Function
We use an approximation analogous to Pearson’s24 three moment centralχ2 approximation to the distribution of a

noncentralχ2 . The eigenvalues are approximated as

pλj
(u) ≈ ηj + γjχ

2
νj

(u). (50)

The constantsηj , γj , andνj are obtained such that the first three moments ofλj are equal to that of the approximated
χ2 pdf. The moment generating function of the approximatedχ2 pdf is given by

E

[
e
−s

(
ηj+γjχ2

νj

)]
= e−sηj (1 + 2sγj)

−νj/2
. (51)

Equating the first three moments we have

ηj + νjγj = µ
(1)
j , (52)

ηj
2 + 2ηjνjγj + νj

2γj
2 + 2νjγj

2 = µ
(2)
j (53)

ηj
3 + 3ηj

2νjγj + 3ηjνj
2γj

2 + 6ηjνjγj
2 + νj

3γj
3 + 6νj

2γj
3 + 8νjγj

3 = µ
(3)
j . (54)

This set of coupled non-linear equations can be solved exactly in closed-form to obtainηj , γj , andνj :

ηj =
µ

(1)
j

2
µ

(2)
j − 2µ

(2)
j

2
+ µ

(1)
j µ

(3)
j

2µ
(1)
j

3
− 3µ

(1)
j µ

(2)
j + µ

(3)
j

(55)

γj =
2µ

(1)
j

3
− 3µ

(1)
j µ

(2)
j + µ

(3)
j

4
(
µ

(2)
j − µ

(1)
j

2) , (56)

andνj = 8

(
µ

(2)
j − µ

(1)
j

2)3

(
2µ

(1)
j

3
− 3µ

(1)
j µ

(2)
j + µ′

3

)2 . (57)

Moments ofλj(x) obtained in Eq. (32), can be used directly in the right-hand side of these equations. Using the
transformation in (50) the approximate probability density function ofλj(x) is given by

pλj
(u) ≈ 1

γj
pχ2

νj

(
u − ηj

γj

)
=

(u − ηj)
νj/2−1e−(u−ηj)/2γj

(2γj)νj/2Γ(νj/2)
. (58)

It should be noted that given the moments, several pdfs can befitted. The two approximated pdf proposed here have
simple forms. Application of the approximate pdfs derived here is illustrated in the next section.

V. Application Example

A. Model System and Computational Methodology
A three-degree-of-freedom undamped spring-mass system, taken from reference,25 is shown in Fig. 1. The eigen-

value problem associated with this system is considered to illustrate a possible application of the expressions developed
in the paper. The mass and stiffness matrices of the example system are given by

M =




m1 0 0
0 m2 0
0 0 m3



 and K =




k1 + k4 + k6 −k4 −k6

−k4 k4 + k5 + k6 −k5

−k6 −k5 k5 + k3 + k6



 . (59)

It is assumed that all mass and stiffness constants are random. The randomness in these parameters are assumed to be
of the following form:

mi = mi (1 + εmxi) , i = 1, 2, 3 (60)

ki = ki (1 + εkxi+3) , i = 1, · · · , 6. (61)

Herex = {x1, · · · , x9}T ∈ R
9 is the vector of random variables. It is assumed that all random variables are Gaussian

and uncorrelated with zero mean and unit standard deviation. Therefore, the mean values ofmi andki are given bymi
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Figure 1 The three degree-of-freedom random system

andki. The numerical values of both the ‘strength parameters’εm andεk are fixed at 0.15. The strength parameters are
selected so that the system matrices are almost surely positive definite. In order to obtain statistics of the eigenvalues
using the methods developed in this paper the gradient vector and the Hessian matrix of the eigenvalues are required.
As shown in Appendix A, this in turn requires the derivative of the system matrices with respect to the entries ofx.
For most practical problems, which usually involve Finite Element modeling, these derivatives need to be determined
numerically. However, for this simple example the derivatives can be obtained in closed-form and they are given in
Appendix B.

We calculate the moments and the probability density functions of the three eigenvalues of the system. Recall that
the eigenvalues obtained from Eq. (1) are the square of the natural frequencies (λj = ω2

j ). The following two sets of
physically meaningful parameter values are considered:

• Case 1: All eigenvalues are well separated
For this casemi = 1.0 kg for i = 1, 2, 3; ki = 1.0 N/m for i = 1, · · · , 5 andk6 = 3.0 N/m.

• Case 2: Two eigenvalues are very close
All parameter values are the same exceptk6 = 1.275 N/m.

The moments of the eigenvalues for the above two cases are calculated from Eq. (38) withµ = 0 andΣ = I . A
commercial non-linear equation solver is used to obtain theoptimal pointθ from Eq. (35). The moments are then
used to obtainσj from Eq. (49) and the constants in Eqs. (55)–(57). Using these constants the truncated Gaussian
pdf and theχ2 pdf of the eigenvalues are obtained from Eqs. (48) and (58) respectively. These results are compared
with Monte Carlo simulation. The samples of the nine independent Gaussian random variablesxi, i = 1, · · · , 9 are
generated and the eigenvalues are computed directly from Eq. (1). A total of 5000 samples are used to obtain the
statistical moments and histograms of the pdf of the eigenvalues. The results obtained from Monte Carlo simulation
are assumed to be the benchmark for the purpose of comparing the analytical methods proposed in this paper. For the
purpose of determining the accuracy of the proposed methods, we calculate the percentage error associated with an
arbitraryrth moment given by

Error =
µ(r) − {µ(r)}MCS

{µ(r)}MCS
× 100. (62)

The results for the two cases are presented and discussed in the next subsection.

B. Numerical Results
B.1. Case 1: All eigenvalues are well separated

When all of the eigenvalues are well separated their derivatives with respect to the system parameters generally
behave well. For the given parameter values the eigenvaluesof the corresponding deterministic system is given by

λ1 = 1, λ2 = 4, and λ3 = 8. (63)

The random ‘scatter’ of the eigenvalues is shown in Fig. 2 for1000 samples from the Monte Carlo simulation. It can
be seen that the highest eigenvalue has the maximum scatter and because the eigenvalues are well separated, there
is very little statistical overlap between them. Figure 3 shows the percentage error for the first four moments of the
eigenvalues. These errors are calculated from Eq. (62) and they are reasonably small considering that the strength of
randomness for all nine random variables are15%. Note that error associated with higher eigenvalues are higher and
also for a fixed eigenvalue, the higher order moments have more errors.
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Figure 3 Percentage error for first four moments of the eigenvalues; Case 1.

Now consider the probability density function of the eigenvalues. The pdf of the first eigenvalue obtained from the
two methods are shown in Fig. 4. On the same plot, normalized histograms of the eigenvalue obtained from the Monte
Carlo simulation are also shown. Both approximate methods match well with the Monte Carlo simulation result. This
is expected since the first three moments are obtained very accurately (less than0.2% error as seen in Fig. 3). The
probability density functions of the second and third eigenvalues are shown in Fig. 5. The region of statistical overlap
is indeed small and can be verified from the plot of the actual samples in Fig. 2. Again, both approximate methods
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Figure 4 Probability density function of the first eigenvalue; Case 1.

Figure 5 Probability density functions of the second and third eigenvalues; Case 1.

match well with the Monte Carlo simulation result.

B.2. Case 2: Two eigenvalues are very close
When some eigenvalues are closely spaced, their derivativeswith respect to the system parameters may badly

behave.25 Indeed, if repeated eigenvalues exist, the formulation proposed here breaks down. The purpose of studying
this case is to investigate how the proposed methods work when there are closely spaced eigenvalues so that there is
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a significant statistical overlap between them. For the given parameter values the eigenvalues of the corresponding
deterministic system are calculated as

λ1 = 1, λ2 = 4, and λ3 = 4.55. (64)

Clearlyλ2 andλ3 are very close to each other. The random ‘scatter’ of the eigenvalues is shown in Fig. 6 for 1000
samples from the Monte Carlo simulation. It can be seen that the third eigenvalue has the maximum scatter and
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Figure 6 Statistical scatter in the eigenvalues; Case 2.

because the second and the third eigenvalues are close thereis significant statistical overlap between them. Figure 7
shows the percentage error for the first four moments of the eigenvalues. These errors are calculated from Eq. (62).
The general trend of these errors are similar to the previouscase except that the magnitudes of the errors corresponding
to second and third eigenvalues are higher. This is expectedbecause these two eigenvalues are close to each other.

The probability density function of the first eigenvalue obtained from the two methods are shown in Fig. 8. On the
same plot, normalized histograms of the eigenvalue obtained from Monte Carlo simulation are also shown. As in the
previous case, both approximate methods match well with theMonte Carlo simulation result. This is expected since
the first three moments are obtained very accurately for thiscase also. The probability density functions of the second
and third eigenvalues are shown in Fig. 9. There is a significant region of statistical overlap which can also be verified
from the plot of the actual samples in Fig. 6. In this case the truncated Gaussian density function performs better than
theχ2 density function. However, none of the approximate methodsmatch the Monte Carlo simulation result as well
as in the previous case.

VI. Conclusions

The statistics of the eigenvalues of linear dynamic systemswith parameter uncertainties have been considered. It is
assumed that the mass and stiffness matrices are smooth and at least twice differentiable functions of a set of random
variables. The random variables are in general assumed to benon-Gaussian. The usual assumption of small random-
ness employed in most mean-centered based perturbation analysis is not employed in this study. A method based
on asymptotic approximation of multidimensional integrals is proposed to obtain moments of the eigenvalues. The
method is based on an unconstrained optimization problem. Aclosed-form expression of generalrth order moment
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Figure 8 Probability density function of the first eigenvalue; Case 2.

of the eigenvalues was derived. Two simple approximations for the probability density function of the eigenvalues
are derived. One is in terms of a truncated Gaussian random variable obtained using the maximum entropy principle.
The other is aχ2 random variable approximation based on matching the first three moments of the eigenvalues. Both
formulations yield closed-form expressions of the pdf which can be computed easily.

The proposed formulae are applied to a three-degree-of-freedom stochastic system. The moments and the probabil-
ity density functions match well with the corresponding Monte Carlo simulation results when the eigenvalues are well
separated. However, when some eigenvalues are closely spaced, the proposed methods do not produce very accurate
results. Future studies will address the problem of closelyspaced or repeated eigenvalues. Further research is also
required to develop new methods to obtain joint probabilitydensity functions of the eigenvalues.

Appendix A: Gradient Vector and Hessian Matrix of the Eigenvalues
The eigenvectors of symmetric linear systems are orthogonal with respect to the mass and stiffness matrices. Nor-

malize the eigenvectors so that they are unity mass normalized, that is,

φT
j Mφj = 1. (65)
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Figure 9 Probability density functions of the second and third eigenvalues; Case 2.

Using this and differentiating Eq. (1) with respect toxk it can be shown that26 for anyx

∂λj(x)

∂xk
= φj(x)

T
Gjk(x)φj(x) (66)

where

Gjk(x) =

[
∂K(x)

∂xk
− λj(x)

∂M(x)

∂xk

]
. (67)

Differentiating Eq. (1) with respect toxk andxl Plaut and Huseyin27 have shown that, providing the eigenvalues are
distinct,

∂2λj(x)

∂xk ∂xl
= φj(x)

T

[
∂2K(x)

∂xk ∂xl
− λj(x)

∂2M(x)

∂xk ∂xl

]
φj(x) −

(
φj(x)

T ∂M(x)

∂xk
φj(x)

)(
φj(x)

T
Gjl(x)φj(x)

)

−
(

φj(x)
T ∂M(x)

∂xl
φj(x)

) (
φj(x)

T
Gjk(x)φj(x)

)
+ 2

N∑

r=1

(
φr(x)

T
Gjk(x)φj(x)

)(
φr(x)

T
Gjl(x)φj(x)

)

λj(x) − λr(x)
. (68)

Equations (66) and (68) completely define the elements of thegradient vector and Hessian matrix of the eigenvalues.

Appendix B: Derivative of the System Matrices With Respect to the Random Variables
The derivatives ofM(x) andK(x) with respect to elements ofx can be obtained from Eq. (59) together with Eqs.

(60) and (61). For the mass matrix we have

∂M
∂x1

=




m1εm 0 0

0 0 0
0 0 0



 ,
∂M
∂x2

=




0 0 0
0 m2εm 0
0 0 0



 ,
∂M
∂x3

=




0 0 0
0 0 0
0 0 m3εm



 . (69)
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All other ∂M
∂xi

are null matrices. For the derivative of the stiffness matrix

∂K
∂x4

=




k1εk 0 0

0 0 0
0 0 0



 ,
∂K
∂x5

=




0 0 0

0 k2εk 0
0 0 0



 ,
∂M
∂x6

=




0 0 0
0 0 0

0 0 k3εk





∂K
∂x7

=




k4εk −k4εk 0

−k4εk k4εk 0
0 0 0



 ,
∂K
∂x8

=




0 0 0

0 k5εk −k5εk

0 −k5εk k5εk



 ,
∂M
∂x9

=




k6εk 0 −k6εk

0 0 0

−k6εk 0 k6εk



 .

(70)

and all other∂K
∂xi

are null matrices. Also note that all of the first-order derivative matrices are independent ofx. For
this reason, all the higher order derivatives of theM(x) andK(x) matrices are null matrices.
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