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Dynamic characteristics of linear structural systems are gverned by the natu-
ral frequencies and the mode-shapes. In this paper momentsd probability density
functions of the eigenvalues of linear stochastic dynamicystems are considered. It
is assumed that the mass and the stiffness matrices are smband at least twice dif-
ferentiable functions of a random parameter vector. The rardom parameter vector
is assumed to be non-Gaussian in general. Current methods solve such problems
are dominated by perturbation based methods. Here a new apmach based on an
asymptotic approximation of the multidimensional integrals is proposed. A closed-
form expression is derived for a generalrth order moment of the eigenvalues. Two
approaches are presented to obtain the probability densityunctions of the eigenval-
ues. The first is based on the maximum entropy method and the send is based
on fitting of a chi-square random variable. Both approaches esult in simple closed-
form expressions which can be easily calculated. The proped methods are applied
to a three degrees-of-freedom spring-mass system and thestdts are compared with
Monte Carlo simulations. Two different cases, namely (a) whe all eigenvalues are
well separated, and (b) when some eigenvalues are closelyaspd, are considered to
illustrate some inherent properties of the methodologies posed in the paper.

Nomenclature

D(e)(X) Hessian matrix ofe) atx
die)(X) gradient vector ofe) atx
identity matrix

I
K stiffness matrix
M mass matrix
X basic random variables
L(x) negative of the log-likelihood function
m number of basic random variables
N degrees-of-freedom of the system
n number of moments used for pdf construction
Do) probability density function ofe)
a optimal point for perturbation method
7! mean of parameter vectgr
?; eigenvectors of the system
by covariance matrix
(7] optimal point for asymptotic method
L Lagrangian
€m s €k strength parameters associated with mass and stiffnefizrds
Mjs Vi Vj parameters of>-approximated pdf of;
j eigenvalues of the system
ugf") rth order moment of the eigenvalues
(o) deterministic value ofe)
P cumulative Gaussian distribution function
O Lagrange multipliers; = 0,1,2,---n
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o standard deviation of;

(o)T matrix transpose

~~ approximately equal to

R space of real numbers

[lo]| determinant of matrixe)

E[o] mathematical expectation operator
S belongs to

= maps into

(o) mean of(e)

dof degrees-of-freedom

pdf probability density function

[. Introduction

Characterization of the natural frequencies and modeeshpfay a fundamental role in the analysis and design of
engineering dynamic systems. The determination of nafteguency and mode shapes require the solution of an
eigenvalue problem. Eigenvalue problems also arise indghtegt of the stability analysis of structures. This proble
could either be a differential eigenvalue problem or a matigenvalue problem, depending on whether a continuous
model or a discrete model is used to describe the given wuilgraystem. Description of real-life engineering struc-
tural systems is inevitably associated with some amounnoédainty in specifying material properties, geometric
parameters, boundary conditions and applied loads. Feetteasons it is necessary to considadom eigenvalue
problems. Several studies have been conducted on this topic sinaaithsixties. The study of probabilistic charac-
terization of the eigensolutions of random matrix and défeial operators is now an important research topic in the
field of stochastic structural mechanics. The paper by Bogind the book by Scheidt and Purkeate useful sources
of information on early work in this area of research and alswide a systematic account of different approaches to
random eigenvalue problems. Several review page?tS: “have appeared in this field which summarize the current
as well as the earlier works.

In this paper discrete linear systems or discretized coatie systems are considered. The random eigenvalue
problem of undamped or proportionally damped systems caxpeessed by

KX)g; = \M(X)e;. 1)

Here); andg; are the eigenvalues and the eigenvectors of the dynamiensyst(x) € R *» andK (x) € RV*",
the mass and stiffness matrices, are assumed to be smontmuoms and at least twice differentiable functions of
a random parameter vectere R™. The vectorx may consist of material properties, e.g., mass densitygsais
ratio, Young’s modulus; geometric properties, e.g., langtickness, and boundary conditions. Statistical pridgeer
of the system are completely described by the joint proligliiensity functionpx(x) : R™ — R. For mathematical
convenience we express

px(x) = e 4% @)

where—L(x) is often known as the log-likelihood function. For examyiles is am-dimensional multivariate Gaus-
sian random vector with mean ¢ R™ and covariance matriX ¢ R"*"™ then

L) = T n(2r) + 5 In 2] 4+ 5 (- )" =7 (x - p) 3)

In this paper it is assumed that in general the random paexmate non-Gaussian and correlated, Léx) can have
any general form provided it is a smooth, continuous andadtIevice differentiable function. It is further assumed
thatM andK are symmetric and positive definite random matrices so thtteaeigenvalues are real and positive.

The central aim of studying random eigenvalue problems ishi@in the joint probability density function of
the eigenvalues and the eigenvectors. Under very speciainsstances when the matit ~'K is GUE (Gaussian
unitary ensemble) or GOE (Gaussian orthogonal ensemble}act closed-form expression can be obtained for the
joint pdf of the eigenvalue®in general the system matrices for real structures are ndt @UGOE and consequently
some kind of approximate analysis is required. The curriéetature on random eigenvalue problems arising in
engineering systems is dominated by the mean-centeregripatibn methods. These methods work well when the
uncertainties are small and the parameter distributioraissSian. In theory, any set of non-Gaussian random vasiable
can be transformed into a set of standard Gaussian randaabbes by using numerical transformations such as the
Rosenblatt transformation or the Nataf transformation.esehtransformations are often complicated, numerically
expensive and inconvenient to implement in practice.
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In this paper a new approach is presented to obtain the maraendt probability density functions of the eigen-
values. The proposed approach does not require the Gayxfi@mssumption of the basic random variables often
employed in literature. Moreover, it also eliminates thedéo use intermediate numerical transformations of the
basic random variables. In Section Il perturbation basethous are reviewed in the context of non-Gaussian basic
random variables. In Section Il a new method to obtain eabjtorder moments of the eigenvalues is proposed. Us-
ing these moments, some closed-form expressions of appatipdf of the eigenvalues are derived in Section IV. In
Section V the proposed analytical methods are applied toe@tiof problem and the results are compared to Monte
Carlo simulation.

Il. Review of Perturbation Based Methods

A. Mean-Centered Perturbation Method
The mass and the stiffness matrices are in general norn-fimeetions of the random vecter Denote the mean of
x asp € R, and consider that
M(p) =M, and K(p)=K 4)

are the ‘deterministic parts’ of the mass and stiffness icegmrespectively. In generlll andK are different from the
mean matrices. The deterministic part of the eigenvalNggs) = ; is obtained from the deterministic eigenvalue
problemK ¢; = A; M ¢,.

The eigenvalues);(x) : R™ — R are non-linear functions of the parameter veotoif the eigenvalues are not
repeated, then eactj(x) is expected to be a smooth and twice differentiable functinoe the mass and stiffness ma-
trices are smooth and twice differentiable functions ofrirelom parameter vector. In the mean-centered perturbatio
approach the function, (x) is expanded by its Taylor series about the paiat p as

A %) = Ay () + 1) (x = 1) + 3 (¢~ )" D, (1) (X — ) ©)

Heredy,(u) € R™ andD,,(u) € R™*™ are respectively the gradient vector and the Hessian matrix; (x)
evaluated ax = u, that is

{dy, ()}, = 32; (:) X=pe (6)
2 .
and {Dy(n)}, = 21?6(');)[ IX=pa- )

Expressions of the elements of the gradient vector and ttesibde matrix are given in Appendix A. Equation (5)
implies that the eigenvalues are effectively expanded ttheir corresponding deterministic valie.

Equation (5) represents a quadratic form in basic non-Gausandom variables. The first-order perturbation,
which is often used in practice, is obtained from Eq. (5) byleeting the Hessian matrix. In this case the eigenvalues
are simple linear functions of the basic random variabldgs Tormulation is expected to produce acceptable results
when the random variation kis small. If the basic random variables are Gaussian therofider perturbation results
in a Gaussian distribution of the eigenvalues. In this cadesed-form expression for their joint probability degsit
function can be obtained easily, see for example, Collirts Emomsor?, Anantha Ramu and Ganed&nd! 2 3and
Sankar et at* More recently Adhikafi® ' used a first-order perturbation method for complex eigemvaroblems
arising in non-proportionally damped systems.

If the second-order terms are retained in Eq. (5) and theastdom variables are Gaussian, eagfx) results
in a quadratic form in Gaussian random variables. Exterdis@issions on such quadratic forms can be found in the
books by Johnson and KdtZChapter 29) and Mathai and Prové$tUsing the methods outlined in these references
it is possible to obtain moments, cumulants and the pdf;¢). However, if the elements ofare non-Gaussian then
the first-order perturbation or the second-order pertishahethods are not very helpful because there is no general
method to obtain the resulting pdf in a simple manner.

B. Perturbation Method Based on an Optimal Point

In the mean-centered perturbation methdgdx) is expanded in a Taylor series about 1. This approach may
not be very suitable for all problems, especially i non-Gaussian therk (x) may not be centered around the mean.
Recently Adhikari and Langléy have proposed a method which searches for a poiata in the x-space such that
the Taylor series expansion &f(x) about this point

(%) = Xj(er) +d3 (@) (x — ) + % (x— )" Dy, (a) (x— ) (8)
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is optimal in some sense. Here we extend the approach to skendgen the basic random variables are non-Gaussian.

The optimal pointa can be selected in various ways. For practical applicatibasmean of the eigenvalues is
often the most important. For this reason, the optimal paiig selected such that the mean or the first moment of
each eigenvalue is calculated most accurately. The matiwhtormalism presented here is not restricted to this
specific criteria and can be easily modified if any momentatinen the first moment is required to be obtained more
accurately. Using Eq. (2) the meanXf(x) can be obtained as

N =E\ (X)) = /]R A (X)px (X) dx = - A (x)e LX) dx :/ e 1) gx (9)

m

where h;(x) = L(x) — In A;(x). (20)

Evaluation of the integral (9), either analytically or nuigelly, is in general difficult because (&) (x) andL(x) are
complicated nonlinear functions ®f (b) an explicit functional form; (x) is not easy to obtain except for very simple
problems (usually an FE run is required to obtainfor everyx), and (c) the dimension of the integral is large.
For these reasons some kind of approximation is requireginfgqg. (9) note that the maximum contribution to the
integral comes from the neighborhood whérgx) is minimum. Therefore, expand the functibn(x) in a Taylor
series about a point whetg (x) has its global minimum. By doing so the error in evaluatingititegral (9) would be
minimized. Thus, the optimal point can be obtained from

Oh;(X) OL(X) 1 0x(x)

—8xk- =0 or Dz :)\j(x) I Vk. (1D

Combining the above equation for &ll atx = o we have
dy, (@) = Aj()dL(e). (12)

Equation (12) implies that at the optimal point the gradiesmttors of the eigenvalues and log-likelihood function
are parallel. The non-linear set of equations (12) have tedieed numerically. A good ‘first guess’ to start the
numerical solution processds = u as in the case of mean-centered perturbation method. Dhe &xplicit analytical
expression ofly; in terms of the derivative of the mass and stiffness matriegsensive numerical differentiation of
A;(x) at each step is not needed. Moreover, for mggk), a closed-form expression df, (x) is available. The form

of Eq. (8) is very similar to that of Eq. (5). As mentioned lrefowvhen the basic random variables are non-Gaussian,
determination of moments and the pdf is not straightforw&ame useful results for the case wixéa Gaussian have
been derived by Adhikari and Langlé$.In the next two sections a new method is proposed which is switable

for non-Gaussian basic random variables.

[ll. Method Based on the Asymptotic Integral

A. Multidimensional Integrals in Unbounded Domains

In this section the moments of the eigenvalues are obtaiasedion an asymptotic approximation of the multidi-
mensional integral. Consider a functigifx) : R™ — R which is smooth and at least twice differentiable. Suppose
we want to evaluate an integral of the following form:

J = - e T dx (13)

This is am-dimensional integral over the unbounded doni&ifh. The maximum contribution to this integral comes
from the neighborhood wherg(x) reaches its global minimum. Suppose tliét) reaches its global minimum at an
unique point@ € R™. Therefore, ak = 6

9f(x)

amk

=0,Vk or d;(0)=0. (14)

Using this, expand(x) in a Taylor series about and rewrite Eq. (13) as

7= ef{f(9)+%(X*G)TDf(G)(X*G)“(Xﬂ)} dx

R
(15)
_ . 1(0) / ) o~ 2(x-0)"D;(8)(X-0)—<(x.0) 4y
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wheree (x, 8) is the error if only the terms up to second-order were rethinethe Taylor series expansion. With
suitable scaling af the integral in (13) can be transformed to the so called ‘hepintegral’. Under special conditions
such integrals can be well approximated using asymptotihoas. The relevant mathematical methods and formal
derivations are covered in detail in the books by Bleistaihldandelsmai? and Wong?! Here we propose a somewhat
different version of asymptotic integrals. The erggx, 8) depends on higher of derivatives ffx) atx = 6. If they
are small compared tf (0) their contribution will negligible to the value of the inted. So we assume thg#®) is
large so that

L p ’ - :

’f(O)D (f(8)) 0 for j>2 (16)
whereDY) (£ (0)) is jth order derivative off (x) evaluated ak = 6. Under such assumptions it is easy to see that
(X, ) — 0. Therefore the integral in (15) can be approximated as

T tO) [ omH0-6)"DO)00) a7)

m

If 8 is the global minima of (x) in R™, the symmetric Hessian mattix; (9) € R™*" is also expected to be positive
definite. Now use the coordinate transformation

£=(x—0)D; (o) (18)
The Jacobian of this transformation is o
19l = 1D (8)] 7"/ (19)
Using Eq. (18), the integral in Eq. (17) can be evaluated as
T~ et (0) /Rm 1D, @) /2 e #(67€) g (20)
or 7~ (2m)™/2eO) |, (8)) 2 (21)

A similar approach was outlined by Papadimitriou et2%afor the calculation of response moments of a dynamic
system. This asymptotic analysis is somewhat differemhftioe widely used Laplace’s method of asymptotic approx-
imation of integrals (Wong! Chapter IX, Theorem 3). Here it is assumed tfié@) itself is a large quantity, unlike a
free scaling parameteh), as in the case of Laplace type integrals. Equation (21)neiv be used to obtain moments
of the eigenvalues.

B. Calculation of an Arbitrary Moment of the Eigenvalues
An arbitraryrth order moment of the eigenvalues can be obtained from

Mg_r) - B [)\;(X)] = /Rm )\;(X)px(x) dx

(22)
_ / @000 gy p = 1,23
The equation can be expressed in the form of Eq. (13) by chgosi
fO) = LX) = rInA;(x) (23)
Differentiating the above equation with respect:fowe obtain
of(x) _ OL(x) 1 9X(X) 24)
8a:k 6$k )\j(X) 8a:k
The optimal poin® can be obtained from (14) by equating the above expressiperto Therefore at = 6
9r() =0, Vk (25)
8xk
r 0X;(0) OL(0)
= k 26
O 0 ozp  owp o " (26)
or dy,(0)r = X;(0)d.(0) (27)
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Equation (27) is very similar to Eq. (12) and needs to solvamherically to obtairf. The elements of the Hessian
matrix Ds (6) can be obtained by differentiating Eq. (24) with respect;to

O*f(x)  0°L(x) 1 9X;(x) ON;(x) 1 9%*)\(x)

axk 8%1 - 8$k a.’tl - <_ )\?(X) 8xl 8xk + )\j(X) 8%]5&%1) (28)
C0PL(x) 1 o OX(x) r ON(X) r o 92X(x) 29
B Oxy, 0z + r {)\j(X) oxy, } {)\j(X) oy } B )\j(X) Oxy, 0z (29)

At x = 8 we can use Eq. (26) so that Eq. (29) reads

92 f(x) _O’L(6) | 10L(O)IL(O)  r 9°X\(6) (30)
Oz, Ox; x=6 — Oz O0xr; 71 Oz Oxy A (0) Oxy, Oz
Combining this equation for alt and! we have
1
D (8) = DL(6) + ~d.(6)d.(8)" — Dy, (6) (31)
r A;i(6)

whereD), (o) is defined in Eq. (7). Using the asymptotic approximation) (&ierth moment of the eigenvalues can
be obtained as

—-1/2
r /

Aj(0)

uy) ~ (27T)m/2>\§(0)6—L(0) ‘ D.(0) + %dL(O)dL(O)T _

0,,(0)

(32)

This is perhaps the most general formula to obtain the manehthe eigenvalues of linear stochastic dynamic
systems. The optimal poitneeds to be calculated by solving non-linear set of equstin (27) for each ; andr.

If @ is not unique then it is required to sum the contributionsiag from all such optimal points separately. Several
special cases arising from Eqg. (32) are of practical interes

e Random vector x has multivariate Gaussian distribution: In this casel.(x) is given by Eq. (3) and by differen-
tiating this we obtain

dr(x) =32 'x (33)
and DL(x)=X""! (34)
The optimal poin® can be obtained from Eq. (27) as

.
9 = WE% () (35)

Using Eq. (33) and Eq. (34), the Hessian matrix can be defiged Eq. (31) as

1
D;(0)=%"'+-27'00"2"" — —__D, (0)
T )\](9) J (36)
s (1+ 26675 - —" b, (0)
r Xi(0)
Therefore, theth moment of the eigenvalues can be obtained from Eq. (32) as
1O\ _ _
) s (@)e O IO 572 D 0 7. (37)
Using Eqg. (36) and recalling that for any two matridesandB, ||A|| ||B| = ||AB| we have
1 9 Tz—l 0 1 r —1/2
u{) () (0-p) X (0-p) HI +-00"8! - zokj(e)‘ (38)
r A;i(6)
For the standardized Gaussian random veptee 0 andX = I. In this case Eq. (38) reduces to the corre-

sponding equation derived previously by Adhikari and Lagg?
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e Mean of the eigenvalues: The mean of the eigenvalues can be obtained by substitutiag in Eq. (32), that is

e (39)

N =) = 2,(0)e M) [D,(6) + d1(6)dL(6)" — Dy, (6)/2(6)
e Central moments of the eigenvalues. Once the mean in known, the central moments can be exprassemuins
of the raw momentﬂgr) using the binomial transform

B[ -3) =3 (1) s (40)

k=0
The probability density function of the eigenvalues is ¢desed in the next section.

IV. Probability Density Function of the Eigenvalues

A. Maximum Entropy Probability Density Function
Once the moments of the eigenvalues are known, the pdf ofgeavalues can be obtained using maximum entropy
method (MEM). Since Eq. (32) can be used to calculate anyrarpiorder moment, the pdf can be obtained very
accurately by taking higher order moments. Here, folloviagur and Kesavaft a general approach is presented.
Since it is assumed th&t andK are symmetric and positive definite random matrices, aletbenvalues are real
and positive. Suppose the pdf df is given byp,; (u) whereu is positive, that is: € [0, oo]. Considering that only
firstn moments are used, the pdf of each eigenvalue must satisfgltbeing constraints:

/ Py, (u)du =1 (41)
0
and -
/ uT.p/\j(u)du:ugr)a r=1,23--,n. (42)
0
Using Shannon’s measure of entropy
S== [ m(np, @ (43)
0

we construct the Lagrangian

c== [ oy, a0~ 1| [ o w1 - im [T @

wherep,, 7 = 0,1,2,--- ,n are Lagrange multipliers. The functign, (u) which maximizesC can be obtained using
the calculus of variations. Using the Euler-Lagrange dqoahe solution is given by

P, (u) = P T R0 DR TS SRV DI piui” uw> 0. (45)
The Lagrange multipliers can be obtained from the condtegjnations (41) and (42) as

ePo :/ e Nimie gy, (46)
0

and -

e”"uy) = / we  Xi=iPi% gy for r=0,1,2,-n. 47)

0

Closed-form expressions fgy. are in general not possible for all If we taken = 2, then the resulting pdf can be
expressed by a truncated Gaussian density function

1 202
Py, (u) = — e J , u>0 (48)
vV 27T0j CI) ()\j/aj)
whereo; is given by
o2 = -2, (49)

This truncated Gaussian density function ensures thatrtimpility of any eigenvalues becoming negative is zero.
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B. Approximation by y? Probability Density Function
We use an approximation analogous to Pearsbitfsee moment central® approximation to the distribution of a
noncentraly? . The eigenvalues are approximated as

pa; (u) =15+ 75x5, (u). (50)

The constants;, v;, andy; are obtained such that the first three moments;aire equal to that of the approximated
x? pdf. The moment generating function of the approximatégdf is given by

e (rr8)] 2o 14 2y o1

Equating the first three moments we have

1
ni v =", (52)
2
ni® + 2wy + v+ 2057 = ) (53)
3
0% 4 302wy + 3nv? + 6nv,2 + vty + 6v20 + 8yt = ,ug- ). (54)

This set of coupled non-linear equations can be solved lgxaatlosed-form to obtaim;, v;, andv;:

M2 (2 @2, 1, 3
S —2p ey H (55)
Ty, g @ @)
R Y A e
13 1, @ , (3
N Nkl N Rt (56)
! 4( (2) (1>2> ’
K™ = Hy
2\ 3
()
andv; =8 (57)

3 27
(2 i =3 + ué)
Moments of);(x) obtained in Eq. (32), can be used directly in the right-haide sf these equations. Using the
transformation in (50) the approximate probability densinction of A;(x) is given by
u — 77]) . (u — 'r]j)VJ/Q_le_(u_nj)/Q’YJ
7V (275)¥3/%T(v/2)

It should be noted that given the moments, several pdfs cdittéd The two approximated pdf proposed here have
simple forms. Application of the approximate pdfs derivedehis illustrated in the next section.

(58)

1
pa; (u) = 7, (

V. Application Example

A. Model System and Computational Methodology

A three-degree-of-freedom undamped spring-mass sys#en from referencé, is shown in Fig. 1. The eigen-
value problem associated with this system is considerdllitirate a possible application of the expressions dgeslo
in the paper. The mass and stiffness matrices of the exaygtiens are given by

my 0 0 k1 + ks + kg —ky —kg
M = 0 mo 0 and K = —ky ki + ks + kg —ks . (59)
0 0 mg —kg —ks ks + k3 + kg

It is assumed that all mass and stiffness constants aremarttee randomness in these parameters are assumed to be
of the following form:

m; = Mmy; (1 -‘rmei), 1=1,2,3 (60)
k; :E,’ (1+€kl‘7‘,+3), i=1,---,6. (61)
Herex = {1, --- ,z9}" € R” is the vector of random variables. It is assumed that allsemdariables are Gaussian

and uncorrelated with zero mean and unit standard devialioerefore, the mean valuesiaf andk; are given bym;
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mj

ks

Figure 1 The three degree-of-freedom random system

andk;. The numerical values of both the ‘strength parametggsinde,, are fixed at 0.15. The strength parameters are
selected so that the system matrices are almost surelyveaddfinite. In order to obtain statistics of the eigenvalue
using the methods developed in this paper the gradient vantbthe Hessian matrix of the eigenvalues are required.
As shown in Appendix A, this in turn requires the derivatiietlee system matrices with respect to the entrieg.of
For most practical problems, which usually involve Finitefeent modeling, these derivatives need to be determined
numerically. However, for this simple example the derivadi can be obtained in closed-form and they are given in
Appendix B.

We calculate the moments and the probability density fonstiof the three eigenvalues of the system. Recall that
the eigenvalues obtained from Eqg. (1) are the square of ttueatdrequenciesX; = w?). The following two sets of
physically meaningful parameter values are considered:

e Case 1: All eigenvalues are well separated
For this casen; = 1.0kgfori =1,2,3; k;, = 1.0N/mfori =1,--- 5 andkg = 3.0 N/m.

e Case2: Two eigenvalues are very close
All parameter values are the same exdept 1.275 N/m.

The moments of the eigenvalues for the above two cases angatald from Eq. (38) withy = 0 andX = 1. A
commercial non-linear equation solver is used to obtainoghténal pointé from Eqg. (35). The moments are then
used to obtairr; from Eq. (49) and the constants in Egs. (55)—(57). Usingetlesmstants the truncated Gaussian
pdf and they? pdf of the eigenvalues are obtained from Egs. (48) and (53)estively. These results are compared
with Monte Carlo simulation. The samples of the nine indejegrt Gaussian random variablesi = 1,--- ,9 are
generated and the eigenvalues are computed directly from(Bq A total of 5000 samples are used to obtain the
statistical moments and histograms of the pdf of the eidapga The results obtained from Monte Carlo simulation
are assumed to be the benchmark for the purpose of comphaegranalytical methods proposed in this paper. For the
purpose of determining the accuracy of the proposed methegigalculate the percentage error associated with an
arbitraryrth moment given by
) — {1 hwes
{1 }mes
The results for the two cases are presented and discusdeslriext subsection.

Error = x 100. (62)

B. Numerical Results
B.1. Casel: All eigenvalues are well separated

When all of the eigenvalues are well separated their devestivith respect to the system parameters generally
behave well. For the given parameter values the eigenvaluég corresponding deterministic system is given by

A = 1, XQ =4, and Xg = 8. (63)

The random ‘scatter’ of the eigenvalues is shown in Fig. 21fa0 samples from the Monte Carlo simulation. It can
be seen that the highest eigenvalue has the maximum scattdregause the eigenvalues are well separated, there
is very little statistical overlap between them. Figure 8vgh the percentage error for the first four moments of the
eigenvalues. These errors are calculated from Eq. (62)haydare reasonably small considering that the strength of
randomness for all nine random variables E5&. Note that error associated with higher eigenvalues areehignd

also for a fixed eigenvalue, the higher order moments have ermors.
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Eigenvalues.?,\j (rad/sf

Figure 2 Statistical scatter in the eigenvalues; Case 1.
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Figure 3 Percentage error for first four moments of the eigenalues; Case 1.

Now consider the probability density function of the eigalmes. The pdf of the first eigenvalue obtained from the
two methods are shown in Fig. 4. On the same plot, normalisddrams of the eigenvalue obtained from the Monte
Carlo simulation are also shown. Both approximate methoatsimwell with the Monte Carlo simulation result. This
is expected since the first three moments are obtained venraely (less than.2% error as seen in Fig. 3). The
probability density functions of the second and third eigdmes are shown in Fig. 5. The region of statistical overlap
is indeed small and can be verified from the plot of the actaaifges in Fig. 2. Again, both approximate methods
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Figure 4 Probability density function of the first eigenvalue; Case 1.

e Monte Carlo simulation
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Figure 5 Probability density functions of the second and thid eigenvalues; Case 1.

match well with the Monte Carlo simulation result.

B.2. Case2: Two eigenvalues are very close

When some eigenvalues are closely spaced, their derivatithsrespect to the system parameters may badly
behave?® Indeed, if repeated eigenvalues exist, the formulatioppsed here breaks down. The purpose of studying
this case is to investigate how the proposed methods work Wiere are closely spaced eigenvalues so that there is
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a significant statistical overlap between them. For thergjp@rameter values the eigenvalues of the corresponding
deterministic system are calculated as

M=1 X=4, and \3=4.55. (64)

Clearly \, and 3 are very close to each other. The random ‘scatter’ of thengaaes is shown in Fig. 6 for 1000
samples from the Monte Carlo simulation. It can be seen thathird eigenvalue has the maximum scatter and

100

900F %

800F:
700F
600

500

Samples

400 ;
300 4

200

100

Eigenvalues},\j (rad/sf

Figure 6 Statistical scatter in the eigenvalues; Case 2.

because the second and the third eigenvalues are closddisigaificant statistical overlap between them. Figure 7
shows the percentage error for the first four moments of thensalues. These errors are calculated from Eq. (62).
The general trend of these errors are similar to the prevdass except that the magnitudes of the errors corresponding
to second and third eigenvalues are higher. This is expéaeause these two eigenvalues are close to each other.

The probability density function of the first eigenvalueaibed from the two methods are shown in Fig. 8. On the
same plot, normalized histograms of the eigenvalue olddimen Monte Carlo simulation are also shown. As in the
previous case, both approximate methods match well withvibiete Carlo simulation result. This is expected since
the first three moments are obtained very accurately foictmsg also. The probability density functions of the second
and third eigenvalues are shown in Fig. 9. There is a signifiegion of statistical overlap which can also be verified
from the plot of the actual samples in Fig. 6. In this case ithiedated Gaussian density function performs better than
the x? density function. However, none of the approximate methodgh the Monte Carlo simulation result as well
as in the previous case.

VI. Conclusions

The statistics of the eigenvalues of linear dynamic systeitis parameter uncertainties have been considered. It is
assumed that the mass and stiffness matrices are smooth laadtdawice differentiable functions of a set of random
variables. The random variables are in general assumedriorb&aussian. The usual assumption of small random-
ness employed in most mean-centered based perturbatitysiana not employed in this study. A method based
on asymptotic approximation of multidimensional integra proposed to obtain moments of the eigenvalues. The
method is based on an unconstrained optimization problemloged-form expression of generdah order moment
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Figure 8 Probability density function of the first eigenvalue; Case 2.

of the eigenvalues was derived. Two simple approximationgtfe probability density function of the eigenvalues
are derived. One is in terms of a truncated Gaussian randaableobtained using the maximum entropy principle.
The other is a¢? random variable approximation based on matching the firsetmoments of the eigenvalues. Both
formulations yield closed-form expressions of the pdf vagan be computed easily.

The proposed formulae are applied to a three-degree-eéifira stochastic system. The moments and the probabil-
ity density functions match well with the corresponding N arlo simulation results when the eigenvalues are well
separated. However, when some eigenvalues are closelgdsphe proposed methods do not produce very accurate
results. Future studies will address the problem of closphced or repeated eigenvalues. Further research is also
required to develop new methods to obtain joint probabdiwpsity functions of the eigenvalues.

Appendix A: Gradient Vector and Hessian Matrix of the Eigenvalues
The eigenvectors of symmetric linear systems are orthdguittarespect to the mass and stiffness matrices. Nor-
malize the eigenvectors so that they are unity mass noretglthat is,

dIMp; = 1. (65)

13
American Institute of Aeronautics and Astronautics



..e.. Monte Carlo simulation
0.9t } Truncated Gaussian distribution -

—_ x2 distribution

9
u
Figure 9 Probability density functions of the second and thid eigenvalues; Case 2.
Using this and differentiating Eq. (1) with respecttpit can be shown that for anyx
0\
0%~ 007G, () (66)
Tk
where K (%) M ()
X
G300 = | 5 2,00 %50 7)

Differentiating Eq. (1) with respect te, andz; Plaut and Husey#ff have shown that, providing the eigenvalues are
distinct,

T 0,00 [0 x0T 6,00 - (8,00 B 0,0 ) (00709, )
)

&m 3251 8xk 8xl al'k axl al'k

Ta. .
(00722500 ) (8,097 Gn0x )HZ( ok ”’;Eﬁi —<>ir(§<);) G10960) g

Equations (66) and (68) completely define the elements ofitadient vector and Hessian matrix of the eigenvalues.
Appendix B: Derivative of the System Matrices With Respect to he Random Variables

The derivatives oM (x) andK (x) with respect to elements afcan be obtained from Eq. (59) together with Egs.
(60) and (61). For the mass matrix we have
0
0 . (69)

mlem 0 0
M _ 170" 0 o , M _
Bxl 0 0 0 8x2
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All other %—';A are null matrices. For the derivative of the stiffness matri

(%1, 0 0O 0 0 O 00 0
oK 1€k oK _ oM
8— = 0 0 0 5 8— =10 k’gék 0 5 8— =10 O _O
oo o000 “Boloo00 60 0 Fse 70
[ Kier —kacp O 0 0 0 kee 0 —kge
oK 4Ck T4tk K _ h oM 6€k 6€k
a— = 7]{146]6 k4€k 0 5 a— =10 kéﬁk —_k56k 5 a— = _0 0 _0
i 0 0 0 T80 —kser  ksex T ke 0 Eeen

and all otherg,—f are null matrices. Also note that all of the first-order datiive matrices are independentxof For
this reason, all the higher order derivatives of ihéx) andK (x) matrices are null matrices.
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