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ABSTRACT 
 

This paper presents a generic high dimensional model representation (HDMR) method for approximating 
the system response in terms of functions of lower dimensions. The proposed approach, which has been 
previously applied for problems dealing only with random variables, is extended in this paper for 
problems in which physical properties exhibit spatial random variation and may be modelled as random 
fields. The formulation of the extended HDMR is similar to the spectral stochastic finite element method 
in the sense that both of them utilize Karhunen–Loève expansion to represent the input, and lower order 
expansion to represent the output. The method involves lower dimensional HDMR approximation of the 
system response, response surface generation of HDMR component functions, and Monte Carlo 
simulation. Each of the low order terms in HDMR is sub-dimensional, but they are not necessarily 
translating to low degree polynomials. It is an efficient formulation of the system response, if higher-
order variable correlations are weak, allowing the physical model to be captured by the first few lower-
order terms. Once the approximate form of the system response is defined, the response statistics can be 
obtained by statistical simulation. The proposed approach decouples the finite element computations and 
stochastic computations, and consecutively the finite element code can be treated as a black box, as in the 
case of a commercial software. Numerical examples are used to illustrate the features of the extended 
HDMR and to compare its performance with full scale simulation.  
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1. INTRODUCTION 
 
Numerical methods for structural analysis have 
been developed quite substantially over the last 
decades. In particular, the finite element method 
(FEM) and closely related approximations have 
become state-of-the-art. The modelling 
capabilities and the solution possibilities lead to an 
increasing refinement allowing for more and more 

details to be captured in the analysis. On the other 
hand, however, the need for more precise input 
data becomes urgent in order to avoid or reduce 
possible modelling errors. Such errors could 
eventually render the entire analysis procedure 
useless. Typically, not all uncertainties 
encountered in structural analysis can be reduced 
by careful modelling since their source lies in the 
intrinsic randomness of natural phenomena. It is 
therefore appropriate to utilize methods based on 
probability theory to assess such uncertainties and 
to quantify their effect on the outcome of 
structural analysis.  
In the stochastic mechanics community, the need 
to account for uncertainties has long been 
recognized in order to achieve reliable design of 
structural and mechanical systems. There is a 
general agreement that advanced computational 
tools have to be employed to provide the 
necessary computational framework for describing 
structural response and re-liability. A current 
popular method is the stochastic finite element 
method (SFEM) [1], which integrates probability 
theory with standard FEM. Methods involving 
perturbation expansion [2], Neumann series 
expansion [3], first- and second-order reliability 
algorithms [4], and Monte Carlo simulation 
(MCS) [5] including variance reduction strategies 
have been developed and extensively used for 



probabilistic analysis of complex structures. These 
developments include treatment of spatially 
varying structural properties that are modelled as 
random fields, loads that are modelled as space-
time random processes, structural behaviour 
covering static and dynamic regimes, linear and 
nonlinear structural/mechanical behaviour, 
characterization of response variability and 
determination of structural reliability measures. 
Early development of Spectral SFEM (SSFEM) by 
Ghanem and Spanos [6] appears to be a suitable 
technique for the solution of complex, general 
problems in probabilistic mechanics. However, 
this method requires access to the governing 
differential equations of system. Furthermore, the 
resulting system of equations to be solved for the 
unknown response is much larger than those from 
deterministic finite element analysis. For 
complicated large system problems, the system of 
equations in the SSFEM could be tremendously 
large. For example, if the deterministic system is 
of size l×l, and the number of terms in the 
polynomial chaos expansion is p, then the size of 
the stochastic system would be p×l×p×l. Recently 
a new implementation of SSFEM [14], which is 
theoretically equivalent to the original SSFEM, 
has been developed for the purpose of utilizing 
commonly available FEM codes as a black box. 
This novel implementation of SSFEM uses 
random sampling of the input and consequently a 
large number of FEM runs to get a stable estimate 
of the coefficients in the expansion of the solution. 
This paper presents a generic approach for solving 
random field problems arising in structural 
mechanics. The methodology is based on high 
dimensional model representation (HDMR) which 
has been previously proposed by the authors [7] 
for problems dealing only with random variables. 
This paper extends HDMR concept to the 
problems involving random fields. Proposed 
methodology uses Karhunen–Loève (K–L) 
expansion [8] for discretizing the input random 
field and HDMR to approximate the output 
response in terms of functions of lower 
dimensions as an efficient uncertainty propagation 
model.  
Compared to the conventional surrogate models, 
present approach has several advantages to justify 
using it as a more reliable metamodel. The first is 
reduction of data processing. The exponentially 
growing amount of function values is represented 

via polynomially growing tables [7] holding each 
function component (terms in the general 
expansion). This property helps us to cope with 
high dimensional problems of real world. The 
second advantage is reduction of computational 
complexity. HDMR is generated by a family of 
projections [9, 10]. Consequently, it allows 
splitting of any problem into easier low-
dimensional subproblems. Third advantage is that, 
HDMR is a mean square convergent series 
expansion. This is because of the inherent 
properties of orthogonal properties of HDMR 
component functions [10]. It is optimal in the 
Fourier sense since it minimizes the mean square 
error from truncation after a finite number of 
cooperative terms in the expansion. Also lower 
dimensional functions stay stable as higher order 
Taylor series terms are inherently included. 
Finally, compared to existing simulation based 
random field approach [11], HDMR based 
approach does not translate into lower order 
polynomial approximation of system response. 
The formulation of the extended HDMR is similar 
to the SSFEM in the sense that both of them 
utilize K–L expansion to represent the input, and 
lower order expansion to represent the output. The 
sample points in the proposed method are chosen 
from regularly spaced points along each of the 
variable axis. This sampling scheme results in 
fewer system analysis [7]. 
 
2. RANDOM FIELD DISCRETIZATION 
 

Let  , ,    be a probability space and let 

 2 , ,  L  be the Hilbert space of random 

variables with finite second moments. A random 

field  ,x  with Nx  and   , is curve in 

 2 , ,  L , that is a collection of random 

variables indexed by x [12]. Hence,  0,x  for 

a given 0x  is a random variable and  0,x  for 

a given 0  is a realization of the random field. A 

Gaussian random field is such that for any N, the 

vector    1 0 0, , , ,
T

N   x x   is Gaussian. 

Moreover, it is homogeneous if its mean  0, x  

and variance  2
0, x  are constant and its 

autocorrelation coefficient  , x x  is a function 



of and x x  only. This autocorrelation function 
may take many distinct forms. One such form is 
the exponential type. 

  1 (1) (1) 2 ( 2) ( 2), e
        x x x x

x x  (1) 

where ( )ix  denotes i-th coordinate of x  and 1 2,   

are known as correlation lengths. Random fields 
are a useful tool to model random mechanical 
properties of engineering systems which are 
spatially distributed in nature. This includes 
Poisson’s ratio, Young’s modulus and yield stress. 
It is well known that, for a linear system, the FEM 
eventually yields a system of algebraic equations 
of the form 
Ku = f  (2) 

where N NK  is known as stiffness matrix and 
Nf  is the force vector. If the uncertainty is 

taken into account, K becomes a random matrix.  
Suppose one is interested in quantifying the 
uncertainty in Eq. (2) induced by the random 
properties in the system. When implementing the 
deterministic FEM, functions are represented by a 
set of parameters, that is, the values of the function 
and its derivatives at the nodal points. In the case 
of the SFEM, each random field involved is 
discretized by representing it as a set of random 

variables. Therefore,  ,x  needs to be 

discretized in order to obtain the associated system 
of random algebraic equations. The solution to 
these equations will enable uncertainty 
quantification for the particular system in concern. 
A wide variety of discretization schemes are 
available in the literature. The discretization 
methods can be divided into three groups: point 
discretization [12] (e.g., midpoint method, shape 
function method, integration point method, 
optimal linear estimate method); average 
discretization method (e.g., spatial average, 
weighted integral method) and series expansion 
method (e.g., Karhunen–Loève expansion, 
orthogonal series expansion, expansion optimal 
linear estimation). An advantageous alternative for 

discretizing  ,x  is the K-L expansion, for 

which 
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where   i   is a set of uncorrelated random 

variables,  i  is a set of constants and   i x  

is an orthogonal set of deterministic functions. In 

particular,  i  and   i x  are the eigenvalues 

and eigenfunctions of the covariance kernel  

1 2( ) [ ( , ) ( , )] ( , )      s x x s x x     (4) 

where 1 ,x x  2  x x s , that is they arises from 

the solution of the integral equation 

   1 2 1 1 2( , )
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i i id 


   


x x x x x  (5) 

The eigenfunctions are orthogonal in the sense that 

   
N
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x x x  (6) 

where ij  is the Kronecker-delta function. In 

practice, the infinite series of Eq. (3) must be 
truncated, yielding a truncated KL approximation 

       
1

,
M

i i i
i
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 x x x   (7) 

which approaches  ,x  in the mean square 

sense as the positive integer M  . Finite 
element methods can be readily applied to obtain 
eigensolutions of any covariance function and 
domain of the random field. For linear or 
exponential covariance functions and simple 
domains, the eigensolutions can be evaluated 
analytically. 
Once ( ) s  and its eigensolutions are determined, 

the parameterization of  ,x  is achieved by 

the KL approximation of its Gaussian image, i.e., 

       
1

,
M

i i i
i

G f   


    
x x x   (8) 

According to Eq. (8), the KL approximation 
provides a parametric representation of the 

 ,x  and, hence, of  ,x  with M random 

variables. Note that this is not the only available 

technique to discretize the random field  ,x . 

The KL expansion has uniqueness and error-
minimization properties that make it a convenient 
choice over other available methods. See [35] for a 
detailed study of the cited and other KL 
expansion properties. 
Engineers are interested in obtaining the 
probability density function and the cumulative 
distribution function of u in order to assess the 
reliability of the system. However, this objective 
can prove to be difficult to achieve and the 
approach is limited to obtaining the first few 



statistical moments of u. There exist several 
strategies, such as perturbation and projection 
methods, to deal with this problem.. 
 
3. OVERVIEW OF HDMR 
 
The fundamental principle underlying the HDMR 
[9, 10, 13] is that, from the perspective of the 
output/response, the order of the functional 
correlations between the statistically independent 
variables will die off rapidly. This assertion does 
not eliminate strong variable dependence or even 
the possibility that all the variables are important. 
Various sources [9, 10] of information support the 
fact that the high-order correlations are limited. 
First, the variables in most systems are chosen to 
enter as independent entities. Second, traditional 
statistical analyses of system behaviour have 
revealed that a variance and covariance analysis of 
the output in relation to the input variables often 
adequately describes the physics of the problem. 
These general observations lead to a dramatically 
reduced computational scaling when one seeks to 
map input-output relationships of complex 
systems. 
Evaluating the input-output mapping of the system 
generates a HDMR. This is achieved by 
expressing system response as a hierarchical, 
correlated function expansion of a mathematical 
structure and evaluating each term of the 
expansion independently. One may show that 

system response    1 2, , , Ng g x x xx   can be 

expressed as summands of different dimensions: 
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where 0g  is a constant term representing the mean 

response of  g x . The function  i ig x  describes 

the independent effect of variable xi acting alone, 
although generally nonlinearly, upon the output 

 g x . The function  
1 2 1 2

,i i i ig x x  gives pair 

cooperative effect of the variables 
1i

x  and 
2i

x  

upon the output  g x . The last term 

 12 1 2, , ,N Ng x x x   contains any residual 

correlated behaviour over all of the system 

variables. Usually the higher order terms in Eq. (9) 
are negligible [9] such that HDMR with only low 
order correlations to second-order [10], amongst 
the input variables are typically adequate in 
describing the output behaviour. 
The expansion functions are determined by 
evaluating the input-output responses of the 
system relative to the defined reference point 

 1 2, , , Nx x x x  along associated lines, surfaces, 

subvolumes, etc. in the input variable space. This 
process reduces to the following relationship for 
the component functions in Eq. (9) 

 0g g x  (10) 

    0, i
i i ig x g x g x  (11) 
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2 2 0

, , , i i
i i i i i i i i

i i

g x x g x x g x

g x g

  



x
 (12) 

where the notation 

   1 2 1 1, , , , , , , ,i
i i i i Ng x g x x x x x x   x  denotes 

that all the input variables are at their reference 
point values except ix . The 0g  term is the output 

response of the system evaluated at the reference 
point x . The higher order terms are evaluated as 
cuts in the input variable space through the 
reference point. Therefore, each first-order term 

 i ig x  is evaluated along its variable axis through 

the reference point. Each second-order term 

 
1 2 1 2

,i i i ig x x  is evaluated in a plane defined by the 

binary set of input variables 
1 2
,i ix x  through the 

reference point, etc. The process of subtracting off 
the lower order expansion functions removes their 
dependence to assure a unique contribution from 
the new expansion function. 
Considering terms up to first- and second-order in 
Eq. (9) yields, respectively 

   0 2
1

N

i i
i

g g g x


  x   (13) 

and 
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Substituting Eq.s (10)–(12) into Eq. (13) and (14) 
leads to first- and second-order approximation of 

 g x , denoted respectively by 
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and 
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It can be shown that, the first order component 

function  i ig x  is the sum of all the Taylor series 

terms which contain and only contain variable ix . 

Similarly, the second order component function 

 
1 2 1 2

,i i i ig x x  is the sum of all the Taylor series 

terms which contain and only contain variables 
1i

x  

and 
2i

x . Hence first- and second-order HDMR 

approximations should not be viewed as first- or 
second-order Taylor series expansions nor do they 

limit the nonlinearity of  g x . Furthermore, the 

approximations contain contributions from all 
input variables. Thus, the infinite number of terms 
in the Taylor series are partitioned into finite 
different groups and each group corresponds to 
one cut-HDMR component function. Therefore, 
any truncated cut-HDMR expansion provides a 
better approximation and convergent solution of 

 g x  than any truncated Taylor series because the 

latter only contains a finite number of terms of 
Taylor series.  
 
4. CONSTRUCTION OF HDMR BASED 
NON-LINEAR MODEL 
 
HDMR in Eq. (9) is exact along any of the cuts 

and the output response  g x  at a point x off of 

the cuts can be obtained by following the 
procedure in step 1 and step 2 below: 
Step 1: Interpolate each of the low dimensional 
HDMR expansion terms with respect to the input 
values of the point x. For example, consider the 
first-order component function 

   1 2 1 1, , , , , , , ,i
i i i i Ng x g x x x x x x   x . If for 

,j
i ix x  n function values  

   1 1 1, , , , , , , ;

1, 2, ,

j i j
i i i i Ng x g x x x x x

j n
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 (17) 

are given at  3,5,7 or 9n   regularly spaced 

sample points along the variable axis xi. The 
function value for arbitrary ix  can be obtained by 

the moving least-squares (MLS) interpolation [14] 
as 

     1 1 1
1

, , , , , , ,
n

i j
i j i i i i N

j

g x x g x x x x x  


  x  (18) 

In a similar manner, HDMR based model can be 
constructed from second-order component 
function  
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x  (19) 

By using Eq. (18),  i ig x can be generated if n 

function values are given at corresponding sample 
points. Similarly, by using Eq. (19), 

 
1 2 1 2

,i i i ig x x can be generated if n2 function values 

at corresponding sample points are given. The 
same procedure shall be repeated for all the first-
order component functions, i.e., 

 ; 1,2, ,i ig x i N   and the second-order 

component functions, i.e., 

 
1 2 1 2 1 2, ; , 1, 2, ,i i i ig x x i i N  . 

 
Step 2: Sum the interpolated values of HDMR 
expansion terms from zeroth-order to the highest 
order retained in keeping with the desired 
accuracy. This leads to first-order HDMR 

approximation of the function  g x  as 
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and second-order HDMR approximation of the 

function  g x  as 
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5. COMPUTATIONAL FLOW AND 
EFFORT 
 
A general procedure of HDMR for random field 
problems is briefly summarized below: 
(i) Representation of random field inputs in 

terms of standard random variables by 
Karhunen–Loève expansion. 

(ii) Once the inputs are expressed as functions of 
the selected standard random variables, the 
output quantities can also be represented as 
functions of the same set of standard random 
variables.  

(iii) The model outputs are computed at a set of 
selected sample points and used to estimate 
the HDMR coefficients. 

Calculation of the statistics of the output which are 
cast as a metamodel in terms of HDMR expansion. 
The statistics of the response can be estimated 
with the metamodel using either Monte Carlo 
simulation or analytical approximation. 
 
6. NUMERICAL EXAMPLES 
 
The implementation of the proposed approach is 
illustrated with the help of three examples in this 
section, involving one-dimensional and two-
dimensional random fields. When comparing 
computational efforts in evaluating the statistics of 
responses, the number of actual finite-element 
(FE) analysis is chosen as the primary comparison 
tool in this paper. This is because of the fact that, 
number of FE analysis indirectly indicates the 
CPU time usage. For full scale MCS, number of 
original FE analysis is same as the sampling size. 
While evaluating the statistics of responses 
through full scale MCS, CPU time is more 
because it involves number of repeated FE 
analysis. However, in the present methods MCS is 
conducted in conjunction with HDMR based 
metamodel. Here, although the same sampling size 
as in direct MCS is considered, the number of FE 
analysis is much less. Hence, the computational 

effort expressed in terms of FE calculation alone 
should be carefully interpreted. For first-order 
HDMR, n regularly spaced sample points are 
deployed along the variable axis through the 
reference point. For second-order HDMR, n 
regularly spaced sample points are deployed along 
each of the variable axis to form a regular grid. In 
all numerical examples presented, the reference 
point x  is taken as mean values of the random 
variables. Since first- and second-order HDMR 
approximation leads to explicit representation of 
the system responses, the MCS can be conducted 
for any sampling size. The total cost of original FE 

analysis entails a maximum of  1 1n N    and 

     2
1 1 2 1 1n N N n N      by the present 

method using first- and second-order HDMR 
approximation, respectively. 
 
6.1 BEAM PROBLEM 
 
A cantilever beam subjected to a concentrated load 
P (Fig. 1) is considered. It is assumed that the 

elastic modulus    1 expE c       and 

thickness of the beam    2 expt c      , 

which are spatially varying in the longitudinal 
direction, of the beam is an independent, 
homogeneous, lognormal random field. Mean and 
coefficient of variations of the random fields are 

11 22.07 10 N mE   , 0.254t   m; and 

0.4E  , 0.2t  , respectively. 2
1 1E Ec    , 

2
2 1t tc     and    ,     are zero-mean, 

homogeneous, Gaussian random field with 

variance    2 2 2 2ln 1 ; ln 1E t         and 

covariance function 

   2
1 2 1 2, exp ;b        

   2
1 2 1 2, exp b         . b is the 

correlation parameter that controls the rate at 
which the covariance decays. The degree of 
variability associated with the random process can 
be related to its coefficient of variation. The 
frequency content of the random field is related to 
the L/b ratio in which L is the length of the beam. 
A small L/b ratio implies a highly correlated 
random field. L/b = 1 is chosen in this study. In 
this example, the length of the beam is L = 1 and it 
is divided into 10 elements. 



The eigensolutions of the covariance function are 
obtained by solving the integral equation (Eq. (5)) 
analytically. The eigenvalues and eigenfunctions 
are given as follows: 
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 (22) 
The random field is discretized into ten SRVs, and 
the ten-term K–L expansion (Eq. (7)) is used to 
generate sample functions of the input random 
field. The response quantity which is the tip 
displacement of the beam is represented by 
HDMR expansion with five sample points. To 
evaluate the validity of the results obtained from 
the proposed method full scale MCS is performed 
for the same problem. Realizations of the elastic 
modulus of the beam are numerically simulated 
using the K–L expansion method. For each of the 
realizations, the deterministic problem is solved 
and the statistics of the response are obtained. Fig 
2 compares the probability density functions 
obtained from first- and second-order HDMR with 
full scale MCS. Excellent agreements are observed 
between the proposed approach and 1×104 full 
scale MCS results. The cumulative distribution 
function is shown in Fig 3.  
Compared with the first two response moments 
obtained using direct MCS 

 2 3
1 23.778 10 , 7.690 10m m     , present 

method using first-order HDMR approximation, 
underestimates the first two moments by 0.27% 

 2
1 3.768 10m    and 1.41% 

 3
2 7.582 10m   , respectively, while second-

order HDMR approximation, underestimates the 

first two moments by 0.02%  2
1 3.777 10m    

and 0.47%  3
2 7.654 10m   , respectively. The 

present method using first- and second-order 
HDMR approximation needs 41 and 761 original 
FE analysis, respectively, while full scale MCS 
requires 1×104 number of original FE calculation. 
This shows the accuracy and the efficiency (in 
terms of FE analysis) of the present method using 
first-order HDMR approximation, direct MCS.  
 According to Huang et al. [15], K–L 
expansion with few terms (e.g., M < 10) do not 
yield accurate representation of the input random 
field (even for a highly correlated field, e.g. L/b = 
1). It has also been shown that for a random field 
with L/b = 1, a two term representation may rise 
upto 30% error in the variance of the discretized 
field. However, increasing the number of terms 
result in a large number of FE runs. Therefore, to 
balance between accuracy of the results and 
computational cost, M = 10 is considered in the 
present study. As the same random field 
discretization is used for full scale MCS and 
HDMR, the inaccuracy in input random field does 
not show in the results. However, the purpose of 
this paper is to show that HDMR can work as well 
as full scale MCS with much less FE runs. The 
inaccuracy in input random field for both methods 
is acknowledged. 
 
7. SUMMARY AND CONCLUSIONS 
 
 This paper presents extended HDMR 
approach for problems in which physical 
properties exhibit spatial random variation. The 
method appears to be efficient, requiring only 
conditional responses at selected sample points to 
accurately compute solution statistics. In 
comparison, full scale MCS may require 
thousands of realizations or more for converged 
statistics. Thus the proposed method substantially 
reduces the computational effort while 
maintaining the desired accuracy. K–L expansion 
is required for discretizing the input random field 
with many terms, which in turn can increase the 
dimensionality of the problem and thus the 
computational effort of the SFEM. The curse of 
dimensionality, which is a problem in other 
currently available methods, does not arise in the 
proposed approach. This is because it discretizes 
the whole problem into a number of sub-problems. 
Also, the proposed method is independent of the 
details of structural analysis (in the context of 
commercial software) as it treats the FE model as 



a black-box. If higher loads introduce nonlinearity 
in the model response, then the appropriate 
nonlinear analysis should be used, and the 
underlying HDMR based metamodel would 
automatically be different. Thus the proposed 
method is applicable to the analysis of linear as 
well as nonlinear structures, provided the right FE 
software is used. Good agreements are observed 
comparing the numerical results between extended 
HDMR and full scale MCS. However, following 
observations can be made easily from this article: 
 Computational effort: HDMR based 
approach requires conditional responses at 
selected sample points and the sample points are 
chosen along each of the variable axis. It is found 
in authors’ previous work that n = 5 or 7 works 
well for most the problem. Due to this fact, results 
for n = 5 or 7 are used in this paper to construct 
HDMR based metamodels. 
 Handling spatial variability: Unlike local 
expansion based methods such as perturbation and 
Neumann expansion methods HDMR can 
accurately handle random fields with moderate to 
large coefficients of variations. 
 
8. DISCUSSION AND OUTLOOK 
 
In this paper, HDMR-based approximation 
methods are developed in a comprehensive way 
for structural mechanics problem with random 
fields. The presented method couples the 
commercial FE codes and full scale simulation 
through approximate models. Formally, Eq.s (17) 
and (18) can be interpreted as higher order 
response surface for the response field, defined by 
means of input random field(s). In contrast with 
usual response surface methods (e.g. polynomial 
chaos), HDMR approximation allows to define it 
at any order in a consistent framework. The 
following notable advantages of the proposed 
method may be recognized: 
 HDMR is a finite sum that contains 2N −1 

number of summands and N random variables. 
In contrast, the polynomial chaos expansion is 
an infinite series and contains an infinite 
number of random variables. Therefore, if the 
component functions in Eq. (9) are convergent, 
then HDMR approximation provides a 
convergent solution. 

 The terms in the polynomial chaos expansion 
are organized with respect to the order of 

polynomials. On the other hand, HDMR is 
structured with respect to the degree of 
cooperativity between a finite number of 
random variables. If a response is highly non-
linear but contains rapidly diminishing 
cooperative effects of multiple random 
variables, HDMR approximation is effective. 
This is due to the fact that, lower-order HDMR 
approximation can inherently incorporate 
nonlinear effects in system characteristics. In 
contrast, many terms are required to be 
included in the polynomial chaos expansion to 
capture high non-linearity.  

 The proposed method is independent of the 
structural analysis (in the context of 
commercial software) as it treats the FE model 
as a black-box. If the material/geometrical non 
linearity is introduced in the model response, 
then the appropriate nonlinear analysis should 
be selected, and the underlying HDMR based 
metamodel would automatically be different.  

 The amount of computation required for a 
given problem in SSFEM grows factorially, 
whereas, in the proposed approach it varies 
either polynomially.  

Note that in all applications found in this paper, 
only the K-L expansion is used to discretize the 
input random field(s). The use of other schemes 
would however be possible and in some case more 
practical than K-L (for instance when other 
correlation structures than that with exponential 
decay are dealt with). Future work will address 
these issues. 
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L = 1 m 

P = 300 N

Fig 1. Cantilever beam 
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Fig 2. Probability density function for beam tip displacement 
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Fig 3. Cumulative distribution function for beam tip 
displacement 
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