
Abstract

A method to calculate the statistics of transfer functions from the probability density
functions of the eigenvalues is proposed. Firstly, single-degree-of-freedom-systems
are considered, and an approximation to the mean and variance is obtained using
a hybrid Laplace’s method and numerical integration method. Then, the method
is extended to calculate the mean and variance of frequency response function of
multiple-degrees-of-freedom dynamic systems. Proportional damping is assumed and
the eigenvalues are considered to be independent. Results are derived for several prob-
ability density functions, including gamma, normal and lognormal distributions. The
accuracy of the approach, for both single and multiple-degrees-of-freedom systems, is
examined using the direct Monte Carlo simulation.

Keywords: stochastic dynamical systems; uncertainty propagation; asymptotic ex-
pansion.

1 Introduction

A structure is modelled as a dynamic system when vibrations are expected to occur
during its lifespan, as for mechanical equipments, vehicles or aircraft structures. This
modelling is generally done through the finite element method (FEM) (see, for exam-
ple, Reference [1]), where the structure is divided into elements and a matrix of shape
functions within each element is assumed. This discretization procedure is used to ap-
proximate the partial differential equation governing the motion of the structure with
a matrix equation characterized by the system mass, stiffness and damping matrices
and the forcing vector, respectively M, K, C and f. Proportional viscous damping is
assumed, that is, C is diagonalized by the matrix of eigenvectors (Φ) of M and K and
matrices appearing in the system are positive definite. A necessary condition for the
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method to be accurate is that the dimension of each element is short compared to the
wavelength (at most 1/7-th of the wavelength). This condition is not a problem for
low frequencies, but it is at higher frequencies. As frequency augments, the number of
elements needed to obtain an accurate approximation to the response grows too large,
and the response sensitivity to small variations of the structure parameters rises.

Response sensitivity to variations of the structure, like variation of parameters of
the model, e.g. Young’s modulus, Poisson’s ratio, density, or other kind of error
sources, e.g. errors in model of damping, can be evaluated through uncertainty quan-
tification. Then, the system matrices can be considered as random matrices and, if
the forcing term is considered deterministic, uncertainties in the system can be char-
acterized by the joint probability density function (pdf) of the random matrices M,
C and K, or, equivalently, by the joint pdf of their eigenvalues ωj , eigenvectors ϕj

and damping factors ζj . It is generally considered that, at low frequencies, the study
of the response is best addressed by parametric approach. Then, stochastic finite el-
ement methods (SFEM) are applied to obtain response statistics or eigenvalues and
eigenvectors statistics.

SFEM are principally divided into simulation-based methods (e.g. Monte Carlo
Simulation (MCS), see Reference [2]) and expansion-based methods (perturbation
method, spectral approach and stochastic reduced basis method (SRBM) [3]). A re-
view on SFEM is given, for example, in Reference [4]. Application of perturbation
methods to calculate response can be found, for example, in Reference [5]. Spectral
approach methods are reviewed in Reference [6], where the most widely used spectral
approach method is polynomial chaos (PC) [7]. Non-probabilistic approaches, like
fuzzy finite element procedures [8] or interval finite element [9], have also been re-
searched to obtain frequency response function characteristics. A different approach
followed by Reference [10, 11] proposed exact analytical expressions of response
statistics for a single-degree-of-freedom system. They were obtained from the pdf
of eigenvalues, related to pdf of random parameters. Non-parametric uncertainty can
also be considered by modeling system matrices as different types of random matrices,
like gamma distribution matrices [12] or Wishart matrices [13], this approach works
well at high frequencies.

A review of methods to calculate mean and variance of random eigenvalue prob-
lems is given in Reference [14]. The most widely used methods are based on the
perturbation method, and work well when the uncertainties are small and the param-
eter distribution is Gaussian, see for example, References [15–19]. Other methods
include simulation methods [20, 21], crossing theory [22], asymptotic methods [23–
25], iterative methods [26] and expansion methods like stochastic reduced basis [27],
Ritz method [28, 29], polynomial chaos [30] or dimensional decomposition method
[31]. At high frequencies, several pdf for eigenvalues are assumed (e.g. Poisson’s dis-
tribution [32], gaussian orthogonal ensemble [33]) to calculate space and frequency
averaged energies in the context of SEA.

It is observed that, on the one hand, efforts have been made to obtain results on
systems eigenvalues and eigenvectors statistics. On the other hand, few works inves-
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tigate about response statistics based on those results. This work focuses on obtaining
mean and variance of the response from eigenvalue pdf. The integrals appearing in
the problem can be integrated exactly for uniform distribution. For other distributions,
Laplace’s method is applied when a good approximation is expected, and a numer-
ical integration or a modified Laplace’s method is applied elsewhere. The method
is extended to multiple degrees of freedom (MDOF) systems, assuming uncorrelated
eigenvalues and proportional damping. Numerical results allow to compare the pro-
posed method and MCS.

2 Single-degree-of-freedom (SDOF)

Single-degree-of-freedom systems are often used to model structural dynamic systems
as their solution can be easily obtained. They are also useful for general MDOF prob-
lems, as MDOF problems with proportional damping reduce to a linear combination
of SDOF problems. For an SDOF system, the transfer function h is given by

h(iω) =
1

(−ω2 + i2ωnζnω + ω2
n)

with u = h(iω)f (1)

Here ωn and ζn are respectively the natural frequency and the damping factor, ω is the
frequency, u and f are the response and the forcing term. The real and imaginary parts
of the transfer function and its absolute value are respectively given by

ℜ (h(ω, ωn)) =
ω2
n − ω2

(ω2
n − ω2)2 + 4ζ2nω

2
nω

2
(2)

ℑ (h(ω, ωn)) =
−2ζnωnω

(ω2
n − ω2)2 + 4ζ2nω

2
nω

2
(3)

|h(ω, ωn)| =
1√

(ω2
n − ω2)2 + 4ζ2nω

2
nω

2
. (4)

In this set of equations, without any loss of generality, the squared natural frequency
of the system ω2

n is assumed to be a random variable.

2.1 The general derivation of the response statistics

In this subsection, a method to calculate first and second moment of quantities from
Eqs. (2) to (4) is proposed. A probability density function fx(x) is assumed for the
random variable x = ω2

n, where fx(x ≤ 0) = 0. The first moment (mean) of real and
imaginary part of the transfer function and the second moment of the transfer function,
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derived from Eqs. (2), (3) and (4), are given by (see, for example, Reference [34])

µℜ(h) = E [ℜ(h)] =
∫ +∞

−∞

xfx(x)

(x− ω2)2 + 4ζ2nω
2x

dx− ω2

∫ +∞

−∞

fx(x)

(x− ω2)2 + 4ζ2nω
2x

dx

(5)

µℑ(h) = E [ℑ(h)] = −2ζnω

∫ +∞

−∞

√
xfx(x)

(x− ω2)2 + 4ζ2nω
2x

dx (6)

E [|h|] = σ2
h + µ2

h =

∫ +∞

−∞

fx(x)

(x− ω2)2 + 4ζ2nω
2x

dx (7)

where µh = µℜ(h) + iµℑ(h) is the mean of the absolute value of the transfer function
and σh is its standard deviation. The square of the mean is obtained by multiplying
the mean by its complex conjugate, so that µ2

h = µ2
ℜ(h) + µ2

ℑ(h). In the next section,
integrals appearing in Eqs. (5), (6) and (7) are approximated with Laplace’s method.

2.1.1 Laplace’s method

A Laplace integral (see, for example, Reference [35]) is an integral that can be ap-
proximated by

I(w) =

∫ x2

x1

g(x)ewy(x) dx v g(θ)ewy(θ)

[
−2π

wy′′(θ)

] 1
2

(8)

if g is continuous, y is twice continuously differentiable and y′(θ) = 0, y′′(θ) < 0.
We will assume g(x) = 1 and w = 1. Then

I(w) v
√
2πey(θ) [−y′′(θ)]

− 1
2 . (9)

A general function y(x, a), obtained from integrals appearing in Eqs.(5), (6) and (7),
can be given by

y(x, a) = ln(fx(x)) + a ln(x)− ln(|h(ω, x)|2) (10)

where

a = 0 for
∫ +∞

−∞

fx(x)

(x− ω2)2 + 4ζ2nω
2x

dx (11)

a =
1

2
for

∫ +∞

−∞

√
xfx(x)

(x− ω2)2 + 4ζ2nω
2x

dx (12)

a = 1 for
∫ +∞

−∞

xfx(x)

(x− ω2)2 + 4ζ2nω
2x

dx. (13)

Function y(x, a) is maximum at x = θa. Therefore, θa is the solution of

f ′
x(θa)

fx(θa)
+

a

θa
− 2(θa − ω2) + 4ω2ζ2n

(θa − ω2)2 + 4ζ2nω
2θa

= 0 (14)
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for which y(x, a) is absolute maximum. The second derivative of y(x, a) is

y′′(x, a) = f̄(x)− a

x2
− h̄(x) (15)

where

h̄(x, ω) =
2

(−ω2 + x)2 + 4ζ2nω
2x

−
(

2(−ω2 + x) + 4ζ2nω
2

(−ω2 + x)2 + 4ζ2nω
2x

)2

. (16)

and f̄(x) depends on the pdf of the random variable x.

2.1.2 Hybrid Laplace-numerical integration and modified Laplace’s methods

Laplace’s method approximates Eq. (10) with a second degree polynomial given by
the two first terms of Taylor expansion of y(x) around its maximum θa. The method
works well if the behavior of y(x) in the vicinity of its absolute maximum point θa
is well represented by the approximation used. From Eq.(10) it may be observed that
y(x) is obtained through the addition of three functions. The first one, ln(fx(x)) has
its global maximum at µ, the global maximum and mean of fx(x), the pdf of the
random variable x. The second function added to obtain y(x) is a ln(x), an increasing
function. The last function, − ln(|h(ω, x)|2), has its maximum at ω2(1 − 2ζ2n) and
three points (xh1, xh2 and xh3) where its third derivative is zero

xh1 = ω2(1− 2ζ2n)− 2
√
3ω2ζn

√
1− ζ2n (17)

xh2 = ω2(1− 2ζ2n) (18)

xh3 = ω2(1− 2ζ2n) + 2
√
3ω2ζn

√
1− ζ2n. (19)

Therefore, y(x) can have up to two local maximums, the first one, θaµ, is close to
µ and the second one (θaω2) is close to ω2(1 − 2ζ2n). A Newton iteration with these
starting points should converge to the solution in few steps if the two maximums exist.
Three roots of y′′′(x) = 0 can appear close to xh1, xh2 and xh3, respectively, x1 ≈ xh1,
x2 ≈ xh2 and x3 ≈ xh3. As formerly, Newton iteration is a procedure leading to the
solution in few steps if the three points, xh1, xh2 and xh3, exist. Function y(x) can
have different shapes

• The function has two maximums and y(θaω2) < y(θaµ), then, Laplace’s method
is used.

• The function has two maximums and y(θaµ) ≤ y(θaω2). Laplace approximation
does not work well, in this case, a numerical integration (i.e. Gaussian quadra-
ture, trapezoidal method) is a good alternative to approximate the integral.

• The function has only one maximum, θaµ, and x1, x2 and x3 do not exist or are
situated at the same side of θaµ, that is, x3 < θaµ or θaµ < x1. Then, Laplace’s
method is used.
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• The function has only one maximum, θaω2 , and x1, x2 and x3 exist and are such
that x1 < θaω2 < x3. In those situations, Laplace approximation can work
well if no discontinuity has appeared both in θ(aω) and y′′(θ(aω)). Generally,
Laplace approximation will provide a value smaller than the exact one. A dif-
ferent second order polynomial, having its maximum at θa and going through x1

if θa > µ and through θ3 if θa ≤ µ can be used instead of the Taylor expansion
used in Laplace method. Then

I(ω) = ey(θa)

√
−π(θa − x1)2

y(x1)− y(θa)
if θa > µ (20)

I(ω) = ey(θa)

√
−π(θa − x3)2

y(x3)− y(θa)
if θa ≤ µ. (21)

This second approximation to the integral provides, mostly, a larger value than
the exact result. This approximation will be referred as modified Laplace’s
method.

The hybrid Laplace-numerical integration method applies Laplace’s method when it
leads to a good approximation and numerical approximation for other frequencies.
The hybrid modified Laplace’s method uses Laplace’s method, modified Laplace’s
method or the numerical approximation depending on which method has been sug-
gested.

3 FRF statistics for different probability density func-
tions of the natural frequency

Any pdf of x = ω2
n has to satisfy that fx(x ≤ 0) = 0, as it is not physically possible to

have a negative or zero squared natural frequency. Numerical examples are provided,
where µx = 9, σx = 1 and the damping factor ζn = 0.1 or ζn = 0.01. The chosen
pdfs, other than the uniform distribution, are assumed to be unimodal with maximum
at x = µ. The number of samples used in MCS is 5000.

3.1 Uniform distribution

The pdf of a uniform distribution is given by a constant αc defined over the interval
x ∈ [c1, c2]. Parameters αc, c1 and c2 of the distribution can be expressed through its
mean (µx) and variance (σx)

c1 = µx −
√
3σx c2 = µx +

√
3σx αc =

1

2
√
3σx

. (22)
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For this pdf, all integrals appearing in Eqs. (11), (12) and (13) can be calculated
exactly. For example,

if a = 0, I(ω) =
1

2ω2ζn
√

1− ζ2n
arctan

x− ω2(1− 2ζ2n)

2ω2ζn
√
1− ζ2n

(23)

if a = 1, I(ω) =
log(ω2(ω2 − 2x(1− 2ζ2n)) + x2)

2
− (24)√

1− 4ζ2n(1− ζ2n)

2ζn
√

1− ζ2n
arctan

(ω2(2ζ2n − 1) + 2x)
√
1− 4ζ2n(1− ζ2n)

ω2(2ζ2n − 1)2ζn
√
1− ζ2n

(25)

An expression for a = 0.5 can also be calculated analytically. Figure 1 and Figure 2
compare the results of the analytical expressions and MCS for different ζn and same
uniform distribution for x.
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Deterministic

(a) Absolute value of mean.
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MCS
Analytical integration

(b) Standard deviation.

Figure 1: Mean and standard deviation of the absolute value of the transfer function
for uniform distribution, with ζn = 0.1.

3.2 Normal distribution

The pdf fx(x) and f ′
x(x)/fx(x) of the normal distribution conditional to x > 0 are

given by

fx(x) =
e−(x−µx)2/2σ2

x√
2πσ2

xP (0)
x ∈ (0, +∞)

f ′
x(x)

fx(x)
= −x− µx

σ2
x

(26)

where µx and σ2
x are respectively the mean and the variance of the distribution and

P (0) is the probability of x ≤ 0 for a normal distribution N(µx σx). From Eq. (14),
the parameter θa can be identified as the solution to a fourth order polynomial

b1ax
4 + b2ax

3 + b3ax
2 + b4ax+ b5a = 0 (27)

7



0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

Frequency (rad/s)

A
bs

ol
ut

e 
va

lu
e 

of
 m

ea
n 

(m
)

 

 

MCS
Analytical integration
Deterministic

(a) Absolute value of mean.
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MCS
Analytical integration

(b) Standard deviation.

Figure 2: Mean and standard deviation of the absolute value of the transfer function
for uniform distribution, with ζn = 0.01.

with coefficients

b1b = −1

b2b = −ζ̄ω + µx

b3b = −ω4 + (a− 2)σ2
x + µxζ̄ω

b4b = (1 + a)σ2
xζ̄ω + µxω

4

b5b = aσ2
xω

4

(28)

and ζ̄ω = 2ω2 (2ζ2n − 1). A real solution close to the mean of the distribution, θaµ,
is assumed and if a second solution θaω2 exists and is not a saddle point, then a rel-
ative minimum between the two relative maximums exists. The remaining real solu-
tion is a spurious value, and likely to be negative or close to zero. As indicated in
subsubsection 2.1.2, Laplace method may be applied to approximate the integrals ap-
pearing at Eqs. (5), (6) and (7). The second derivatives of y(x) is given by Eq. (15)
where h̄(x, ω) is given by Eq. (16) and f̄(x) = − 1

σ2
x
. Laplace’s method approxima-

tion, assuming normal distribution, is given by

I(ω, a) v θaa
√
2πe−(θa−µx)2/2σ2

x

P (0)
√
2πσ2

x ((θa − ω2)2 + 4ζ2nω
2θa)

a/2

[
1

σ2
x

− a

θ2a
+ h̄(θa)

]− 1
2

(29)

where a is given in Eqs. (11), (12) and (13). Another approximation of the integral can
be obtained from Eqs. (20) and (21). Plots of approximations for an SDOF system
with µx = 9 and σx = 1 are shown, in Figure 3 for ζn = 0.1 and in Figure 4 for
ζn = 0.01. It is observed that the method works better for higher damping.

3.3 Gamma distribution

The probability density function fx(x) and f ′
x(x)/fx(x) of the gamma distribution,

defined in the interval [0,∞], are given by

fx(x) =
xαg−1

Γ(αg)β
αg
g

e−x/βg
f ′
x(x)

fx(x)
=

αg − 1

x
− 1

βg

. (30)
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Deterministic

(a) Absolute value of mean.
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MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace

(b) Standard deviation.

Figure 3: Mean and standard deviation of the absolute value of the transfer function
for normal distribution, with ζn = 0.1.
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Hybrid modified Laplace
Deterministic

(a) Absolute value of mean.
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MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace

(b) Standard deviation.

Figure 4: Mean and standard deviation of the absolute value of the transfer function
for normal distribution, with ζn = 0.01.

Relationships between mean µx, variance σ2
x and parameters αg and βg are given by

µx = αgβg σ2
x = αgβ

2
g αg =

µ2
x

σx

βg =
σx

µx

(31)

As formerly, θa is the real solution to the third order polynomial

b1ax
3 + b2ax

2 + b3ax+ b4a = 0 (32)

with coefficients

b1a = − 1

βg

b4a = ω4(αg + a− 1)

b2a = − ζ̄ω
βg

+ αg + a− 3

b3a = ζ̄ω (αg + a− 2)− ω4

βg

(33)
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and ζ̄ω = 2ω2 (2ζ2n − 1). As indicated in subsubsection 2.1.2, one of the solutions is
close to µ, and, if it exists, a second solution is close to xh2 = ω2(1− 2ζ2n). The third
real solution is the relative minimum situated between the two relative maximums.
Otherwise, two of the solutions are complex and there is only one real solution. The
second derivative of y(x, a) is given at Eq. (15) where h̄(x, ω) is given by Eq. (16)
and f̄(x) = (1− αg)/(x

2). From Eq. (9), an analytical approximation to the integrals
appearing in Eqs. (11), (12) and (13) is given by

I(ω, a) v
√
2πθ

αg−1+a
a e−θa/βg

Γ(αg)β
αg
g ((θa − ω2)2 + 4ζ2nω

2θa)

[
αg − 1− a

θ2a
+ h̄(θa)

]− 1
2

(34)

where parameters αg and βg can be derived from Eq. (31) if the mean µx and the
standard deviation σx of ω2

n are known. Plots of approximations for an SDOF system
with µx = 9 and σx = 1 are displayed, in Figure 5 for ζn = 0.1 and in Figure 6 for
ζn = 0.01. It is observed that the method works better for higher damping.
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(a) Absolute value of mean.
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MCS
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(b) Standard deviation.

Figure 5: Mean and standard deviation of the absolute value of the transfer function
for gamma distribution, with ζn = 0.1.

3.4 Lognormal distribution

A lognormal distribution is a probability distribution obtained by taking the exponen-
tial of a normal distribution of mean µ and standard deviation σ, N(µ, σ). The prob-
ability density function fx(x), and f ′

x(x)/fx(x) of lognormal distribution, defined in
the interval (0,∞), is given by

fx(x) =
e−(lnx−µ)2/2σ2

x
√
2πσ2

f ′
x(x)

fx(x)
= −σ2 lnx− µ

xσ2
. (35)
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MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace
Deterministic

(a) Absolute value of mean.
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MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace

(b) Standard deviation.

Figure 6: Mean and standard deviation of the absolute value of the transfer function
for gamma distribution, with ζn = 0.01.

Mean µx and variance σx of lognormal distribution are related to µ and σ by

µx = eµ+σ2/2 σ2
x = (eσ

2 − 1)e2µ+σ2

(36)

µ = lnµx −
1

2
ln

(
1 +

σx

µ2
x

)
σ = ln

(
σx

µ2
x

+ 1

)
. (37)

From Eq. (14) can be identified parameter θa as the solution to the equation

y′(θa, a) = −σ2 + ln θa − µ

θaσ2
+

a

θa
− (2(θa − ω2) + 4ζ2n)

(θa − ω2)2 + 4ζ2nθa
= 0 (38)

As indicated in subsubsection 2.1.2 we will assume here that one solution, θaµ, is
close to the mean of the distribution and that another relative maximum of y(x), θaω2 ,
can arise together with a relative minimum situated between those two maximums.
We can then find an approximation to these solutions using Newton method. The
following analytical approximation to the integrals appearing in Eqs. (11), (12) and
(13) can be obtained using Eq. (9)

I(ω, a) v θa−1
a e−(ln θa−µ)2/2σ2

√
σ2((θa − ω2)2 + 4ζ2nω

2θa)

[
σ2(a− 1)− ln θa + µ

σ2θ2a
+ h̄(θa)

]− 1
2

(39)

Parameters µ and σ can be found if µx and σx are known. Plots of the approximations
for an SDOF system with µx = 9 and σx = 1 are displayed, in Figure 7 for ζn = 0.1
and in Figure 8 for ζn = 0.01. As for normal and gamma distributions, the method
works better for higher damping.

11



0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

Frequency (rad/s)

A
bs

ol
ut

e 
va

lu
e 

of
 m

ea
n 

(m
)

 

 

MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace
Deterministic

(a) Absolute value of mean.

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

10
1

Frequency (rad/s)

S
ta

nd
ar

d 
de

vi
at

io
n 

(m
)

 

 

MCS
Hybrid Laplace−numerical integration
Hybrid modified Laplace

(b) Standard deviation.

Figure 7: Mean and standard deviation of the absolute value of the transfer function
for lognormal distribution, with ζn = 0.1.
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(b) Standard deviation.

Figure 8: Mean and standard deviation of the absolute value of the transfer function
for lognormal distribution, with ζn = 0.01.

4 Multiple-degrees-of-freedom (MDOF)

4.1 Response calculation

Applying the finite element method to structural dynamic systems leads, generally, to
an MDOF problem where a displacement vector x is the unknown. The frequency
response vector of the MDOF system is given by (see, for example,Reference [1])

u = Φ[s2I + s2ζΩ+Ω2]−1ΦT f̄ = ΦH′ΦT f

= Φ

[
N∑
j=1

ejeTj
−ω2 − 2iωζjωj + ω2

j

]
F

(40)
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where ζ and Ω are respectively the matrices of damping parameters and eigenvalues,
ej is the j-th unit vector, or j-th column of an identity matrix, and matrix H′

is therefore
diagonal. We denote by u∗ and H′∗ the complex conjugate of u and H′

respectively.
The j-th diagonal element of matrix H′

is denoted by h′
j , and h

′∗
j is its complex con-

jugate. Vector Φi is the i-th row of matrix Φ, and Φij is its j-th element. The j-th
element of vector F = ΦT f is denoted by Fj . Uncertainty is introduced by the diag-
onal terms of H′, and therefore, all other vectors and matrices are deterministic. In
the proposed method, a pdf is assumed for each random eigenvalue, the eigenvalues
are assumed independent and eigenvectors are assumed deterministic. These assump-
tions are not valid for high frequencies, where overlap between eigenvalues appears
and eigenvectors are not deterministic. Therefore, the proposed method is expected
to work well at low frequencies. From Eq. (40), an expression of ui, the i-th term of
vector u, and of |ui|2 can be derived

ui =
N∑
j=1

Φijh
′
jFj (41)

|ui|2 = uT
i u

∗
i =

N∑
j=1

N∑
k=1

Fjh
′
jΦijΦikh

′∗
k Fk (42)

We denote Cj = FjΦij . Expression of |ui|2 can be simplified

|ui|2 =
N∑
j=1

C2
j h

′

jh
′∗
j +

N−1∑
k=1

N∑
j=k+1

CjCk

(
h′
jh

′∗
k + h

′∗
j h

′

k

)
(43)

=
N∑
j=1

C2
j |h′

j|2 +
N−1∑
k=1

N∑
j=k+1

CjCk2ℜ(h′
jh

′∗
k ) (44)

The mean of |ui|2 is equal to the second moments of |ui| and ui.

4.2 Mean of the real and imaginary part of the response

Expressions of real and imaginary part of ui can be derived from Eq. (41)

ℜ (ui) =
N∑
j=1

Cjℜ
(
h′
j

)
with ℜ

(
h′
j

)
=

ω2
j − ω2

(ω2
j − ω2)2 + 4ζ2j ω

2ω2
j

(45)

ℑ (ui) =
N∑
j=1

Cjℑ
(
h′
j

)
with ℑ

(
h′
j

)
=

−2ζjωωj

(ω2
j − ω2)2 + 4ζ2j ω

2ω2
j

(46)

Mean is a linear operator, therefore, only means < ℜ
(
h′
j

)
> and < ℑ

(
h′
j

)
> are

required to calculate < ℜ (ui) > and < ℑ (ui) >. These means are given by

< ℜ
(
h′
j

)
> = I2j − ω2I1j (47)

< ℑ
(
h′
j

)
> = −2ζjωI3j (48)
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If uncorrelated random variables are assumed, integrals I1j , I2j and I3j are given by
respectively by Eqs. (11), (13) and (12) where x = xj . Analytical approximation to
these integrals have already been discussed for different distributions of xj .

4.3 Variance of the response

Expressions of the second moment of response can be derived from Eq. (44), re-
membering that mean is a linear operator and that uncorrelated random variables are
assumed

m2 =< |ui|2 > =
N∑
j=1

C2
j < |h′

j|2 > +
N−1∑
k=1

N∑
j=k+1

CjCk2 < ℜ(h′
jh

′∗
k ) > (49)

< |ui|2 > =
N∑
j=1

C2
j I1j +

N−1∑
k=1

N∑
j=k+1

CjCk2 < ℜ(h′
jh

′∗
k ) > (50)

< ℜ(h′
jh

′∗
k ) > =

(
I2j − ω2I1j

) (
I2k − ω2I1k

)
+ 4ζjζkω

2I3jI3k (51)

Second moment is given by
m2 = µ2

xi
+ σ2

xi
(52)

where mean of response and squared value of mean are given by

µui = < ℜ (ui) > +i < ℑ (ui) > (53)
µ2
ui

= < ℜ (ui) >
2 + < ℑ (ui) >

2 . (54)

And finally
σ2
ui
=< |ui|2 > −µ2

ui
. (55)

In the next section, numerical results are shown for an MDOF system with random
eigenvalues with the different distributions already exposed.

4.4 Numerical example

The system considered has mass and stiffness matrices M and K, and forcing vector f

M = mI, K = k


2 −1 0 . . . 0

−1 2
. . . ...

0
. . . . . . . . . 0

... . . . . . . 2 −1
0 . . . 0 −1 2

 , f =


1
0
...
0

 (56)

with I the identity matrix. The number of degrees of freedom of the system is 20,
therefore, matrices M and K become 20 × 20 matrices. Mass and stiffness constants
are given by m = 1 and k = 350. As already stated, eigenvectors used are the
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ones obtained from M and K matrices. Mean eigenvalues are the ones obtained from
the deterministic M and K matrices. The standard deviation of each eigenvalue is
expressed by a percentage of the mean. This percentage is considered to be uniform
between [10, 15] percent of the mean. Damping factors are assumed to be all equal to
ζj = 0.01 or to ζj = 0.1. The number of samples for MCS is 5000. Results are given
for normal distribution in Figure 9 and Figure 10, for gamma distribution in Figure 11
and Figure 12 and for lognormal distribution in Figure 13 and Figure 14.
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(b) Standard deviation.

Figure 9: Mean and standard deviation of the absolute value of the transfer function
for normal distribution, with ζn = 0.1.
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(b) Standard deviation.

Figure 10: Mean and standard deviation of the absolute value of the transfer function
for normal distribution, with ζn = 0.01.
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(b) Standard deviation.

Figure 11: Mean and standard deviation of the absolute value of the transfer function
for gamma distribution, with ζn = 0.1.
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(b) Standard deviation.

Figure 12: Mean and standard deviation of the absolute value of the transfer function
for gamma distribution, with ζn = 0.01.

5 Results and discussion

5.1 Discussion of the proposed methods

In this paper, the mean and variance of response are calculated from the pdf of eigen-
values. This method needs the calculation of three integrals per frequency and degree
of freedom. Unfortunately, exact analytical integration is only available for uniform
distribution. The main problem of the method is the calculation of the integrals. Nu-
merical calculation of the integrals can become computationally expensive for large
systems. This problem can be addressed if the integrals are approximated using one
of the two proposed methods.

The first method is a hybrid method between Laplace’s method and numerical in-
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(b) Standard deviation.

Figure 13: Mean and standard deviation of the absolute value of the transfer function
for lognormal distribution, with ζn = 0.1.
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(b) Standard deviation.

Figure 14: Mean and standard deviation of the absolute value of the transfer function
for lognormal distribution, with ζn = 0.01.

tegration. Laplace’s method is used to approximate the integrals at those frequencies
where the method is supposed to give a good approximation, and numerical integra-
tion is used for the remaining frequencies. The second method also approximates the
integrals with Laplace’s method when it is supposed to give a good approximation.
The remaining integrals are approximated, when possible, with a modified Laplace’s
method, proposed in this paper, and with numerical integration at remaining frequen-
cies. For those frequencies where the modified Laplace’s method can be applied, it is
normally verified that Laplace’s method provides an approximation smaller than the
exact value, while the modified Laplace’s method provides mostly a larger approxima-
tion. The modified Laplace’s approximation gives good approximation at resonance
points both for lognormal and normal distribution, but results are too large when deal-
ing with gamma distribution.
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5.2 Summary of results

It can be observed that damping has an effect on standard deviation of the response.
The higher is the damping, the smaller is the standard deviation compared to the mean.
This is observed for both SDOF and MDOF systems, but is more evident for MDOF
systems. This effect is independent of the distribution of the random variable. Com-
paring results of mean and standard deviation for the SDOF system, it can be ob-
served that they are similar for different pdfs of the eigenvalue. This can be seen for
the MDOF system only for frequencies near the first natural frequency. For higher
frequencies, the mean of the FRF for normal distribution appears to be more damped
than the ones obtained with other distributions, and standard deviation is generally
larger than the one for other distributions. Values of the mean and standard deviation
of the FRF for the MDOF system for lognormal, gamma and uniform distribution are
almost coincident for every frequency.

6 Conclusions

In this paper, a method was proposed to calculate response statistics from the pdf of
eigenvalues. Uncorrelated eigenvalues and proportional damping model is assumed.
Mean of the real and imaginary parts of response vector and the second moment of its
absolute value are calculated by making use of the Laplace’s method and a modified
Laplace’s method. It is observed that the accuracy of the proposed method depends on
the accuracy of the evaluation of the integrals appearing in the method. The accuracy
of the integrals in turn depends on the pdf of the random variable and on the damping
factor. The assumption of uncorrelated eigenvalues is valid for low frequencies, where
little overlap between eigenvalues distribution is observed. At higher frequencies,
joint pdf of eigenvalues and eigenvectors should be considered.
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