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ABSTRACT: Reliability analysis of uncertain dynamical system is considered in this study. The 
excitations and structural properties are modeled as non-stationary Gaussian processes and non-
Gaussian random variables, respectively. The structural responses are therefore non-Gaussian 
processes, the statistics of which are not generally available in closed form. The limit state is 
formulated in terms of the extreme value distribution of the response random process. Developing 
these extreme value statistics analytically is not straight-forward, which makes failure probability 
estimations difficult. An alternative procedure, based on a newly developed MPP-based correlated 
function expansion method, is used for computing exceedance probabilities. This involves 
generating a full functional operational model, which approximates the limit surface in the 
neighborhood of MPP. Once the explicit form of original limit state is defined, the failure 
probability can be obtained by statistical simulation.  Thus, the method can be integrated with 
commercial finite element software, which permits uncertainty analysis of large structures with 
complexities that include material and geometric nonlinear behavior.   

KEYWORDS: Correlated function expansion, Uncertain dynamical system, Reliability 

1. INTRODUCTION 

A randomly vibrating structure with parametric uncertainty is deemed to safe if its response 
process lies well below the specified thresholds over a given duration of load process. Thus, 
extreme values of responses play a crucial role in the estimation of structural reliability. In this 
context, theory of asymptotic distributions [1–3] can be used to study the extreme values of random 
processes. As an alternative, extreme value theory of random processes over a given period can be 
related to the probability distribution of first passage times. For stationary Gaussian processes, 
above two approaches lead to Gumbel models for the extreme responses [4], provided the joint 
probability density function (PDF) of the process and its derivative at a given instant are known. It 
can also be noted that, determination of the joint PDF for Gaussian random responses is 
straightforward, while for non-Gaussian process evaluation of joint statistics is extremely difficult 
task.  

Few studies on the exceedance probabilities of non-Gaussian random processes are reported in 
the literature. Von Mises stress is a commonly studied non-Gaussian process, the exceedance 
probabilities of which are often required for estimating reliabilities of ductile structure. Analytical 
expressions for the mean outcrossing rate of Von Mises stress are developed [5] for linear structures 
using outcrossing approximations. Several approaches are also developed [6–8] for computing the 
root mean square of Von Mises stress. However, in real-life problems, where the finite element 
(FE) method is an essential tool for handling modeling complexities, it is difficult to apply these 
methods as the performance function is defined in implicit form. For this class of problems, 
surrogate models provide best alternative solution scheme for estimating the exceedance probability 
of the response.  

Recently, authors developed a new computational framework for stochastic FE analysis and 
time-invariant reliability analysis.  In the present study we extend the scope of the correlated 
function expansion (CFE) approach, by considering the reliability analysis of nonlinear, randomly 
parametered dynamical systems, subjected to non-stationary Gaussian excitations. The structure is 
modeled and analyzed in commercial FE software (e.g. ANSYS). External software builds full 



functional operational model using CFE and is interfaced with the FE model. The treatment of the 
problem includes one or more of the following features: 

i) Parametric uncertainties in structural parameters–such as Young’s modulus, density and 
strength characteristics–require non-Gaussian models. 

ii) Possibility of geometric and/or material nonlinear structural behavior. 
iii) Response variables that are nonlinear functions of displacement response, such as the Von 

Mises stress. 
iv) Non-stationary random excitations. 
The procedures developed are illustrated through a numerical example and are validated with the 

help of limited Monte Carlo simulations (MCS) and existing results. 

2. PROBLEM STATEMENT 

The governing equations of a randomly parametered vibrating structure are well known to be of 
the form 

 

          ,t t t t t      Μx Cx K x x F  (1) 

 
where, M, C, K are, respectively, the global mass, damping and stiffness matrices. 
     , andt t t x x x  are, respectively, vectors of nodal acceleration, velocity and displacements. 

 tF  represents a vector of random load processes characterized by the power spectral density 

(PSD) matrix,  FFS . For stationary Gaussian process,  tF  is expressed as a sum of harmonic 

functions with random coefficients and is of the form 
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Here, P denotes the number of terms required for discretizing the PSD function, p  are the 

discretized frequencies and 2
p  is the variance of the pth segment of the discretized PSD. pa  and pb  

are Gaussian random variables with zero mean and standard deviation p . When the random 

process is modeled as non-stationary,  tF  is multiplied by a deterministic envelope function  e t  

[9] of the form 
 

      exp expe t t t         (3) 

 
where the parameters β and χ, determine the shape of the envelope function and α is a normalization 
factor such that  max 1e t  . 

Let  V t  be the response quantity of interest, which, in its most general form, is written as 

 

        , ,V t h t t t    x x x  (4) 

 
Thus, even in linear structures under Gaussian excitations, if h[·] is a nonlinear function, 

determining the probability distribution of V(t) is not easy, even though the probability distributions 
of      , andt t t x x x  are known exactly. Examples of such processes are the principal stress 

components and Von Mises stress. For structures which behave nonlinearly, or when M, C, K are 
randomly parametered, the task is even more difficult as the distributions of      , andt t t x x x  are 



themselves not available explicitly. For computing the failure probability against yielding, the 
probability of Von Mises stress exceeding the specified threshold, limV , over  0 0,t t T , is defined 

as 
 

    lim 0 0; ,FP P V t V t t t T        (5) 

 
where lim 2 3yV   is the permissible stress and P[·] is the probability measure. Since V(t) is 

obtained as a nonlinear combination of the stress components, the probability distribution of V(t) is 
unknown and hence, it is difficult to obtain analytical expressions for FP . In this study, CFE 

approach scheme is used to estimates of the exceedance probability. The detail of the CFE 
methodology is outlined in the following section. 

3. MPP-BASED CORRELATED FUNCTION EXPANSION 

The key question in many scientific problems is to find the map between sets of high 
dimensional input and output system variables. That is the place where so called “curse of 
dimensionality” arises. Full space analysis without any a priori assumption has an exponentially 
growing computational complexity. In this context, Correlated Function Expansion (CFE) [10–12] 
could evolve as an efficient computational tool for solving high-dimensional scientific problems. In 
its background there stands the simple observation: only low-order correlations amongst the input 
variables have a significant impact upon the outputs. Such a presumption permits expressing single 
multidimensional mapping as a sum of many low dimensional mappings. One may show that 
system response    1 2, , , Ng g x x xx   can be expressed as summands of different dimensions: 
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where 0g  is a constant term representing the mean response of  g x .  The function  i ig x  

describes the independent effect of variable xi acting alone, although generally nonlinearly, upon 

the output  g x .  The function  
1 2 1 2

,i i i ig x x  gives pair cooperative effect of the variables 
1i
x  and 

2i
x  upon the output  g x .  The last term  12 1 2, , ,N Ng x x x   contains any residual correlated 

behaviour over all of the system variables.   
The expansion functions are determined by evaluating the input-output responses of the system 

relative to the defined MPP  * * * *
1 2, , , Nx x x x  in the input variable space.  This process reduces 

to the following relationship for the component functions in Eq. (6) 
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where the notation    * * * * * *

1 2 1 1, , , , , , , ,i
i i i i Ng x g x x x x x x   x  denotes that all the input variables 

are at their MPP except ix .  The 0g  term is the output response of the system evaluated at the MPP 



*x .  The higher order terms are evaluated as cuts in the input variable space through the MPP.  

Therefore, each first-order term  i ig x  is evaluated along its variable axis through the MPP.  Each 

second-order term  
1 2 1 2

,i i i ig x x  is evaluated in a plane defined by the binary set of input variables 

1 2
,i ix x  through the MPP, etc.  The process of subtracting off the lower order expansion functions 

removes their dependence to assure a unique contribution from the new expansion function. 
Considering terms up to first- and second-order in Eq. (6) yields, respectively 

 

    0 2
1

N

i i
i

g g g x


  x   (10) 
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Substituting Eq. (7)–(9) into Eq. (10) and (11) leads to  
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Now consider first- and second-order approximation of  g x , denoted respectively by 
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Comparison of Eq. (12) and (14) indicates that the first-order approximation leads to the residual 

error     2g g x x  , which includes contributions from terms of two and higher order 

component functions.  Similarly the second-order approximation leads to the residual error 

    3g g x x  , which includes contributions from terms of three and higher order component 

functions. Computational flow diagram of the CFE-based approach is presented in Fig. 1. 
The notion of 0th, 1st, 2nd order, etc. in CFE should not be confused with the terminology used 

either in the Taylor series or in the conventional least-squares based metamodel.  It can be shown 
that, the first-order component function  i ig x  is the sum of all the Taylor series terms which 

contain and only contain variable ix .  Similarly, the second order component function  
1 2 1 2

,i i i ig x x  

is the sum of all the Taylor series terms which contain and only contain variables 
1i
x  and 

2i
x .  



Hence first- and second-order approximations of CFE should not be viewed as first- or second-
order Taylor series expansions nor do they limit the nonlinearity of  g x .   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Furthermore, the approximations contain contributions from all input variables.  Thus, the 
infinite number of terms in the Taylor series are partitioned into finite different groups and each 
group corresponds to one CFE component function.  Therefore, any truncated CFE provides a better 
approximation and convergent solution of  g x  than any truncated Taylor series because the latter 

only contains a finite number of terms of Taylor series.  Furthermore, the coefficients associated 
with higher dimensional terms are usually much smaller than that with one-dimensional terms.  As 
such, the impact of higher dimensional terms on the function is less, and therefore, can be 
neglected.   
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Interpolate each of the low dimensional CFE terms  
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Construct First- and/or Second-order CFE approximation  
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Estimate the response statistics by MCS 
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Figure 1. Flowchart of CFE-based Approximation 



4. NUMERICAL EXAMPLE 

A numerical example is presented here to illustrate the performance of the proposed approach 
and compared with existing results. The failure estimates have been compared through the 
following three procedures: (1) An estimate of PF is obtained from full scale MCS on the exact 
performance function. This involves the analysis of an ensemble of response time histories obtained 
by direct integration of Eq. (1), for a set of sample time histories of excitation F(t). (2) An estimate 
of PF is obtained by adopting the improved response surface [13] procedure. (3) An estimate of PF 
is obtained by Bucher and Bourgund algorithm [14]. 

Example 1: Linear Structure with Random Parameters 

In this example, a 1.5 m long cantilever beam subjected to non-stationary random excitation, is 
studied. Cross sectional dimensions of the beam is taken as 0.15 × 0.03 m. Commercial FE software 
(ANSYS) is used to model and analyze this structure assuming plane stress condition. The beam is 
discretized into ten plane stress elements. The PSD of support excitation,  tF , is taken as 
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Where 1500 rad sg  , 1.2g   and   is the frequency of excitation. Non-stationary load 

histories for support excitation are generated from Eq. (2) and (3), with P = 5. The parameters α, β 
and χ in Eq. (3) are taken to be 7.18, 60 and 41, respectively, to illustrate the performance of present 
approach with existing methods [13].  

In this study, failure is defined as exceedance of Von Mises stress over material strength, which, 
for all practical purposes, denotes the limit of linear material behavior in ductile materials. The 
performance function is defined in terms of the Von Mises stress developed at the root of the 
cantilever beam and is of the form given in Eq. (5). Here, V(t) is the Von Mises stress, given by 

     V t t t  C , the time duration T = 0.04 s,  t  is stress tensor and  
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The structure material is assumed structural steel and proportional damping is assumed 5%. The 

randomness in Young’s modulus (E) and yield strength of the material ( y ) are expressed as 

 0 1 11E E z   and  0 2 21y y z    , where, 0E  and 0y  respectively, denote the mean values 

of E  and y . 1  and 2  are small deterministic constants, taken to be equal to 0.05. z1 and z2 are 

assumed to be lognormal random variables with 1 2.0z  , 2 0.1z  , 1 1 1.0z z   and 

2 2 0.05z z  . The limit state/performance function is, thus, involved 12 random variables. 

Correlated function expansion of original limit state/performance function is generated using n = 7. 
The constant S0 in Eq. (16) is varied from 40–80 m2/s3 and the corresponding failure probability is 
computed, presented in Fig. 2. A sample size of 3000 has been considered for direct MCS. 
Estimation of failure probabilities using other approaches (e.g. Bucher & Bourgund’s algorithm 



[14], Improved response surface [13]) are also presented in Fig. 2, to show the performance of the 
proposed methodology. Numbers inside parentheses represent the number of actual FE analysis 
required by each method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. SUMMARY AND CONCLUSIONS 

Computation of structural reliability under stochastic load process is obtained from the 
probability of exceedance of response processes during specified time evolution. Estimation of 
these exceedance probabilities needs an explicit knowledge of the mean outcrossing rate of the 
response process. This, in turn, requires knowledge of joint statistics of the response and its time 
derivative. In most of the cases, the response processes are non-Gaussian in nature. Determination 
of their joint PDF and mean outcrossing rates are difficult. This paper addressed a new 
computational method for obtaining exceedance probabilities, in an efficient manner. It utilized the 
excellent properties of correlated function expansion method for multivariate function 
approximation.  

The present approach sidesteps the requirement of joint statistics of the response processes. As 
the method requires only conditional responses at selected sample points, this can easily be 
integrated with commercial FE software. Thus, complexities arising out of geometric and material 
nonlinear behavior, uncertainties in the structural properties and loads can be handled efficiently. 
The computational effort required in correlated function expansion is economical compared with 
full scale MCS, when estimates of low failure probabilities are desired and when the evaluation of 
the performance function requires significant computer time. 

ACKNOWLEDGEMENTS 

RC would like to acknowledge the support of Royal Society through the award of Newton 
International Fellowship.  SA would like to acknowledge the support of UK Engineering and 
Physical Sciences Research Council (EPSRC) through the award of an Advanced Research 
Fellowship and The Leverhulme Trust for the award of the Philip Leverhulme Prize. 
 
 

40 50 60 70 80

S
0
, m2/s3

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
P
ro

b
a
b
il
it
y
 o

f 
fa

il
u
re

Improved response 
surface (3751)

FO-CFE (253) 

SO-CFE (604) 

MCS (3000) 

Bucher & Bourgund (51) 

Figure 2. Estimation of exceedance probability for randomly parametered 
structure subjected to non-stationary excitations.



REFERENCES 

[1] Galambos J. The asymptotic theory of extreme order statistics. New York: Wiley, 1978. 

[2] Castillo E. Extreme value theory in engineering. Massachusetts: Academic Press, 1988. 

[3] Kotz S., Nadarajah S. Extreme value distributions. London: Imperial College Press, 2000. 

[4] Nigam NC. Introduction to random vibrations. Massachusetts: MIT Press, 1983. 

[5] Madsen H. Extreme value statistics for nonlinear stress combination. ASCE J Engg Mech. 
1985;111(9):1121–1129. 

[6] Segalman D., Fulcher C., Reese G., Field R. An efficient method for calculating r.m.s. Von Mises stress 
in a random vibration environment. J Sound Vib. 2000;230(2):393–410. 

[7] Segalman D., Reese R., Field C., Fulcher C. Estimating the probability distribution of Von Mises stress 
for structures undergoing random excitation. ASME J Vib Aco. 2000;122(1):42–48. 

[8] Reese G., Field R., Segalman D. A tutorial on design analysis using Von Mises stress in random 
vibration environments. The Shock Vib Dig. 2000;32(6):466–474. 

[9] Gupta S. Reliability analysis of randomly vibrating structures with parameter uncertainties. PhD Thesis, 
Indian Institute of Science Bangalore. 2004. 

[10] Chowdhury R., Rao, B.N., Prasad, A.M. High dimensional model representation for structural reliability 
analysis. Comm Num Met Engg. 2008;DOI: 10.1002/cnm.1118. 

[11] Chowdhury R., Rao, B.N. Hybrid high dimensional model representation for reliability analysis. Com 
Met App Mech Engg. 2009;198(5–8): 735–765. 

[12] Shim K., Rabitz, H. Independent and correlated composition behavior of material properties: 
Application to energy band gaps for the GaαIn1-αPβAs1-β and GaαIn1-αPβSbγAs1-β-γ alloys. Phys Rev B. 
1998;58(4): 1940–1946. 

[13] Gupta S., Manohar S. Improved response surface method for time-variant reliability analysis of 
nonlinear random structures under non-stationary excitations. Non Dyn. 2004;36(2–4): 267–280. 

[14] Bucher CG., Bourgund U. A fast and efficient response surface approach for structural reliability 
problem. Stru Saf. 1990;7(1): 57–66. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


