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Abstract: This paper is concerned with distributed sensors to measure the response of beam
structures. The design of modal sensors for beam structures is well established. Most applica-
tions consider vibration control, but this paper is concerned with structural health monitoring,
where the sensor output is made sensitive to changes in key stiffness parameters, for example in
joints. The procedure is based on finite element models of the structures, and thus distributed
transducers may be designed for arbitrary beam structures. A simulated beam excited by a
rotating machine is used to demonstrate the approach.
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1. INTRODUCTION

The idea of using modal sensors and actuators for beam
and plate type structures has been a subject of intense inter-
est for many years. Using modal sensors in active control
reduces problems of spillover, where high frequency unmod-
elled modes affect the stability of the closed loop system. The
sensors and actuators may be discrete or distributed, and are
usually manufactured using piezoelectric material, such as
polyvinylidene fluoride (PVDF) film. For example, a modal
sensor for a beam type structure may be obtained by varying
the sensor width along the length of the beam. If the sensor
covers the whole beam the shape of the sensor may be derived
using the mode shape orthogonality property [19, 5]. Modal
sensors may be designed that cover only part of the beam [9],
or are segmented sensors sensitive to multiple modes. The ef-
fect of geometric tolerances during manufacture on the qual-
ity of the sensors may be determined [9]. For beam structures
the width of the sensor may be parameterized using the finite
element method and the underlying shape functions used to
approximate the transducer shape [10].

Modal sensors for two-dimensional structures have also
been designed. The approach used for beams may be im-
plemented by varying the thickness of the PVDF, although
this is very difficult to achieve in practice. Sun et al. [24]
replaced an actuator layer with variable thickness by many
small segments of uniform thickness. Kim et al. [17, 18] de-
veloped two design methods for distributed modal transduc-
ers for composite plates, the first using multi-layered PVDF
films with optimized electrode pattern, lamination angle, and
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poling direction, and the second using PVDF film segments
and an interface circuit. Preumont et al. [22] introduced
the porous electrode concept, which allows the gains to be
introduced by changing the local effectiveness of the elec-
trodes. The alternative is to design a distributed modal trans-
ducer by optimizing the continuous boundary shape of a con-
stant thickness PVDF film by assuming a smooth boundary
[15, 16, 25].

This paper uses the design methods for modal sensors for
beam structures, but extends this approach to the structural
health monitoring application.

The identification of the location and severity of cracks,
loose bolts and other types of damage in structures using vi-
bration data has received considerable attention [7]. Most
of the approaches use the modal data of a structure before
damage occurs as baseline data, and all subsequent tests are
compared to it [4, 8, 12, 13]. Any deviation in the modal
properties from this baseline data is used to estimate model
parameters related to the damage severity and location. The
advantage of using this baseline data is that some allowance
is made for modelling errors. However changes in the struc-
ture not due to damage, for example due to environmental
effects, will be difficult to distinguish from changes due to
damage [11, 23]. The approach adopted in this paper is to use
shaped transducers to reduce the sensitivity of the sensor out-
put to the unmodelled parameter changes and environmental
effects. For structural health monitoring this means that the
response can be made sensitive to particular regions of inter-
est, so that, for example, the sensor may be used to monitor
the health of a single joint. The method is an extension of the
selective sensitivity technique which was developed to design
excitations that produce strong sensitivities to a subset of the
parameters whilst causing the sensitivities to other parame-
ters to vanish. This concept is modified to choose the shaped
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sensor, although the spatial and spectral properties of the ex-
pected in-service excitation are still an important aspect of
the design.

The finite element model of the structure is of the form

Mq̈ + Dq̇ + Kq = Bu, y = Cq (1)

where M, D and K are the mass, damping and stiffness ma-
trices based on the degrees of freedom, q. The inputs to the
structure, u, are applied via a matrix, B, which determines the
location and gain of the actuators (or the actuator shape for
distributed actuators). Similarly the outputs, y, are obtained
via the output matrix C which is determined by the sensor
shape. For parameter estimation and health monitoring ap-
plications the mass, damping and stiffness matrices depend
on a set of physical parameters, θ.

2. DEFINING SHAPED SENSORS

For beam structures, whose response is predominantly in
bending in a single plane, the transducer may be shaped by
varying the width of the PVDF material. In all these cases
the width or thickness is assumed to be a continuous func-
tion. However this function needs to be parameterized to en-
able the optimization of the sensor. Using the shape func-
tions of the underlying finite element model is a convenient
approach to approximate the width of the piezoelectric ma-
terial [10]. In this way modal transducers may be designed
for arbitrary beam type structures, and the sensor width (and
often its slope also) will be continuous across the element
boundaries. Furthermore modal transducers that only cover
part of a structure may be designed. Most of the development
will concern sensors, although actuators may be dealt with in
a similar way.

For a beam element of length `e, the output (voltage or
charge) from the part of the sensor covering element number
e is [10]

ye (t) = Ks

∫ `e

0
fe (ξ)

∂2we (ξ, t)
∂ξ2 dξ (2)

where the sensor effectiveness fe (ξ) allows for varying
width. Ks is a constant relating to the piezoelectric and
system properties, including the electrode effectiveness (in-
cluding the distance from the beam neutral axis), thickness,
piezoelectric coefficient and polarization direction. If any of
these properties vary then this variation should be included
in fe (ξ). ξ is the local element coordinate and we is the beam
deflection within the element.

The objective is to approximate the continuous sensor ef-
fectiveness using a discrete set of parameters, based on the
finite element shape functions. In finite element analysis the
displacement is approximated as

we (ξ) = N (ξ) qe (3)

where N (ξ) are the shape functions and qe are the nodal gen-
eralized displacements. Suppose that the sensor width is also
approximated by the shape functions, so that

fe (ξ) = N (ξ) fse (4)

where fse is a vector of the same length as the nodal displace-
ments, that defines the width of the sensor. In this way the
continuous sensor thickness is approximated using a finite
set of parameters in fse. Substituting into Eq. (2) gives

ye (t) = f>seCseqe (5)

where

Cse = Ks

∫ `e

0
N (ξ)>

d2N (ξ)
dξ2 dξ. (6)

The total sensor output is obtained by summing the output
from all of the elements, thus

y =
∑

e

ye = f>s Csq (7)

where q is the vector of generalized displacements of the full
model, and fs is a vector incorporating the sensor parame-
ter vectors. In this way, the problem of a continuous width
variation is changed into a discrete optimization problem for
fs. The assembly process is exactly analogous to the assem-
bly of mass and stiffness matrices in standard finite element
analysis. The only slight difference is the incorporation of
boundary conditions. For example a pinned boundary will
require that some of the generalized displacements are set to
zero, which reduces the number of degrees of freedom. Just
because a generalized displacement at a given node is zero
does not mean that the corresponding element of the sensor
thickness parameters, fs, should be zero, as the sensor thick-
ness may be non-zero at the boundary. In turn this means that
Cs may be a rectangular matrix. Comparing Eqs. (1) and (7)
it is clear that C = fT

s Cs.
For a beam element with cubic shape functions [10],

Cse = −
Ks

30`e


36 33`e −36 3`e

3`e 4`2
e −3`e −`2

e
−36 −3`e 36 −33`e

3`e −`2
e −3`e 4`2

e

 . (8)

3. HEALTH MONITORING AND SELECTIVE SENSI-
TIVITY

A significant problem with any inverse problem, such as
structural health monitoring, is ill-conditioning of the estima-
tion equations. One major cause of this ill-conditioning is the
large number of candidate parameters that may be regarded
as uncertain. Applying excitations that produce strong sensi-
tivities to a subset of the parameters whilst causing the sensi-
tivities to other parameters to vanish is one way of reducing
the number of parameters to estimate. For structural health
monitoring this means that the response can be made sensi-
tive to particular regions of interest, so that, for example, the
sensor may be used to monitor the health of a single joint.
One approach to local structural health monitoring is to use
high frequency impedance measurements[20], although us-
ing shaped distributed actuators and sensors could also be
applied to these impedance techniques.
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The method of selective sensitivity considers the response
predictions to a relatively large number of excitation forces.
In order to provide further explanation, the work of Ben-
Haim [2, 3, 6, 21] will be adapted to sensors rather than ac-
tuators. The selective sensitivity approach is best derived in
the frequency domain. From Eq. (1)

y (ω, θ) = C
[
−ω2M + jωD + K

]−1
Bu (ω)

= f>CsH (ω, θ) Bu (ω) (9)

where H (ω, θ) =
[
−ω2M + jωD + K

]−1
is the frequency re-

sponse function (receptance matrix).
At any frequency the sensitivity of the response to param-

eter θ j is given by

S j (f, ω) =

∥∥∥∥∥∥ ∂y
∂θ j

∥∥∥∥∥∥2

. (10)

Notice that only a single output has been assumed, so that y is
a scalar, although the approach is easily extended to multiple
outputs. Then

S j (f, ω) = f>Cs
∂H
∂θ j

BuuHBH ∂HH

∂θ j
C>s f = f>G j (ω) f (11)

where G j (ω) may be calculated and the superscript H de-
notes the conjugate transpose. G j (ω) is usually complex, al-
though the imaginary part of the matrix is skew-symmetric so
that the sensitivity is real. Thus the imaginary part of G j (ω)
does not affect the sensitivity and may be neglected. Note
that for excitation at a single location, G j (ω) has rank 1. The
derivative of H may be calculated as

∂H
∂θ j

= H
[
−ω2 ∂M

∂θ j
+ jω

∂D
∂θ j

+
∂K
∂θ j

]
H. (12)

The sensitivity defined in Eq. (11) varies with frequency. For
the standard selective sensitivity method the force input is
designed and so may be varied with both location and fre-
quency. With a shaped sensor for health monitoring the ex-
citation is likely to be due to either ambient forces or oper-
ational conditions. Furthermore, to use a simple threshold
to determine damage the output required is a single response
quantity. In these cases an integrated sensitivity may be de-
fined as

Ŝ j (f) =

∫ ω2

ω1

W (ω) S j (f, ω) dω (13)

for some frequency weighting function W (ω) (that can be
designed along with the sensor shape) and frequency range
(ω1, ω2). For a given force input

Ŝ j (f) = f>
[∫ ω2

ω1

W (ω) G j (f, ω) dω
]

f = f>Ĝ jf. (14)

If the location and spectrum of the force is not known then
this makes the design of a selectively sensitive sensor ex-
tremely difficult. The rest of the development will consider

only a single frequency using G j (ω) defined in Eq. (11), al-
though the methods are readily extended to the frequency
weighted versions using Ĝ j defined in Eq. (14).

The selective sensitivity problem for parameter s is to de-
sign the sensor such that

S j (f) =

{
, 0 if j = s
= 0 otherwise (15)

Since the sensitivities are all real and non-negative, the con-
ditions in Eq. (15) may be written as

S s (f) = f>Gsf , 0 (16)

and ∑
j,s

S j (f) =
∑
j,s

f>G jf = f>G̃sf = 0, (17)

where G̃s =
∑
j,s

G j.

Solving the selective sensitivity requirements exactly is of-
ten not possible, in the sense that a solution may not exist, or
may not be unique. One straight-forward approach is to em-
ploy an optimization scheme directly. For example the sensor
shape f sensitive to parameter θs is obtained as the vector that
minimizes the objective function

J (f) =

∑j,s

W jS j (f)

 /S s (f) (18)

where W j are weighting factors for the different parameters.
The thickness of the sensor is then normalized to the maxi-
mum thickness required.

However this simple approach may lead to difficulties if
the solution is not unique and hence there are many solu-
tions for perfect sensors that satisfy Eq. (15). If the excita-
tion is at a single degree of freedom then the complex matrix
G j (ω) will have rank 1, although the real part alone will usu-
ally have rank 2. If there are p parameters, and the response
should be insensitive to p − 1 of them, then the dimension
of the space of suitable sensor shape vectors, f, based on
Eq. (15), is n − 2p + 2, where n is the length of the vector f.
In this case one has to introduce other regularizing conditions
into the optimization. One possibility is to reduce the num-
ber of elements that the sensor covers, and subset selection
techniques could be used to determine the optimum choice of
elements. Another possibility is to minimize the transducer
curvature [10], which has the advantage to producing sensors
that are easier to manufacture. For beam structures, mini-
mizing transducer curvature for a sensor covering the whole
beam was shown to be equivalent to minimizing f>K̂f where
K̂ is the stiffness matrix for the free-free beam. This is equiv-
alent to minimizing a strain energy type expression, and mo-
tivates the optimization problem for the general system. For
modal sensors for uncertain systems an equivalent approach
where the matrix is defined based on the variance may be
used to obtain robust sensors that minimise the effect of the
uncertainties [1].
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The best approach is to enforce the zero sensitivity to un-
wanted parameters before optimizing any other objectives.
Thus a transformation, T, is introduced such that

T>G̃sT = 0. (19)

This transformation matrix may be found easily using the sin-
gular value decomposition of G̃s (which is equivalent to the
eigenvalue problem since the real part of G̃s is symmetric),
and will generally be of dimension n × (n − 2p + 2). Thus a
reduced dimension sensor vector fr may be defined such that
f = Tfr, and is chosen by minimizing

J (f) = f>r
[
T>K̂T

]
fr (20)

subject to

S s (f) = f>Gsf = f>r
[
T>GsT

]
fr , 0. (21)

This is easily solved by calculating the eigenvalues of
T>K̃T, and taking the eigenvector corresponding to the
smallest eigenvalue, consistent with Eq. (21). An alterna-
tive is to maximize the sensitivity S s (f) by choosing fr as
the eigenvector corresponding to the largest eigenvalue of
T>GsT.

4. A SIMULATED EXAMPLE

A clamped-clamped beam example inspired by Gawron-
ski [14] will be used here to demonstrate the feasibility of the
approach. The steel beam is 1.5 m long with cross-section
20 × 5 mm, and bending in the more flexible plane is mod-
elled using 15 finite elements. The beam has three further
supports along its length, modelled as springs at nodes 4, 8
and 11, where the node numbering convention means that
node 1 is clamped, see Fig. 1. The damping is assumed to be
proportional to stiffness with a factor of 10−4 s. The force is
applied from a rotating machine operating at 40 Hz at node 6.
The distributed sensor is to be designed for the whole length
of the beam initially.

Figure 2(a) shows the sensor shape obtained by minimiz-
ing the objective function in Eq. (20) for the first support
stiffness. Note that T>K̃T has two zero eigenvalues that
produce zero sensitivity to the first parameter and are there-
fore not chosen. The sensor width is normalized so that
the maximum width is 1. The result is sensitivity ratios of
S 1/S 2 = 1.2 × 1015 and S 1/S 3 = 8.7 × 1012, demonstrating
that the required sensitivity is obtained. Also shown is the
frequency response between the force input location and the
sensor output. The baseline (solid line) is based on the un-
damaged system, and the responses due to a 10% reduction
in each of the three support stiffnesses in turn are also shown.
Remember that the sensor has been designed to operate only
at 40 Hz, and at this frequency the response is indeed insen-
sitive to changes in support stiffnesses 2 and 3. Figure 2(b)
shows the equivalent plots when the sensor is designed to
be sensitive to support stiffness 2, also at 40 Hz. It is clear

that the procedure has designed sensors with relatively sim-
ple shapes.

Suppose now that the sensor shape is chosen to maximize
the sensitivity to the first parameter. The result is shown in
Fig. 3(a), and highlights that the sensor shape is now more
complicated. The sensitivity to parameter 1 is now over 600
times higher than that for the sensor in Fig. 2(a). Figure 3(b)
shows the effect of restricting the region where the sensor is
placed, by setting the elements of the parameter vector f cor-
responding to finite element nodes 1 − 4 and 11 − 16 to zero.
The sensor is designed to ensure zero sensitivity to parame-
ters 2 and 3 and the minimum curvature solution is chosen.
There is clearly a compromise between the smaller region for
the sensor and the complexity of the shape.

The examples thus far have considered the design of the
sensors and have shown the frequency response function over
a large frequency range. We now consider the performance of
the sensor when there is noise and errors in the system. The
three stiffness parameters are assumed to be uncertain with a
Gaussian distribution with a 2% standard deviation based on
the nominal values of the stiffness. Figure 4 shows the proba-
bility density function of the output of the sensor at 40Hz due
to these uncertainties at the nominal values of stiffness (solid)
and when the value of the first stiffness changes by 10%.
Clearly the output is able to distinguish that the first support
has changed significantly. The probability density was calcu-
lated using a Monte Carlo simulation with 10, 000 samples.
Figure 4 shows the equivalent result for a 10% change to the
second stiffness parameter and shows that the sensor is insen-
sitive to large changes in this stiffness.

Suppose now that the stiffness of the clamped supports
also varies. This is modelled by varying the stiffness of the
elements nearest to the clamped ends. Figure 4 shows the
sensor shape that is sensitive to support stiffness 1, and insen-
sitive to support stiffnesses 2 and 3, and also the stiffnesses of
the elements nearest the clamped ends. Also shown are the
FRFs for the nominal values of the parameters, and for 10%
reductions in all of the parameters. Interestingly the FRF is
relatively insensitive to the element stiffnesses over the whole
frequency range, although only the response at 40Hz is used
in the design.

5. CONCLUSIONS

This paper has designed distributed sensors by varying
the width (for beams) or thickness (for plates) for structural
health monitoring applications. The finite element shape
functions are used to define the width or thickness of the sen-
sor and this allows much more flexibility in designing sensors
that cover only part of the structure, and other constraints,
such as the minimum curvature, may be easily included. It
has been demonstrated that sensors may be designed that are
sensitive to changes in a single parameter, and insensitive to
changes in other parameters. Although much more analy-
sis of these designs is required, the approach does allow the
prospect of a simple distributed sensor to monitor a single
region, such as a joint, and be insensitive to other changes,
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Figure 1: The beam with intermediate supports and harmonic excitation.

such as those arising from environmental changes. The out-
put from such a sensor could have a threshold alarm sys-
tem, allowing a robust but simple distributed structural health
monitoring system.
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Figure 2: The distributed sensor shape designed to be sensitive to partic-
ular support stiffnesses at 40Hz for the beam example, and the associated
receptances. The solid line is the baseline FRF, the dashed line is due to a
10% change in support stiffness 1, the dot-dashed line is due to a change in
stiffness 2, and the dotted line is due to a change in stiffness 3.
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Figure 3: The distributed sensor shape designed to be sensitive to support
stiffness 1 at 40Hz for the beam example, and the associated receptances.
The solid line is the baseline FRF, the dashed line is due to a 10% change in
support stiffness 1, the dot-dashed line is due to a change in stiffness 2, and
the dotted line is due to a change in stiffness 3.
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Figure 4: The probability density function of the output from the distributed
sensor in Figure 2(a) to uncertainties in the support stiffnesses with 2% stan-
dard deviation. The solid line is for the nominal value of the stiffnesses and
the dashed line due to a 10% increase in θ1.

7 7.5 8 8.5
x 10!5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Sensor output amplitude

Pr
ob

ab
ili

ty
 d

en
sit

y
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sensor in Figure 2(a) to uncertainties in the support stiffnesses with 2% stan-
dard deviation. The solid line is for the nominal value of the stiffnesses and
the dashed line due to a 10% increase in θ2.

0 0.5 1 1.5
!1

!0.5

0

0.5

1

Distance Along the Beam (m)
Se

ns
or

 W
id

th

25 30 35 40 45 50

!95

!90

!85

!80

Frequency (Hz)

FR
F 

M
ag

ni
tu

de
 (d

B
)

 

 
Nominal
Support 1
Support 2
Support 3

25 30 35 40 45 50

!95

!90

!85

!80

Frequency (Hz)

FR
F 

M
ag

ni
tu

de
 (d

B
)

 

 
Nominal
Left end element
Right end element

Figure 6: The distributed sensor shape designed to be sensitive to support
stiffness 1 at 40Hz for the beam example, and the associated receptances.
The solid line is the baseline FRF, and the other FRFs represent 10% changes
to the support stiffnesses and the stiffness of the elements near the clamped
ends.
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