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Abstract:

The calculation of dynamic response of multiple-degree-of-freedom viscoelas-

tic linear systems is considered. Viscoelastic forces depend on the past history of motion via
convolution integrals over exponentially decaying kernel functions. Exact closed-form expres-
sions for the dynamic response due to general forces and initial conditions are derived in terms
of the eigensolutions of the system in the original space. Eigensolutions of the viscoelastic
system in turn are obtained approximately as functions of the elastic eigensolutions. This en-
ables one to approximately calculate the dynamic response of complex viscoelastic systems by
simple post-processing of the elastic (undamped) eigensolutions. Suitable examples are given

to illustrate the derived results.
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1. INTRODUCTION

The characterization of energy dissipation in complex vi-
brating structures such as aircrafts and helicopters is of fun-
damental importance. Noise and vibration are not only un-
comfortable to the users of these complex dynamical sys-
tems, but also may lead to fatigue, fracture and even fail-
ure of such systems. Increasing use of composite structural
materials, active control and damage tolerant systems in the
aerospace and automotive industries has lead to renewed de-
mand for energy absorbing and high damping materials. Ef-
fective applications of such materials in complex engineering
dynamical systems require robust and efficient analytical and
numerical methods. Due to the superior damping character-
istics, the dynamics of viscoelastic materials and structures
have received significant attention over past two decades.
This paper is aimed at developing computationally efficient
and physically insightful approximate numerical methods for
linear dynamical systems with viscoelastic materials.

A key feature of viscoelastic systems is the incorporation
of the time history of the state-variables in the equation of
motion. Here we use the Biot model [10] which allows one
to incorporate wide range of functions in the frequency do-
main by means of summation of simple ‘pole residue forms’.
Several authors have considered this model due to its sim-
plicity and generality (see for example [18, [17, 21]). The
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equations of motion of a N-degree-of-freedom linear system
with such material can be expressed by

Mui(?) + f G(t —nu(r)dr + K.u(r) = (1) (1)
0

together with the initial conditions

ur=0)=uyeRY and ur=0)=uyeR". (2

Here u() € R" is the displacement vector, f(r) € RY is the
forcing vector, M € R" is the mass matrix, K, € R" is the
elastic stiffness matrix and G(t — 1) is the matrix of viscoelas-
tic stiffness kernel functions. The kernel functions G(t — 7),
or functions similar to them, are known by many names such
as retardation functions, heredity functions, after-effect func-
tions or relaxation functions in the context of different sub-
jects. Equation (1) is very general and for any engineering
applications some specific form of G(f) have to be assumed.
A wide variety of mathematical expressions could be used
for the kernel functions G(¢). Here we will use a viscoelastic
material model for which the kernel function matrix has the
special form

61 =K, + ) ae ™K, 3)
k=1

or in the Laplace domain

Ak
s+ by

G(s) =Ky, + )| K,,. (4)
k=1

Constants ay, b, € R* are viscous parameters depending on
the viscoelastic material used, n denotes the number of per-
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turbing terms and K, K,, are the viscous stiffness matri-
ces. Some other viscoelastic modeling approaches, such as
the GHM (Golla-Hughes-McTavish) approach [12, [15] and
ADF (Anelastic Displacement Field) approach [14, [13] are
although physically different, can be mathematically repre-
sented by pole-residue form similar to equation (4).

Equation (1) together with the kernel in Eq. (3) represent a
set of coupled integro-differential equations. Several authors
have proposed [9, 12, (15, [14} 13, |18, 117, [19, 7] state-space
approach based on the internal variables for this type of equa-
tions. The main reasons for an alternative to state-space ap-
proach for structural dynamics include include, but are not
limited to:

1. although exact in nature, the state-space approach usu-
ally needed for this type of damped systems is compu-
tationally very intensive for real-life systems;

2. the physical insights offered by methods in the original
space (eg, the modal analysis) is lost in a state-space
based approach

Regarding the first point, Woodhouse [20] and Adhikari [3]
proposed approximate methods in the space of the original
problem. These methods are applied to frequency depen-
dent damping when the damping is small and they neglect the
overdamped modes, equation arising from that problem is al-
most identical to the one faced here. A direct time-domain
approach to obtain the solution of Eq.(1) was proposed by
Adhikari and Wagner [8]. This method is computationally
efficient and accurate but does not provide much physical in-
sight. Regarding the second point, in general, a linear system
with viscoelastic model is expected to have complex modes
[2,/4]. The physical justification of complex modes obtained
directly from the state-space analysis is still not clear. In this
paper we aim to address these two issues.

Inlsection 2, the dynamic response of a general MDOF vis-
coelastic system is obtained exactly in closed-form using the
eigensolutions of the system in the original space. The calcu-
lation of the eigensolutions by solving the non-linear eigen-
value problem corresponding to the equation of motion (1)) is
a key challenge and the main topic of the rest of the paper.
We have derived closed-form approximate expressions of the
eigenvalues and eigenvectors of the system for four mathe-
matically different cases based on the values of (a) number of
degrees of freedom, and (b) number of kernel functions. The
approximations utilize Taylor series expansion in the com-
plex domain and are based on certain simplifying assump-
tions. The validity of the assumptions and the accuracy of
the results are verified by numerical calculations.

2. DYNAMIC RESPONSE FOR THE GENERAL CASE

Taking the Laplace transform of equation (1) and consid-
ering the initial conditions in (2) we have

Mg — sMqp — Mo + s G(5)q@ — G(s)qo + Kq = f(s)
or D(5)q = f(s) + Mg + [sM + G(5)] qo.
(5)

Here the dynamic stiffness matrix is defined as
D(s) = "M + sG(s) + K, € C". (6)

The inverse of the dynamics stiffness matrix, known as the
transfer function matrix, is given by

H(s) =D7'(s) e C". (7
Using the residue-calculus the transfer function matrix can
be expressed like a viscously damped system as

R.
H(s) = Z ! (8)

= S—Sj

where m is the number of non-zero eigenvalues (order) of the
system. Following Adhikari [1], the residue matrices can be
expressed as

o
Z;7;

J
= — 9
D))
Z]T. —mj’ z;
Here s; and z; are respectively the eigenvalues and eigen-
vectors of the system, which are solutions of the non-linear
eigenvalue problem
D(sj)z; =0, forj=1,---,m (10)
where
D(sj) = ssM + 5; G(s;) + K. (11

This expression of H(s) in (8) allows the response to be ex-
pressed as modal summation as

m zJT.f(s) + zJTMq0 + sij.MqO + ij.G(s)qo(s)

<_1(S)=Z7’j Py zj
J=1 /
(12)
where :
= 13
7] ZTBD(S!)Z, ( )
j  0Os; J

From Equations (8) and (9) it can be immediately seen that
conventional modal analysis can be extended to system with
viscoelastic materials in a familiar manner provided the non-
linear eigenvalue problem in Eq. (10) can be solved effi-
ciently. The rest of paper is devoted to address this chal-
lenging problem.

3. NON-LINEAR EIGENVALUE PROBLEM FOR VIS-
COELASTIC SYSTEMS

The eigenvalue problem associated with a linear system
with viscoelastic material model can be expressed from Eq.
(10) as

n

2 Ak
[S,iM+ Sj (Kvo + ; sj+ br

Zj=0,

Kvk] + K,
(14)

forj=1,---,m.
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For systems with only elastic stiffness matrix the order of the
characteristic polynomial m = 2N. For viscoelastic systems
in general m is more than 2N, thatis m = 2N + p; p > O.
Using the state-space approach [19] it was shown that p =
ZZ=1 rank (K,) Therefore, if all matrices K, are of full rank,
then p = nN. This shows that although the system has N
degrees-of-freedom, the number of eigenvalues is more than
2N. This is a major difference between a viscoelastic sys-
tem and an elastic system where the number of eigenvalues
is exactly 2N, including any multiplicities. When s; appear in
complex conjugate pairs, z; also appear in complex conjugate
pairs, and when s; is real z; is also real. Corresponding to the
2N complex conjugate pairs of eigenvalues, the N eigenvec-
tors together with their complex conjugates are called elastic
modes or vibration modes. These modes are related to the N
modes of vibration of the structural system. Physically, the
assumption of 2N complex conjugate pairs of eigenvalues’
implies that all the elastic modes are oscillatory in nature,
that is, they are sub-critically damped. The modes corre-
sponding to the ‘additional’ p eigenvalues are called viscous
modes or overdamped modes. For stable passive systems the
non-viscous modes are over-critically damped (i.e., negative
real eigenvalues) and not oscillatory in nature. Non-viscous
modes, or similar to these, are known by different names in
the literature of different subjects, for example, ‘wet modes’
in the context of ship dynamics [11] and ‘damping modes’ in
the context of viscoelastic structures [15]. In this paper both
the complex conjugate modes and the damping modes will
be derived.

For the convenience of analytical development, the follow-
ing four cases are considered:

o single-degree-of-freedom system with single exponen-
tial kernel (N = 1,n = 1)

e single-degree-of-freedom system with multiple expo-
nential kernels (N = 1,n > 1)

e multiple-degree-of-freedom system with single expo-
nential kernel (N > 1,n = 1)

o multiple-degree-of-freedom system with multiple expo-
nential kernels (N > 1,n > 1)

In the following sections closed-form approximate expres-
sions of eigenvalues and eigenvectors are derived for the elas-
tic modes and non-viscous modes.

4. SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH
SINGLE EXPONENTIAL KERNEL

Computational cost and other relevant issues identified be-
fore in the paper do not strictly affect the eigenvalue prob-
lem of a single-degree-of-freedom (SDOF) viscoelastic sys-
tem. The main reason for considering an SDOF system is that
in many cases the underlying approximation method can be
extended to MDOF systems in a relatively straight-forward

manner. For this case when N = 1,n = 1 the eigenvalue
equation can be simplified from Eq. (14) as

Sy +5g(s)+ke, =0 where  g(s) = kyy + ——Fk, . (15)
s+b

Here we have omitted the subscripts j and k for notational
convenience and the matrices appearing in Eq. (14) has been
replaced by corresponding scalars. Equation (15) is a third-
order polynomial in s and it can be solved exactly in closed-
form. A more detailed study on the properties of the exact
solutions have been carried out in references [5, 6]. In the
next two sections we derive the approximate solutions with
the vision that they can be generalized to MDOF systems
with minor modifications.

4.1. Complex-conjugate Solution

The main motivation of the approximations is that the ap-
proximate solution can be ‘constructed’” from the solution of
equivalent viscously damped system. The solution of equiv-
alent viscously damped system can in turn be expressed in
terms of the undamped eigensolutions. Combining these to-
gether, one can therefore obtain the eigensolutions of vis-
coelastic systems by simple ‘post-processing’ of the eigen-
solutions of equivalent viscously damped system only. The
eigenvalues (appearing in a complex conjugatae pair) of the
equivalent viscously damped system is given by [16]

50 = —{nwn £ iwy \/1 - 1% N —(pn = 1wy (16)

where the undamped natural frequency w, = +/k.,/m, and
the viscous damping factor ¢, = (k,, + ak,,/b) /2 k., m,.
Viscous damped system is a special case of Eq. (15) when
the function g(s) is replaced by g(s — 0). For that case the
solution given by Eq. (16) would have been the exact solu-
tion of the characteristic equation (15). Since in general this
is not the case, the difference between the viscous solution
and the true solution of the characteristic equation (15) is es-
sentially arising due to the ‘varying’ nature of the function
g(s). The approximate solution obtained here are based on
keeping this fact in mind.

The central idea here is that the actual solution of the char-
acteristic equation (15) can be obtained by expanding the so-
lution in a Taylor series around syp. The error arising in the
resulting solution would then depend on the ‘degree of vari-
ability’ of the function g(s). We assume that the true solution
of Eq. (15) can be expressed as

s=80+06 )

where ¢ is a small quantity. Substituting this into the charac-
teristic equation we have

(50 + 6)*my, + (50 + 6)g(so + &) + k., = 0. (18)

Expanding g(sp + 0) in a Taylor series in ¢ around sy and
keeping only the first-order terms in 6 we have
50 so(somy, + g(s0)) + ke,

=- 19
so(2my, + g’(s0)) + g(s0) (19)
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where

4 k.
(so+b)y* "

(20)
Here the superscript 1 is used to denote that this is a first-
order approximation. Further simplifying, the final solution
can be expresses as

a ’
g(SO) = kvo + S()—kvu and 8 (SO) ==

+b

so(somy, + ky, + ky, 51=) + ke,
_ Pl T @21)
ky,) + ky, + ==k,

(b+s0)? b+sg

s = so+60 = 59—
0 0 SO(zmu -

One can improve the accuracy by retaining higher-order
terms in 0. Retaining upto second-order terms in § in the
Taylor expansion of Eq. (18) we have

50 - ~B- VB -4AC

7 (22)
where

A= om0 g0 3)

B = (2myuso + s0g (s0) + &(50)) (24)

and C = (simy + s08(s0) + k). (25)

In the above expressions g’(sg) and g”(sg) are respectively
the first and second order derivative of g(s) evaluated at
s = So. Our numerical works show that retaining terms
higher than the second order results considerably complex
expressions and the accuracy gained is not very significant.
As a result we have not perused this approach in the rest of
the paper. Based on our numerical works we recommend
the second-order expression in Eq. (22) as it gives excellent
accuracy and additional computation cost is just marginally
higher compared to the first-order approximation. The ex-
pressions of the approximate eigenvalue derived here shows
that the complex-conjugate solutions of a general viscoelastic
system can be obtained by post-processing of the undamped
eigenvalue w, and equivalent viscous damping factor ¢,.

4.2. Real Solution

While the complex-conjugate solution can be expected to
be close to the solution of the equivalent viscously damped
system, no such analogy can be made for the real solution as
the equivalent viscously damped system doesn’t have one. In
order to proceed, we first multiply the characteristic equation
(15) by (s + b) and rewrite as

(s°my + sky, + ko )(b + s) + sak,, = 0. (26)

To obtain the initial guess we consider that the damping is
small so that sak,, ~ 0. Since (s’m, + sk,, + k,,) # 0 as
we are considering the real solution only, the first guess is
obtained as

b+syo=0 or sy=-b. 27

We take the first approximation of the real root as

s=so+A=-b+A (28)

and substitute it into the characteristic equation to obtain
((-b+ A)zmu + (=b+ ANky, + ko)A + (=D + A)ak,, = 0. (29)

After neglecting all the terms associated with A" for n > 1
we have

abk,
A= - . 30
b*m, — bk, + k., + ak,, 30)
Therefore, the real solution is given by
bk,
s=so+A=~-b+ Ao, 31

b*my, — bk,, + k., + ak,,

5. SINGLE-DEGREE-OF-FREEDOM SYSTEM WITH
MULTIPLE EXPONENTIAL KERNELS

For this case the kernel function g(s) takes the form
n ak
= kv + —k N > 1 32
8(s) = ky, ;ku b n (32)

Using this series, a wide range of viscoelastic functions can
be modelled in the frequency domain. The characteristic
function with this type of kernel function can be expressed
as

) n a ~
s*m,, + s[k + ; Tbkk”k) +k, =0. 33)

This a polynomial in s of order (n + 2) and therefore, this
equation has (n + 2) roots. In this section we derive approx-
imate solutions with the view of generalizing them to more
realistic MDOF systems.

5.1. Complex-conjugate Solution

If the system is vibrating, then equation (33) must have a
pair of complex conjugate root. The complex conjugate solu-
tions derived in 4.1 are for a general function g(s) and there-
fore are valid for this case also. The solutions are therefore
given by Eqs. (17) and (19), where g(s) appearing in these
equations need to be replaced by the series in Eq. (32). The
necessary details are obvious and consequently omitted here.

5.2. Real Solutions

There are n number of pure real roots corresponding to n
terms in the series in Eq. (32). Multiplying the characteristic
equation (33) by the product ]—[’}(s + b;) we have

(Pmy + sk, + ko) | [(s+0)) + 5> (@ | |6+ s) = 0.
j=1

k=1 j=1
Jj#k
(34)
Like the previous case, we use the approximation
Sk = —bk + Ak. (35)
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Substituting this into the characteristic equation and retaining
only the first-order terms in Ay, after some simplifications we
have

A, ~ bkakkvkpl
k ~
[b/%mu = biky, + keu] p1+ [=bi(p2 + p3) + arky, p1]
(36)
with
pr=[]@i-b0. pr=ade, Y] @ =b0
=1 =1 r=1
'jl';tk j';tk r#j
r#k (37)

and p3 = i ajky, ﬁ(b, - by).
=1 r=1

Jjk r#jk

5.3. Numerical Results

We consider a single-degree-of-freedom system with eight
exponential kernels to investigate the accuracy of the approx-
imate solutions derived in this section. For numerical cal-
culation we assume m, = 1 kg, k,, = 2 N/m, k,, = 0
kg/s. It is assumed that all aik,, /by are of same value so
that aik,, /by = 2{w,, Yk = 1,2..,8. The values of by for
k = 1,2..,8 are selected as 1.9442, 1.5231, 1.9317, 1.7657,
1.7454, 1.9558, 2.0677, 1.4973. The values are generated
randomly as by = 0.75(1 + ry)w,, where r; are uniform ran-
dom numbers between 0-1. The approximate eigenvalues
obtained using the proposed method is compared with the
results obtained from exact state-space solution in Table 1.
The complex conjugate eigenvalues are obtained very accu-

Table 1: Exact and approximate eigenvalues of the SDOF system.

u Exact Proposed Percentage
solution approximate  error
(state-space)  solution
1.9442 -1.4649 -1.5135 3.3169
1.5231 -1.5136 -1.5185 0.3237
1.9317 -1.7123 -1.7579 2.6643
1.7657 -1.7576 -1.7613 0.2101
1.7454 -1.8954 -1.9253 1.5767
1.9558 -1.9380 -1.9375 0.0282
2.0677 -1.9517 -1.9527 0.0516
1.4973 -2.0560 -2.0592 0.1559
Complex -0.0619 -0.0619 0.0003
Conjugate  +1.4718i +1.4718i + 01
solution

rately using the proposed approximation. The real eigenval-
ues are not as accurate as the complex conjugate eigenval-
ues. However, recall that the motion corresponding to the
real eigenvalues are purely dissipative in nature and therefore
do not significantly affect the dynamic response of the sys-
tem. To show this, we have plotted the frequency response
function of the system in Figure 1. Because the complex
conjugate eigenvalues are approximated very well, the fre-
quency response function of the system obtained using the

T T T T T T T T T T
— exact solution
— - — - approximation 4

Amplitude

L L L L L L L L L
0.2 04 0.6 0.8 1 12 14 16 18 2
Frequency (rad/s)

Figure 1: Frequency response function of the SDOF system obtained using
exact and approximate eigenvalues.

exact and approximate eigenvalues match very well. Again
recall that all of the approximate eigenvalues are obtained by
post-processing of the undamped eigenvalues only.

6. MULTIPLE-DEGREE-OF-FREEDOM SYSTEM

Based on the results for the SDOF system, we derive the
complex eigenvalues and eigenvectors for a general G(s).
Complex eigensolutions are also known as elastic eigenso-
lutions as they appear in underdamped elastic systems. For
the real eigenvalues two cases namely, when n = 1 and when
n > 1 are considered for analytical convenience.

6.1. Complex-conjugate Solutions

The aim of this section is to obtain the complex conju-
gate eigensolutions using the elastic eigensolutions. The un-
damped eigenvalue problem of a MDOF system is given by

K.X; = w;Mx; (38)

where w? and x; are the eigenvalues and eigenvectors of the
system. The eigenvectors are mass-normalized so that

XITMXJ' = 51J‘ (39)
and XITKer = w?élj, vij=1,---,N (40)

where ¢;; is the Kroneker delta function. For distinct un-
damped eigenvalues (a)lz), x, V¥l =1,---,N, form a com-
plete set of vectors. For this reason, z; can be expanded as a
complex linear combination of x;. Thus, an expansion of the

form
N

z;= ) ax 41)

=1
may be considered. Now, without any loss of generality, we
can assume that a(j:’) = 1 (normalization) which leaves us to
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determine a/jj ) ,¥I # j. Substituting the expansion of z;, from

equation (10) one obtains

N
Z s2aMx; + 5,01 G(s)x; + a\"Kx; = 0. (42)
I=1

Premultiplying above equation by x,{ and using the mass-
orthogonality property of the undamped eigenvectors one ob-
tains

N
2 () () 2 ()
sl +s) E a," G (s))+wia,” =0,
=1

Vk=1,---,N (43)

where G;,(s)) = XZG(S )X;. We consider that the off-diagonal
entries of the viscous stiffness function matrix is small com-
pared to the diagonal entries, that is G;,(s;) < G}, (s)), Yk #
[, s;. Considering the j-th set of equation (43) and neglecting

the second-order terms involving a(’) and G, (S5 Vk # 1, and

)]

also noting that a;’ = = 1, one obtains

s? +5;G7(s) + wi ~ 0. (44)

This equation is similar to (15) and can be solved in exactly
the same way.
To obtain the eigenvectors we rewrite Eq. (43) for j # k as

o + 57| Gy (5)) + @ Gly(s)) + Z 2\ "Gy (s |+
I#k#j (45)

20 =0, Vk=1,--- ,N;# |

wka/k

Keeping only the first-order terms in G’j, and following
[1], we obtain

$;Gy (8 )%k
ijxj—z T (46)
o W 55+ 5G(s)
=y

Retaining the second-order terms in G,’(j a more accurate ex-
pression is obtained

N SjG]/Cj(sj)Xk
'NX’_Z 2+ 2+ 5,G(s))
=1 @i T8 1808
k#j
N N 26" (s VG (s
+Z Z Sij,(Sj)G,j(Sj)Xk

k=1 I=1

2 ’ 2, 2 ’ ’
wk +55+ stkk(sj)) (‘”1 +57 st”(sj))
k#j I#j#k

(47)

The above equation is the second-order approximate expres-
sion of the complex eigenvectors of the system.

6.2. Real Solutions

The real solutions are obtained using an approach similar
to SDOF systems. After neglecting the off-diagonal terms of
the viscoelastic stiffness matrices, the governing characteris-
tic equation for every mode can be expressed by Eq. (44).

This equation can be solved for the real eigenvalues. For
systems with single exponential kernel, following Eqgs. (28)-
(31), the real eigenvalues can expressed as

sp=—-b+ A 48)

where

A abk,,
1~ 5
b2 + w! + ak,, — Ky,

vi=1,2,---,N. (49)

Assuming all coefficient matrices are of full rank, for systems
with n kernels there are in general nN number of purely real
eigenvalues. The approximate eigenvalues can be obtained
using Eqgs. (35) and (36) as

Sie = —bp + Ay (50)
where
~ braKy,, pi
[b2 biKy,, + wﬂpl + [_bk(PZ +p3) + ax m,,pl]
with
= ﬂ(b —by), P2 =@k, Z ]_[(b ~ by)
=1 1 r=1
:;#k ;#6 r#]
r#k (52)
p3 = Z ajKVm l_[(br - bk)
j=1 r=1
J#k rjk
and
Kwu = X/T K"ku X1, K"Ou = XlTKVU// X (53)

If viscoelastic stiffness matrices of the system are not full
rank, equations to approximate the real eigenvalues can still
be applied if a dimension reduction process is applied to
equation (14). An eigenvector matrix Y; is calculated for
each viscous matrix K,,, mathematically,

YK, Y, = A, (54)

Where A; are diagonal matrices of dimension rank (K,,),
and matrices Y, are rectangular matrices of dimensions N X
rank (K,,). Now, from the equilibrium equation (14) we have

Y/ lst + 5 (KVO £y S“T"kaw] +K.| Yy, = 0.
k=1 "/
(55

Using the diagonalisation in Eq. (54) this can be simplified
to

sM1+sj Kwﬁ'z

k;z

A] +Kg[ yl] —0

+
s]+bk s]+b1

(56)
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Where
Yy, =z;, M, =Y/MY,, K

K

vor = Y[T K., Y

=Y/K,, Y, and K, = YK, Y.

Vor

(57)

Vil

Eigenvalues are then obtained using the derived equations
(48) and (49) to the reduced system, as it has been explained
for the full rank case. We note here that the number real solu-
tions obtained has to be p = }}7_, rank (K,,). Here, superfi-
cially, the number of roots we can obtain is n };_, rank (K,).
That is, n roots for each nth order polynomial equation mul-
tiplied by >;_, rank (K,) number of equations. However, re-
call that, each preconditioning matrix Y; is specific to a ma-
trix K,,, related to a particular value b;. Therefore, from each
nth order polynomial equation only one eigenvalue is kept as
the correct one. This is the eigenvalue whose first approx-
imation is sy = —b;. In this way, the number of eigenval-
ues obtained with this method match the true number of real
eigenvalues p = }7_, rank (K,).

The calculation of eigenvector in the reduced system fol-
lows (46). After calculating y,; , the original system corre-
sponding eigenvector is recovered with z; = Yy;;. A set of
approximated real eigenvalues and eigenvectors is then ob-
tained. After calculating the complex conjugate eigenvalues
and eigenvectors obtained from the original system follow-
ing equations (17) and (19), an approximation to the exact
eigenvalues and eigenvectors ca be obtained for all modes.

6.3. Numerical Results

We consider a three degree-of-freedom system to illustrate
the proposed method. The mass, elastic stiffness and the vis-
cous stiffness matrices in the Laplace domain for the problem
are considered as:

m, 0 O 2k, -k, O
M=|0 m, O0f, K,=|-k, 2k, -k, (58)
0 0 ny 0 _ku 2ku
and
2 a
G(s) = K, , 59
(s) ;} K (59)
where
060 0 O 0 0
a az
b_K”‘ =1 0 0.60 O and b_KVZ =10 020 -0.20
! 0 0 O 2 0 -020 0.20
(60)

For the numerical value we consider m, = 3 kg, k, = 2 and
the values of b; = 1 and b, = 5. The approximate eigenval-
ues obtained using the proposed method is compared with the
results obtained from exact state-space solution in Table 2.
The complex conjugate eigenvalues are obtained very accu-
rately using the proposed approximation. The real eigenval-
ues are not as accurate as the complex conjugate eigenval-
ues. However, recall that the motion corresponding to the
real eigenvalues are purely dissipative in nature and there-
fore do not significantly affect the dynamic response of the
system.

Table 2: Exact and approximate eigenvalues of the Three-DOF system.

Exact solution
(state-space)

Proposed approxi-

mate solution

Percentage error

Real solutions
-0.8649

-0.9324

-4.8744

Complex Conjugate
solutions

-0.0559+ 0.6628i
-0.0402 + 1.1838i
-0.0680 + 1.5569i1

-0.8873
-0.9357
-4.9116

-0.0581 + 0.6613i1
-0.0375 + 1.1837i
-0.0682 + 1.5577i

2.60
0.35
0.76

0.20 + 0.04i
0.02 + 0.23i
-0.05 + 0.01i

A comparison of eigenvectors is available at/Table 3. Each
exact and approximated eigenvector is divided by one of the

terms of the eigenvector, here, the first term. If the first term
of one of the eigenvectors is zero, the normalization is done
with the second term (only happened for the sixth eigenvec-
tor). Only the two different terms of each eigenvector are
given. The accuracy of the approximation is represented in

Figure 2

Table 3: Exact and approximate eigenvectors of the Three-DOF system.

z;  Exact solution Approximation Percentage
error
1" 1.4329+0.0383;i  1.4329+0.0387i  —0.00 + 0.03i
1.0593 £0.1342i  1.0577 £0.1331i ~ 0.16 + 0.08i
2" 0.0762+0.0100i  0.0731 +£0.0145i  3.26 + 6.35i
-0.9582+0.1168; —-0.9621+0.1124i -0.34+0.51i
34 -1.4139+0.1757i -1.4202+0.1686i —0.38 +0.55i
0.9235+0.1443;  0.9240 +0.1382i  0.05 + 0.66i
4™ 1.2021 1.0000 16.82
0.3567 0 100.00
5™ -0.8359 -0.9468 -13.27
-0.2320 0 100.00
6™ 0.0263 0 100
-1.0096 -1.0000 0.95

7. CONCLUSIONS

Multiple degree-of-freedom viscoelastic linear system is
considered. It has been assumed that, in general, the mass
and elastic stiffness matrices as well as the matrix of the ker-
nel functions cannot be simultaneously diagonalized by any
linear transformation. The analysis is restricted to systems
with non-repetitive eigenvalues. The transfer function matrix
of the system was derived in terms of the eigenvalues and
eigenvectors of the second-order system. Exact closed-form
expressions of the response due to arbitrary forcing functions
and initial conditions were obtained.

The calculation of the eigensolutions of viscoelastic sys-
tems requires the solution of a non-linear eigenvalue prob-
lem. In this paper new methods are developed for such
eigenvalue problems. Approximate expressions are derived
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Figure 2: Frequency response function of the MDOF system obtained using
exact and approximate eigenvalues.

for the complex and real eigenvalues of the SDOF system
with single and multiple exponential kernels. These results
are then extended to MDOF systems. These approxima-
tions allow one to obtain the dynamic response of general
viscoelastic systems by simple post-processing of undamped
eigensolutions. The accuracy of the proposed approxima-
tions were verified using numerical examples. The complex
conjugate eigensolutions turn out to be more accurate com-
pared to the real eigensolutions. This is particularly encour-
aging because complex eigensolutions dominate the dynamic
response of linear systems. The method presented offers a
reduction in computational effort because neither the state-
space formalisms nor the additional dissipation coordinates
are employed. This approach might provide further physical
insight as only familiar undamped natural frequencies and
mode shapes are utilized to obtain the eigensolutions and dy-
namic response of the system.
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