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This paper is concerned with distributed sensors to measure the response of beam and

plate structures. The design of modal sensors for beam structures is well established. The

design for plate structures with constant thickness sensors may be achieved by optimizing

the shape of the sensor boundary, or by optimizing the effectiveness of the electrode.

Most applications consider vibration control, but this paper is concerned with structural

health monitoring, where the sensor output is made sensitive to changes in key stiffness

parameters, for example in joints. The procedure is based on finite element models of the

structures, and thus distributed transducers may be designed for arbitrary beam and plate

structures. A simulated beam excited by a rotating machine is used to demonstrate the

approach.

I. Introduction

The idea of using modal sensors and actuators for beam and plate type structures has been a subject
of intense interest for many years. Using modal sensors in active control reduces problems of spillover,
where high frequency unmodeled modes affect the stability of the closed loop system. The sensors and
actuators may be discrete or distributed, and are usually manufactured using piezoelectric material, such
as polyvinylidene fluoride (PVDF) film. For example, a modal sensor for a beam type structure may be
obtained by varying the sensor width along the length of the beam. If the sensor covers the whole beam the
shape of the sensor may be derived using the mode shape orthogonality property.1, 2 Modal sensors may be
designed that cover only part of the beam,3 or are segmented sensors sensitive to multiple modes. The effect
of geometric tolerances during manufacture on the quality of the sensors may be determined.3 For beam
structures the width of the sensor may be parameterized using the finite element method and the underlying
shape functions used to approximate the transducer shape.4

For two-dimensional structures, the approach used for beams may be implemented by varying the thick-
ness of the PVDF, although this is very difficult to achieve in practice. Sun et al.5 replaced an actuator layer
with variable thickness by many small segments of uniform thickness. Kim et al.6, 7 developed two design
methods for distributed modal transducers for composite plates, the first using multi-layered PVDF films
with optimized electrode pattern, lamination angle, and poling direction, and the second using PVDF film
segments and an interface circuit. Preumont et al.8 introduced the porous electrode concept, which allows
the gains to be introduced by changing the local effectiveness of the electrodes. The alternative is to design
a distributed modal transducer by optimizing the continuous boundary shape of a constant thickness PVDF
film by assuming a smooth boundary.9–11

This paper uses the design methods for modal sensors, but extends this approach to the structural health
monitoring application.

The identification of the location and severity of cracks, loose bolts and other types of damage in structures
using vibration data has received considerable attention.12 Most of the approaches use the modal data of
a structure before damage occurs as baseline data, and all subsequent tests are compared to it.13–16 Any
deviation in the modal properties from this baseline data is used to estimate model parameters related to
the damage severity and location. The advantage of using this baseline data is that some allowance is made
for modeling errors. However changes in the structure not due to damage, for example due to environmental
effects, will be difficult to distinguish from changes due to damage.17, 18 The approach adopted in this paper
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is to use shaped transducers to reduce the sensitivity of the sensor output to the unmodeled parameter
changes and environmental effects. For structural health monitoring this means that the response can be
made sensitive to particular regions of interest, so that, for example, the sensor may be used to monitor
the health of a single joint. The method is an extension of the selective sensitivity technique which was
developed to design excitations that produce strong sensitivities to a subset of the parameters whilst causing
the sensitivities to other parameters to vanish. This concept is modified to choose the shaped sensor, although
the spatial and spectral properties of the expected in-service excitation are still an important aspect of the
design.

The finite element model of the structure is of the form

Mq̈ + Dq̇ + Kq = Bu, y = Cq (1)

where M, D and K are the mass, damping and stiffness matrices based on the degrees of freedom, q. The
inputs to the structure, u, are applied via a matrix, B, which determines the location and gain of the
actuators (or the actuator shape for distributed actuators). Similarly the outputs, y, are obtained via the
output matrix C which is determined by the sensor shape. For parameter estimation and health monitoring
applications the mass, damping and stiffness matrices depend on a set of physical parameters, θ.

II. Defining Shaped Sensors

For beam structures whose response is predominantly in bending in a single plane, the transducer may be
shaped by varying the width of the PVDF material. For beam and plate structures either the thickness5–7

or the electrode effectiveness8 (which may be considered equivalent to thickness) may be changed. In all
these cases the width or thickness is assumed to be a continuous function. However this function needs to be
parameterized to enable the optimization of the sensor. Using the shape functions of the underlying finite
element model is a convenient approach to approximate the width or thickness of the piezoelectric material.4

In this way modal transducers may be designed for arbitrary beam or plate type structures, and the sensor
width or thickness (and often its slope also) will be continuous across the element boundaries. Furthermore
modal transducers that only cover part of a structure may be designed. Most of the development will concern
sensors, although actuators may be dealt with in a similar way.

For a plate element, the output (voltage or charge) from the part of the sensor covering element number
e is5

ye (t) = Ks

∫∫

fe (ξ, η)

(

∂2we (ξ, η, t)

∂ξ2
+

∂2we (ξ, η, t)

∂η2

)

dξdη (2)

where fe (ξ, η) defines the effectiveness of the sensor at location (ξ, η) which incorporates the sensor thickness
(or possibly distance from the plate neutral plane), the piezoelectric coefficient and also the polarization
direction. Here a Cartesian coordinate system is used and the integration is performed over the element,
although other coordinate systems could be used. we is the plate deflection within the element. Ks is a
constant relating to the piezoelectric properties. For a rectangular plate element, with dimensions 2a and
2b in the ξ and η directions respectively, the output would be

ye (t) = Ks

∫ b

−b

∫ a

−a

fe (ξ, η)

(

∂2we (ξ, η, t)

∂ξ2
+

∂2we (ξ, η, t)

∂η2

)

dξdη. (3)

For a beam element of length ℓe the output is

ye (t) = Ks

∫ ℓe

0

fe (ξ)
∂2we (ξ, t)

∂ξ2
dξ (4)

where now the sensor effectiveness fe (ξ) allows for varying width, as well as (possibly) varying electrode
effectiveness or thickness. The development will concentrate on sensors for plate structures, although it is
clear that the results for beam structures will be a special case.

The objective is to approximate the continuous sensor effectiveness using a discrete set of parameters,
based on the finite element shape functions. In finite element analysis the displacement is approximated as

we (ξ, η) = N (ξ, η)qe (5)
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where N (ξ, η) are the shape functions and qe are the nodal generalized displacements. Suppose that the
sensor thickness is also approximated by the shape functions, so that

fe (ξ, η) = N (ξ, η) fse (6)

where fse is a vector of the same length as the nodal displacements, that defines the thickness of the sensor. In
this way the continuous sensor thickness is approximated using a finite set of parameters in fse. Substituting
into Eq. (2) gives

ye (t) = f⊤seCseqe (7)

where

Cse = Ks

∫∫

N (ξ, η)⊤
(

∂2N (ξ, η)

∂ξ2
+

∂2N (ξ, η)

∂η2

)

dξdη. (8)

The total sensor output is obtained by summing the output from all of the elements, thus

y =
∑

e

ye = f⊤s Csq (9)

where q is the vector of generalized displacements of the full model, and fs is a vector incorporating the
sensor parameter vectors. In this way, the problem of a continuous thickness variation is changed into a
discrete optimization problem for fs. The assembly process is exactly analogous to the assembly of mass
and stiffness matrices in standard finite element analysis. The only slight difference is the incorporation of
boundary conditions. For example a pinned boundary will require that some of the generalized displacements
are set to zero, which reduces the number of degrees of freedom. Just because a generalized displacement at
a given node is zero does not mean that the corresponding element of the sensor thickness parameters, fs,
should be zero, as the sensor thickness may be non-zero at the boundary. In turn this means that Cs may
be a rectangular matrix. Comparing Eqs. (1) and (9) it is clear that C = fT

s Cs.
For a beam element with cubic shape functions,4

Cse = −
Ks

30ℓe











36 33ℓe −36 3ℓe

3ℓe 4ℓ2
e −3ℓe −ℓ2

e

−36 −3ℓe 36 −33ℓe

3ℓe −ℓ2
e −3ℓe 4ℓ2

e











. (10)

For plate elements the matrices are relatively easy to generate, although difficult to express in a closed
and compact form. Dawe19 described the R1 rectangular element which has four nodes and three degrees of
freedom per node. As an example, consider a square element with side 2a. Then the element output matrix,
Cse, is

Ks

720

















































−600 −120a −120a 168 48a 0 264 −72a −72a 168 0 48a

−552a −143a2 −159a2 −240a −79a2 111a2 24a 31a2 15a2 48a 47a2 −15a2

−552a −159a2 −143a2 48a −15a2 47a2 24a 15a2 31a2 −240a 111a2 −79a2

168 48a 0 −600 −120a 120a 168 0 −48a 264 −72a 72a

−240a −79a2 −111a2 −552a −143a2 159a2 48a 47a2 15a2 24a 31a2 −15a2

−48a 15a2 47a2 552a 159a2 −143a2 240a −111a2 −79a2 −24a −15a2 31a2

264 72a 72a 168 0 −48a −600 120a 120a 168 −48a 0

−24a 31a2 15a2 −48a 47a2 −15a2 552a −143a2 −159a2 240a −79a2 111a2

−24a 15a2 31a2 240a 111a2 −79a2 552a −159a2 −143a2 −48a −15a2 47a2

168 0 48a 264 72a −72a 168 −48a 0 −600 120a −120a

−48a 47a2 15a2 −24a 31a2 −15a2 240a −79a2 −111a2 552a −143a2 159a2

−240a −111a2 −79a2 24a −15a2 31a2 48a 15a2 47a2 −552a 159a2 −143a2

















































(11)
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III. Health Monitoring and Selective Sensitivity

A significant problem with any inverse problem, such as structural health monitoring, is ill-conditioning
of the estimation equations. One major cause of this ill-conditioning is the large number of candidate
parameters that may be regarded as uncertain. Applying excitations that produce strong sensitivities to a
subset of the parameters whilst causing the sensitivities to other parameters to vanish is one way of reducing
the number of parameters to estimate. For structural health monitoring this means that the response can
be made sensitive to particular regions of interest, so that, for example, the sensor may be used to monitor
the health of a single joint. One approach to local structural health monitoring is to use high frequency
impedance measurements,20 although using shaped distributed actuators and sensors could also be applied
to these impedance techniques.

The method of selective sensitivity considers the response predictions to a relatively large number of
excitation forces. In order to provide further explanation, the work of Ben-Haim21–24 will be adapted to
sensors rather than actuators. The selective sensitivity approach is best derived in the frequency domain.
From Eq. (1)

y (ω, θ) = C
[

−ω2M + jωD + K
]−1

Bu (ω) = f⊤CsH (ω, θ)Bu (ω) (12)

where H (ω, θ) =
[

−ω2M + jωD + K
]−1

is the frequency response function (receptance matrix).
At any frequency the sensitivity of the response to parameter θj is given by

Sj (f , ω) =

∥

∥

∥

∥

∂y

∂θj

∥

∥

∥

∥

2

. (13)

Notice that only a single output has been assumed, so that y is a scalar, although the approach is easily
extended to multiple outputs. Then

Sj (f , ω) = f⊤Cs

∂H

∂θj

BuuHBH ∂HH

∂θj

C⊤
s f = f⊤Gj (ω) f (14)

where Gj (ω) may be calculated and the superscript H denotes the conjugate transpose. Gj (ω) is usually
complex, although the imaginary part of the matrix is skew-symmetric so that the sensitivity is real. Thus
the imaginary part of Gj (ω) does not affect the sensitivity and may be neglected. Note that for excitation
at a single location, Gj (ω) has rank 1. The derivative of H may be calculated as

∂H

∂θj

= H

[

−ω2 ∂M

∂θj

+ jω
∂D

∂θj

+
∂K

∂θj

]

H. (15)

The sensitivity defined in Eq. (14) varies with frequency. For the standard selective sensitivity method
the force input is designed and so may be varied with both location and frequency. With a shaped sensor
for health monitoring the excitation is likely to be due to either ambient forces or operational conditions.
Furthermore, to use a simple threshold to determine damage the output required is a single response quantity.
In these cases an integrated sensitivity may be defined as

Ŝj (f) =

∫ ω2

ω1

W (ω)Sj (f , ω) dω (16)

for some frequency weighting function W (ω) (that can be designed along with the sensor shape) and fre-
quency range (ω1, ω2). For a given force input

Ŝj (f) = f⊤
[
∫ ω2

ω1

W (ω)Gj (f , ω) dω

]

f = f⊤Ĝjf . (17)

If the location and spectrum of the force is not known then this makes the design of a selectively sensitive
sensor extremely difficult. The rest of the development will consider only a single frequency using Gj (ω)

defined in Eq. (14), although the methods are readily extended to the frequency weighted versions using Ĝj

defined in Eq. (17).
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The selective sensitivity problem for parameter s is to design the sensor such that

Sj (f) =

{

6= 0 if j = s

= 0 otherwise
(18)

Since the sensitivities are all real and non-negative, the conditions in Eq. (18) may be written as

Ss (f) = f⊤Gsf 6= 0,
∑

j 6=s

Sj (f) =
∑

j 6=s

f⊤Gjf = f⊤G̃sf = 0, (19)

where G̃s =
∑

j 6=s

Gj .

Solving the selective sensitivity requirements exactly is often not possible, in the sense that a solution
may not exist, or may not be unique. One straight-forward approach is to employ an optimization scheme
directly. For example the sensor shape f sensitive to parameter θs is obtained as the vector that minimizes
the objective function

J (f) =







∑

j 6=s

WjSj (f)







/Ss (f) , (20)

where Wj are weighting factors for the different parameters. The thickness of the sensor is then normalized
to the maximum thickness required.

A. Practical Implementation

However this simple approach may lead to difficulties if the solution is not unique and hence there are many
solutions for perfect sensors that satisfy Eq. (18). If the excitation is at a single degree of freedom then the
complex matrix Gj (ω) will have rank 1, although the real part alone will usually have rank 2. If there are
p parameters, and the response should be insensitive to p − 1 of them, then the dimension of the space of
suitable sensor shape vectors, f , based on Eq. (18), is n−2p+2, where n is the length of the vector f . In this
case one has to introduce other regularizing conditions into the optimization. One possibility is to reduce
the number of elements that the sensor covers, and subset selection techniques could be used to determine
the optimum choice of elements. Another possibility is to minimize the transducer curvature,4 which has the
advantage to producing sensors that are easier to manufacture. For beam structures, minimizing transducer
curvature for a sensor covering the whole beam was shown to be equivalent to minimizing f⊤K̂f where K̂ is
the stiffness matrix for the free-free beam. This is equivalent to minimizing a strain energy type expression,
and motivates the optimization problem for the general system.

The best approach is to enforce the zero sensitivity to unwanted parameters before optimizing any other
objectives. Thus a transformation, T, is introduced such that

T⊤G̃sT = 0. (21)

This transformation matrix may be found easily using the singular value decomposition of G̃s (which is
equivalent to the eigenvalue problem since the real part of G̃s is symmetric), and will generally be of
dimension n × (n − 2p + 2). Thus a reduced dimension sensor vector fr may be defined such that f = Tfr,
and is chosen by minimizing

J (f) = f⊤r

[

T⊤K̂T
]

fr (22)

subject to
Ss (f) = f⊤Gsf = f⊤r

[

T⊤GsT
]

fr 6= 0. (23)

This is easily solved by calculating the eigenvalues of T⊤K̃T, and taking the eigenvector corresponding
to the smallest eigenvalue, consistent with Eq. (23). An alternative is to maximize the sensitivity Ss (f) by
choosing fr as the eigenvector corresponding to the largest eigenvalue of T⊤GsT.
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Figure 1. The beam with intermediate supports and harmonic excitation.

IV. A Simulated Beam Example

A clamped-clamped beam example inspired by Gawronski25 will be used here to demonstrate the fea-
sibility of the approach. The steel beam is 1.5 m long with cross-section 20 × 5 mm, and bending in the
more flexible plane is modeled using 15 finite elements. The beam has three further supports along its
length, modeled as springs at nodes 4, 8 and 11, where the node numbering convention means that node 1
is clamped, see Fig. 1. The nominal spring stiffnesses of the supports are 10 kN/m. The first four natural
frequencies of the system are 32.4, 42.7, 70.1 and 109.0 Hz and the corresponding modes are shown in Fig. 2.
For comparison, the corresponding natural frequencies for the beam without spring supports are 11.8, 32.6,
63.9 and 105.6 Hz. The damping is assumed to be proportional to stiffness with a factor of 10−4 s. The force
is applied from a rotating machine operating at 40 Hz at node 6. The distributed sensor is to be designed
for the whole length of the beam initially.

Mode 1

Mode 2

Mode 3 Mode 4

Figure 2. The first four modes of the beam with intermediate supports.

Figure 3(a) shows the sensor shape obtained by minimizing the objective function in Eq. (22) for the
first support stiffness. Note that T⊤K̃T has two zero eigenvalues that produce zero sensitivity to the first
parameter and are therefore not chosen. The sensor width is normalized so that the maximum width is
1. The result is sensitivity ratios of S1/S2 = 1.2 × 1015 and S1/S3 = 8.7 × 1012, demonstrating that the
required sensitivity is obtained. Also shown is the frequency response between the force input location and
the sensor output. The baseline (solid line) is based on the undamaged system, and the responses due to a
10% reduction in each of the three support stiffnesses in turn are also shown. Remember that the sensor has
been designed to operate only at 40 Hz, and at this frequency the response is indeed insensitive to changes in
support stiffnesses 2 and 3. Figure 3(b) shows the equivalent plots when the sensor is designed to be sensitive
to support stiffness 2, also at 40 Hz. It is clear that the procedure has designed sensors with relatively simple
shapes.

Suppose now that the sensor shape is chosen to maximize the sensitivity to the first parameter. The
result is shown in Fig. 4(a), and highlights that the sensor shape is now more complicated. The sensitivity
to parameter 1 is now over 600 times higher than that for the sensor in Fig. 3(a). Figure 4(b) shows
the effect of restricting the region where the sensor is placed, by setting the elements of the parameter
vector f corresponding to finite element nodes 1 − 4 and 11 − 16 to zero. The sensor is designed to ensure
zero sensitivity to parameters 2 and 3 and the minimum curvature solution is chosen. There is clearly a
compromise between the smaller region for the sensor and the complexity of the shape.
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(a) Sensitive to support 1.
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(b) Sensitive to support 2.

Figure 3. The distributed sensor shape designed to be sensitive to particular support stiffnesses at 40Hz for
the beam example, and the associated receptances. The solid line is the baseline FRF, the dashed line is due
to a 10% change in support stiffness 1, the dot-dashed line is due to a change in stiffness 2, and the dotted
line is due to a change in stiffness 3.

V. A Simulated Plate Example

Consider now a rectangular steel plate of dimensions 400 × 300 mm and of thickness 7 mm. The plate
is supported at each of its corners by a spring of stiffness 500 kN/m. The finite element model has 16 × 12
elements, so that each element is 25 mm square, as shown in Fig. 5. The first four natural frequencies of the
system are 21.0, 44.7, 48.8 and 72.7 Hz and the corresponding modes are shown in Fig. 6. The damping is
assumed to be proportional to stiffness with a factor of 10−4 s. The force is applied from a rotating machine
operating at 40 Hz at the node shown in Fig. 5 by a star. The distributed sensor is to be designed for the
whole plate.

Figure 7(a) shows the sensor shape sensitive to the first support stiffness, θ1, only and insensitive to
the other supports, obtained by minimizing the objective function in Eq. (22). Note that T⊤K̃T has
three zero eigenvalues that produce zero sensitivity to the first parameter and are therefore not chosen.
The sensor width is normalized so that the maximum thickness is 1. The result is sensitivity ratios of
S1/S2 = 7.0× 1014, S1/S3 = 5.6× 1013 and S1/S4 = 1.4× 1012, demonstrating that the required sensitivity
is obtained. Figure 7(b) shows the sensor shape only sensitive to the second support stiffness, θ2, and the
corresponding sensitivity ratios are S2/S1 = 1.7×109, S2/S3 = 6.3×1011 and S2/S4 = 2.3×109. Notice that
the shape is very close to that obtained for the first support stiffness and this means that the sensor would
have to be manufactured very accurately. Investigations are continuing to determine methods to produce
more robust and local sensors for these structures.

VI. Conclusions

This paper has designed distributed sensors by varying the width (for beams) or thickness (for plates)
for structural health monitoring applications. The finite element shape functions are used to define the
width or thickness of the sensor and this allows much more flexibility in designing sensors that cover only
part of the structure, and other constraints, such as the minimum curvature, may be easily included. It
has been demonstrated that sensors may be designed that are sensitive to changes in a single parameter,
and insensitive to changes in other parameters. Although much more analysis of these designs is required,
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(a) Maximize sensitivity to support 1.
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(b) Restrict sensor region.

Figure 4. The distributed sensor shape designed to be sensitive to support stiffness 1 at 40Hz for the beam
example, and the associated receptances. The solid line is the baseline FRF, the dashed line is due to a 10%
change in support stiffness 1, the dot-dashed line is due to a change in stiffness 2, and the dotted line is due
to a change in stiffness 3.

the approach does allow the prospect of a simple distributed sensor to monitor a single region, such as a
joint, and be insensitive to other changes, such as those arising from environmental changes. The output
from such a sensor could have a threshold alarm system, allowing a robust but simple distributed structural
health monitoring system.
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