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This paper presents a practical solution for probabilistic characterization of real valued 
eigenvalues of positive semi-definite random matrices.  The present method is founded on 
the concept of high dimensional model representation (HDMR) technique.  The method 
involves HDMR that facilitates lower dimensional approximation of the eigenvalues, 
response surface generation of HDMR component functions, and efficient Monte Carlo 
simulation for probability density functions.  HDMR is a general set of quantitative model 
assessment and analysis tools for capturing the high-dimensional relationships between sets 
of input and output model variables.  It is a very efficient formulation of the system 
response, if higher-order variable correlations are weak, allowing the physical model to be 
captured by the first few lower-order terms.  Results of two numerical examples indicate 
that the proposed method provides accurate and computationally efficiency.  Compared 
with commonly-used perturbation and recently-developed asymptotic methods, no 
derivatives of eigenvalues are required in the present method.   

Nomenclature 
x  = N-dimensional random variables 
x  = reference points for HDMR expansion 

xμ  = mean of random variable 

xσ  = standard deviation of random variable 

( )E •  = expectation operator 
Σx  = covariance of random variables 

( )•k  = stiffness matrix 

( )•m  = mass matrix 

( )Λ •  = eigenvalues 

( )Φ •  = eigenvectors 

( )jφ •  = MLS interpolation function 
n  = sample points in HDMR expansion 
s  = order of component function in HDMR expansion 
l  = order of HDMR expansion 

sN  = simulation size in direct MCS 

I. Introduction 
ANDOM matrix theory is concerned with determining probabilistic characteristics of eigenvalues and 
eigenvectors of matrices defined by a statistical distribution.  The study of probabilistic characterization of the 
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eigenfunctions of random matrix and differential operators has emerged as an important research topic in the field of 
stochastic structural mechanics.  In particular, several studies have been conducted on both self adjoint and non-self 
adjoint eigenvalue problems.  Other issues are multiplicity of eigenvalues and the related problems.   

Characterization of the natural frequencies and mode-shapes play an important descriptor of the dynamics and 
stability of structural systems.  The determination of natural frequency and mode shapes require the solution of an 
eigenvalue problem.  Eigenvalue problems also arise in the context of the stability analysis of structures.  
Description of real-life engineering structural systems is inevitably associated with some amount of uncertainty in 
specifying material properties, geometric parameters, boundary conditions and applied loads.  Taking into account 
of these uncertainties, it is necessary to consider random eigenvalue problems.   

The majority of recent studies employed the mean centered first- and second-order perturbation approach to 
estimate the first- and the second-order statistics of eigenvalues and mode shapes 1–3, the iteration method 1, the Ritz 
method 4, the crossing theory 5, the stochastic reduced basis 6, the subspace iteration 6, and the asymptotic method 7.  
Among these methods, perturbation methods have dominated the current literature.  A systematic account of 
perturbation approaches to random eigenvalue problems is well documented in a research monograph by Scheidt 
and Purkert 8.   

Perturbation approach involves first- or second-order Taylor series expansions of the eigenvalue or eigenvector 
in terms of basic input random parameters.  However, the perturbation methods require expensive calculation of 
derivatives of eigensvalues9, and more importantly, are limited to small non-linearity of input–output mapping or 
small input uncertainties.  But such limitations are rarely satisfied in engineering applications. On the other hand, 
simulation methods could be applied to solve any random eigenvalue problem.  But the main disadvantage is that, 
simulation methods require tremendous computational effort due to large number of deterministic structural analysis 
for different realizations of the random variables.  Consequently, the simulation method is useful only when 
alternative methods are inapplicable or inaccurate, and has been traditionally employed as a yardstick for evaluating 
approximate methods.  Hence, new stochastic methods for characterizing eigenvalue problems that can manage 
highly nonlinear input-output mapping and arbitrarily large uncertainties of input are highly desirable. 

This paper presents a novel computational method for predicting probability density functions of eigenvalues of 
real, positive semi-definite, stochastic matrices.  The method involves HDMR technique in conjunction with moving 
least squares (MLS) technique that facilitates a multivariate eigenfunction with multiple low dimensional 
eigenfunctions.   

II. Random Eigenvalue Problem 
 Let the N−dimensional vector { }1 2, , , Nx x x= Kx , represent the input random variables with mean vector 

( )E≡xμ x  and covariance matrix ( )( )T
x xE μ μ⎡ ⎤Σ ≡ − −⎣ ⎦x x x .  For undamped or proportionally damped systems, 

let ( )k x  and ( )m x  denote real valued, symmetric, positive semi-definite random stiffness and mass matrices, 

respectively.  The generalized linear random eigenvalue problem for a random matrix pair ( )k x  and ( )m x  is 
defined as  
 ( ) ( ) ( ) ( ) ( )Φ Λ Φ=k x x x m x x  (1) 

where ( ) ( ), ; 1, 2, ,i i i lΛ Φ K⎡ ⎤ =⎣ ⎦x x  is the i-th eigenpair that includes random eigenvalues ( )iΛ x  and eigenvector 

( )iΦ x .  Based on the characteristics of random matrix pair ( )k x  and ( )m x , Equation 1 yields real eigenvalues 

( ) ; 1,2, ,i i lΛ Kx = , where ( )Λ x  depends on random input { }1 2, , , Nx x x= Kx  through the solution of 
characteristics equation  
 ( ) ( ) ( )det 0Λ⎡ ⎤− =⎣ ⎦k x x m x  (2) 
A major objective in solving a random eigenvalue problem is to find probabilistic characteristics of eigenpair 

( ) ( ), ; 1, 2, ,i i i lΛ Φ K⎡ ⎤ =⎣ ⎦x x . 

III. Concept of HDMR 
 Let the N−dimensional vector { }1 2, , , Nx x x= Kx , represent the input random variables of the model under 

consideration, and real-valued eigenvalue as ( )λ x .  Since the influence of the input variables on the response 
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variable can be independent and/or cooperative, HDMR10−13 expresses the response ( )λ x  as a hierarchical 
correlated function expansion in terms of the input variables as 
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where 0λ  is a constant term representing the zeroth-order component function.  The function ( )i ixλ  is a first-

order term expressing the effect of variable xi acting alone.  The function ( )1 2 1 2
,i i i ix xλ  is a second-order term which 

describes the cooperative effects of the variables xi and xj upon the output ( )λ x  and so on.  Once all the relevant 
component functions in Equation 3 are determined and suitably represented, then the component functions constitute 
HDMR, thereby replacing the original computationally expensive method of calculating ( )λ x  by the 
computationally efficient model.   

To develop the response surface, first a reference point { }1 2, , , Nx x x= Kx  is defined in the variable space.  This 
process reduces to the following relationship for the component functions in Equation 3 
 ( )0λ λ= x  (4) 

 ( ) ( ) 0, i
i i ix xλ λ λ= −x  (5) 

where the notation ( ) ( )1 2 1 1, , , , , , , ,i
i i i i Nx x x x x x xλ λ − += K Kx  denotes that all the input variables are at their 

reference point values except ix .   
The notion of 0th, 1st order, etc. in the HDMR expansion should not be confused with the terminology used either 

in the Taylor series or in the conventional least-squares based response surface model.  It can be shown that14, 15, the 
first order component function ( )i ixλ  is the sum of all the Taylor series terms which contain and only contain 
variable ix .  Hence first-order HDMR approximations should not be viewed as first-order Taylor series expansions 

nor do they limit the nonlinearity of ( )λ x .  Therefore, provide in general higher-order representation of eigenvalues 
than those by commonly employed first- or second-order perturbation methods. 

IV. Marginal Densities of Eigenvalues 
HDMR in Equation 3 is exact along any of the cuts, and the output response ( )λ x  at a point x off of the cuts 

can be obtained by following the procedure in step 1 and step 2 below: 
Step 1: Interpolate each of the low dimensional HDMR expansion terms with respect to the input values of the 

point x.  If for ,j
i ix x=  n function values ( ) ( )1 1 1, , , , , , , ; 1, 2, ,j i j

i i i i Nx x x x x x j nλ λ − += =K K Kx , are given at 

( ) 3,5,7 or 9n =  regularly spaced sample points ( )1 2i inμ σ− − , ( )3 2i inμ σ− − , …, iμ , …, ( )3 2i inμ σ+ − , 

( )1 2i inμ σ+ −  along the variable axis xi with mean iμ  and standard deviation iσ , the function value for arbitrary 

ix  can be obtained using MLS16 interpolation as 

 ( ) ( ) ( )1 1 1
1

, , , , , , ,
n

i j
i j i i i i N

j

x x x x x x xλ φ λ − +
=

= ∑ K Kx  (6) 

where ( )j ixφ  is the interpolation function obtained using the MLS interpolation.  By using Equation 6, 

( )i ixλ can be generated if n function values are given at corresponding sample points.  The same procedure shall be 

repeated for all the first-order component functions (as defined in Equation 5), i.e., ( ); 1,2, ,i ix i Nλ = K .   
Step 2: Sum the interpolated values of HDMR expansion terms from zeroth-order to the highest order retained in 

keeping with the desired accuracy.  This leads to first-order approximation of the function ( )λ x  as 

 ( ) ( ) ( ) ( )1 1 1 0
1 1

, , , , , , 1
N n

j
j i i i i N

i j

x x x x x x Nλ φ λ λ− +
= =

= − −∑∑% K Kx  (7) 
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If n is the number of sample points taken along each of the variable axis and s is the order of the component 
function considered, starting from zeroth-order to l-th order, then total number of function evaluation for 

interpolation purpose is given by, ( )( ) ( )( )
0

! 1 ! !
l

s

s
N n N s s

=

− −∑  which grows polynomially with n and s.  As a few 

low order component functions of HDMR are used, the sample savings due to HDMR are significant compared to 
traditional sampling.  Hence uncertainty analysis using HDMR relies on an accurate reduced model being generated 
with a small number of full model simulations.  An arbitrarily large sample Monte Carlo analysis can be performed 
on the outputs approximated by HDMR which result in the same distributions as obtained through the Monte Carlo 
analysis of the full model, if higher order cooperative effects are negligible.  The tremendous computational savings 
result from just having to perform interpolation instead of full model simulations for output determination.   

V. Simulation 

Equations 7 provides first-order HDMR approximation ( )λ% x  of the original random eigenvalues ( )λ x  using 

the MLS interpolation functions, constant ( )λ x  term, first-order ( )1 1 1, , , , , ,j
i i i Nx x x x xλ − +K K  terms.  Therefore, 

any probabilistic characteristics of eigenvalues, including the marginal or the joint probability density function of 
( )λ x  can be easily estimated by performing Monte Carlo simulation (MCS) on first-order approximation ( )λ% x  of 

the original random eigenvalues ( )λ x .   
Since first-order HDMR approximation leads to explicit representation of the original matrix characteristic 

equation, the MCS can be conducted for any sampling size.  The total cost of original function evaluation entails a 
maximum of ( )1 1n N− × +  by the present method using first-order HDMR approximation.  It is worth noting that 
moments of eigenvalues can also be determined from samples generated using Equations 7. 

VI. Numerical Example 
Two numerical examples involving linear dynamics of spring-mass systems and a ten bar truss structure are 

presented to illustrate the performance of the present method.  Whenever possible, comparisons have been made 
with the direct MCS to evaluate the accuracy and efficiency of the proposed method.  The Gaussian assumption of 
random input is adopted mainly for comparing the proposed approach with existing methods that employ Gaussian 
input with readily available results.  However, present method does not limit to the Gaussian assumption only.  For 
the first example, the eigenvalues are calculated by an IMSL subroutine, which employs a hybrid double-shifted LR-
QR algorithm17.  A Lanczos algorithm embedded in the finite element code ADINA (Version 8.3.1)18 is employed to 
obtain the fundamental eigenvalue for the second example.  In all examples, five sample points (n = 5) are deployed 
along each of the variable axis for first-order HDMR approximation. 

A. Example 1: Two degrees of freedom undamped system 
Consider a two degree of freedom undamped9 system as shown in Figure 1, with mass matrix 

 1

2

0
0
m

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

m  (8) 

 
 
 
 
 
 
 
 
 
and stiffness matrix  

 ( ) ( )
( )

1 3 3

3 2 3

k k k
k k k

⎡ + − ⎤
= ⎢ ⎥− +⎣ ⎦

x
k x

x
 (9) 

k1 

m1 m2 

k3 k2 

Figure 1: Two degree of freedom system 
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where mass matrix is deterministic and stiffness matrix is random.  Masses 1 1 kgm = , 2 1.5 kgm = , 

( ) ( )1 11000 1 0.25 N/mk x= +x , ( ) ( )2 21100 1 0.25 N/mk x= +x , and ( )1 100 N/mk =x .  The input random variables 

{ }1 2,x x=x  are standard Gaussian with mean 0=xμ  and standard deviation 1=xσ .   
Figure 2(a) and (b) present the plots of eigensurface of two exact eigenvalues 1λ  and 2λ , respectively for 

4 4; 1, 2ix i− ≤ ≤ = , obtained by solving the matrix characteristic equation (refer Equation 2).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approximate eigenvalues by the proposed method are evaluated using Equation 7.  Figures 3 and 4 compare the 

effectiveness of the present method with exact solution in terms of contour plots of 1λ  and 2λ , respectively. 
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Figure 2: Plots of eigensurface 
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The difference between contours by the exact method and by the proposed method using first-order 
approximation of HDMR is due to the absence of cooperative effect.  Figures 5(a)–(b) compare predicted marginal 
densities of two eigenvalues obtained by the proposed method using first-order HDMR approximation and the direct 
MCS.  Similarly, Figures 6(a)–(b) display the cumulative densities of two eigenvalues obtained by the proposed 
method using first-order HDMR approximation and the direct MCS. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the present method MCS is conducted in conjunction with first-order HDMR approximation of eigenvalues.  

Here, although the same sampling size as in direct MCS is considered, the number of original matrix characteristic 
equation evaluation is very less.  Compared with the direct MCS, present method using first-order HDMR 
approximation provide excellent estimates of the probability density of eigenvalues.   

B. Example 2: Tenbar truss structure 
To examine the accuracy and efficiency of the proposed method, a 10-bar, linear-elastic, truss structure15, shown 

in Figure 7, is considered in this example. Young’s modulus of the material is 710 psi .  Cross-sectional area 
, 1, 2, ,10ix i = K  for each bar follows normal distribution and has mean 22.5 inμ =  and standard deviation 

20.5 inσ = .  The reference point x  is taken as mean values of the random variables.   
Present method and MCS using the commercial finite element code (ADINA)17 are employed for evaluating 

probabilistic characteristics of fundamental eigenvalue of the structure.  In both methods, the calculation of the 
matrix characteristic equation for a given input is equivalent to performing a finite element analysis.  Therefore, 
computational efficiency, even for this simple truss structure, is a major practical requirement in solving random 
eigenvalue problems.  Five uniformly distributed sample points n = 5 along each of the variable axis are deployed 
for first-order HDMR approximation. 
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Figures 8(a) and (b) show marginal probability density of the fundamental eigenvalue by the first-order HDMR 

approximation and the direct MCS.  A sampling size 510SN =  (finite element analyses) is considered in direct 
MCS, while only 41 finite element analyses are required by the first-order HDMR.  However, since the first-order 
HDMR yields explicit eigenvalue approximations, an arbitrarily large sample size, e.g. 106 in this particular 
example, is selected to perform the embedded Monte Carlo analysis.  It can be observed that, the agreement between 
the results of the first-order HDMR and the direct MCS is fairly accurate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. Conclusion 
A new method, called High Dimensional Model Representation (HDMR), was developed for probabilistic 

characterization of real-valued positive semi-definite random matrices.  The method is based on: (a) HDMR which 
allows lower order approximations of eigenvalues of multivariate eigenfunction, and (b) MLS interpolation 
facilitating efficient MCS for marginal densities.  The computational effort in probabilistic characterization of 
eigenvalues can be viewed as performing eigenvalue analyses at selected sample points deployed along each of the 
variable axis.  Results of numerical examples involving linear dynamics of spring-mass systems and finite element 
analysis of a truss structure indicate that the developed method provides fairly accurate estimates probability 
densities of eigenvalues. 
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