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Introduction

About myself:

BSc in Applied Mathematics (ITAM, Mexico City)

MSc in Statistics and OR (University of Essex, UK)

2nd year PhD student (funded by EPSRC and
CONACYT)

This presentation summarizes the work carried out as part of
the PhD project "Coupled Models: Expert Judgement,
Emulators and Model Uncertainty".
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Simulators

Problem: There exist phenomena which are complex
enough to make physical experimentation impossible.

Solution: Study these systems running computer codes,
also known as simulators (O’Hagan, 2006).

A simulator is a function η : R
d1 → R

d2 that, given an input x,
it produces an output y.

Potential drawback: High cost of execution.
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Simulators

Such cost may be measured as:

CPU time employed

Number of floating point operations performed
Required computer capability

Examples: Sophisticated climate models that take months to
complete a single run (Goldstein, 2007). Prodigious
computer power needed to simulate the outcome of a car
accident (Thomke et al., 1999).
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Emulators

A solution: Build an emulator of the expensive simulator.

An emulator is a statistical approximation to the simulator,
i.e., it provides a probability distribution for η(·).

Emulators have already been used in a number of scientific
fields, which include:

Environmental science (Challenor et al., 2006)

Climate prediction (Rougier, 2007)
Medical science (Haylock and O’Hagan, 1996)
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Emulators

Emulators are built by choosing n design points in the input
domain of the simulator and obtaining the training set
T = {y1 = η(x1), . . . , yn = η(xn)}.

Once this choice is made, an emulator should:

Reproduce the known output at any design point.

At any untried input, provide a distribution whose mean
is a plausible interpolation of the training data. The
probability distribution around this predictive mean
should also express the uncertainty about how the
emulator might interpolate.
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Emulators

The following figures illustrate how an emulator would
approximate the simple simulator y = 0.5x − xsin(x), and
estimate the uncertainty about such approximation.

In Figure 1, the solid line is the output of the simulator. The
circles represent the training runs, and the dots are the
mean of the emulator, which provides the approximation.

In Figure 2, the solid line is the output of the simulator. The
circles represent the training runs, and the shaded areas are
probability bounds of two standard deviations around the
predictive mean.
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Approximation
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Figure 1: Predictive mean (· · · ) using 6 training runs (o).
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Uncertainty

Figure 2: Uncertainty bounds using 6 training runs (o).
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Emulators

From a Bayesian perspecive, η(·) is regarded as a random
variable in the sense that it is unknown until the simulator is
run.

Assume that η(·) deviates from the mean of its distribution in
the following way

η(x) =
n∑

j=1

βjhj(x) + Z(x) (1)

where for all j, hj(x) is a known function and βj is an
unknown coefficient.
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Emulators

The function Z(·) in Eq.(1) is assumed to be a Gaussian
stochastic process (GP) with mean zero and covariance
given by

Cov(η(x), η(x
′

)) = σ2e−(x−x
′

)T B(x−x
′

) (2)

where B is a positive definite diagonal matrix that contains
smoothness parameters.

If the mean of η(·) is of the form m(·) = h(·)T β then η(·) has
a GP distribution with mean m(·) and covariance given by
Eq.(2).
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Emulators

The latter is expressed as

η(·)|β, σ2 ∼ N(h(·)T β, σ2C(·, ·)) (3)

Subjective information about the relationship between input
and the unknown output is contained in this prior distribution.

The next step is to update this belief by adding objective
information, represented by the vector of observations
y = [y1 = η(x1), . . . , yn = η(xn)]T .
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Emulators

Using standard integration techniques, it can be shown
(Haylock and O’Hagan, 1996) that such update is

η(·)|y, σ2 ∼ N(m∗∗(·), σ2C∗∗(·, ·)) (4)

where m∗∗(·) constitutes the fast approximation of η(x) for
any x in the input domain.

Moreover, it can be shown that

η(x) − m∗∗(x)

σ̂
√

(n−q−2)C∗∗(x)
n−q

∼ tn−q (5)
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Linear dynamical systems

Title: Bayesian Emulator Approach for Complex Dynamical
Systems

Conference: 49th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics & Materials Conference; Schamburg,
Illinois, USA.

Rationale: Running a simulator to compute the frequency
response function (FRF) of a complex engineering system
can be very expensive, even for obtaining the response at
few frequency points. A Gaussian process emulator (GPE)
can approximate the FRF over a frequency range, using only
a few response values, obtained either from experimental
measurements or by running a finite element model at
carefully selected inputs.

Aberystwyth, 16 December 2008 GPE Appch. for Eng. Mechs. – p.15/59



Linear dynamical systems

The FRF of a simple spring-mass system, shown in Figure
3, was emulated for illustration.

The associated simulator is of the form

η(ω) =
∣∣∣[−ω2M + iωC + K]−1f(ω)

∣∣∣ (6)

where M, C and K are respectively the mass, damping and
stiffness matrices, ω is the frequency level, and f(ω) is the
Fourier transform of the forcing vector.

The predictive mean of the emulator and its probability
bounds are shown in Figures 4 and 5.
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Linear dynamical systems

Figure 3: Simple spring-mass system.
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Linear dynamical systems
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Figure 4: Predictive mean (· · · ) using 31 training runs (o).
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Linear dynamical systems

Figure 5: Uncertainty bounds using 31 training runs (o).
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Linear dynamical systems

The system above is non-proportionally damped. For such
systems, the computation of the FRF is numerically more
expensive than in the idealized case of proportional
damping.

The FRF of a much bigger system, with 1200 degrees of
freedom, divided in three frequency ranges (0 - 1.0 kHz as
the low-frequency range, 1.0 - 2.5 kHz as the
medium-frequency range, and 2.5 - 4.0 kHz as the
high-frequency range), was emulated.

The system corresponds to an experiment involving a
cantilever plate excited by a force whose the frequency
response was measured at six different locations.
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Linear dynamical systems
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Figure 6: Predictive mean (· · · ) using 100 training runs (o), low frequency range.
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Linear dynamical systems

Figure 7: Uncertainty bounds using 100 training runs, low frequency range.
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Linear dynamical systems
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Figure 8: Predictive mean (· · · ) using 75 training runs (o), medium frequency range.
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Linear dynamical systems

Figure 9: Uncertainty bounds using 75 training runs, medium frequency range.
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Linear dynamical systems
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Figure 10: Predictive mean (· · · ) using 50 training runs (o), high frequency range.
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Linear dynamical systems

Figure 11: Uncertainty bounds using 50 training runs, high frequency range.
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Linear dynamical systems

With a resolution of 1 Hz, the number of design points in the
figures above represents 10%, 5% and 3% the size of the
input domain.

The results were validated using adequacy measures, such
as the standardized prediction error

δse
j (y∗) =

y∗
j − m∗∗(η(ω∗

j ))

σ̂
√

C∗∗(η(ω∗
j ), η(ω∗

j ))
(7)

where the set of validation data y∗ = [y∗
1 = η(ω∗

1), . . . ,

y∗
n = η(ω∗

v)]
T should be such that |δse

j (y∗)| ≤ 2.

Aberystwyth, 16 December 2008 GPE Appch. for Eng. Mechs. – p.27/59



Linear dynamical systems
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Figure 12: Predictive mean vs standardized errors for 50 validation points.
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Linear dynamical systems
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Figure 13: Validation points vs standardized errors for 50 validation points.
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Initial Design

Title: Gaussian Process Emulators for Dynamical Systems
with Random Parameters

Conference: Tenth International Conference on Structural
Safety and Reliability (ICOSSAR 09); Osaka, Japan.

Rationale: Compare two strategies for selecting design
points for an emulator of the mean frequency response of a
dynamical system with random parameters, taking Monte
Carlo simulation as a benchmark. The input domain the
simulator can be divided into two subdomains: the one
corresponding to the frequency domain and the one
associated with the random nature of the response. The
comparison of strategies can help elucidate whether the
accuracy and computation time of Gaussian process
emulators can be improved.
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Initial Design

Let S ≃ 104 and θ = [θ1, . . . , θS ]T . Suppose that, for {ωℓ}
M
ℓ=1 in

the input domain of η(·), the mean FRF

η(ωℓ, θ) =
1

S

S∑

s=1

η(ωℓ, θs) (8)

is to be estimated. Note that if η(·) is computationally
expensive, M should be fairly small with respect to the size
of the input domain.

A straightforward approach is Monte Carlo simulation: For
ℓ = 1, . . . ,M , simulate {η(ωℓ, θs)}

S
s=1 and evaluate Eq.(8)

directly.
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Initial Design

The number of evaluations of η(·) using Monte Carlo
simulation would be SM ≃ 104M . The theoretical advantage
of this approach is that the results are evaluated directly.
Unfortunately, since η(·) is assumed to be computationally
expensive, the method can quickly become intractable.

Emulation strategy 1: Simulate a much smaller number of
means and use that information as the training runs
necessary to emulate the M means of interest.

Select the design points ω∗
1, . . . , ω

∗
m, with m ≪ M . Then

obtain η(ω∗
1, θ), . . . , η(ω∗

m, θ) as in Eq.(8). Use the resulting
training runs {ω∗

i , η(ω∗
i , θ)}

m
i=1 to emulate the M means

corresponding to {ωℓ}
M
ℓ=1.
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Initial Design

The number of evaluations of η(·) with strategy 1 would be
Sm ≃ 104m. Theoretically, the computational burden should
be reduced as 104m ≪ 104M .

Emulation strategy 2: Select design points along the
“θ-dimension" of the input domain of η(·), rather than
frequency design points.

First, generate θ∗1, . . . , θ
∗
L for L ≪ 104. Then, for each of the

M frequency points in {ωℓ}
M
ℓ=1 compute the training runs

{θ∗j , η(ωℓ, θ
∗
j )}

L
j=1 and emulate NE points {θ̃k, η(ωℓ, θ̃k)}

NE

k=1 to
calculate the mean

η(ωℓ, θ̃) =
1

NE

NE∑

p=1

η(ωℓ, θ̃p) (9)

Aberystwyth, 16 December 2008 GPE Appch. for Eng. Mechs. – p.33/59



Initial Design

where θ̃ = [θ̃1, . . . , θ̃S ]T .

The number of evaluations of η(·) would be L · M . The
computational burden should also be reduced compared to
Monte Carlo simulation, as L · M ≪ 104M .

Both strategies above involve less evaluations of η(·) than
pure Monte Carlo simulation. However, in order for strategy
2 to outperform strategy 1, it has to be true that

L · M < S · m (10)

Suppose S = 104 and m = M/10, which might be
reasonable, since m is small. Then, the inequality is true if
and only if L < 103, which is also plausible, since by
assumption L ≪ 104.
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Initial Design

Numerical experiments were performed to test the efficiency
of both strategies, taking Monte Carlo simulation as
benchmark. For that purpose, the stiffness matrix K(θ) was
modeled using a random k of the form

k = k0(1 + ǫθ) (11)

where k, ǫ ∈ R and θ ∼ U [0, 1].

The result of implementing strategy 1 is shown in Figure 14.
For S = 104 simulations, the total number of values to be
inferred was M = 180. The number of design points was
m = 18. In order for these design points to be evenly spread
in the input domain [0, 3], they were generated using Latin
hypercube sampling.
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Initial Design

The rest of the parameters were k0 = 1 and ǫ = 0.3. The
stars represent the Monte Carlo benchmark means
η(ω1, θ), . . . , η(ω180, θ). The circles represent the emulated
means. The shaded area is the superposition of the 104

simulations of η(ω, θ).

As predicted, strategy 1 resulted a less expensive
approximation, taking 9.28 seconds whereas Monte Carlo
simulation took 84.77 seconds.
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Initial Design

Figure 14: Emulation taking design points in the ω-dimension of η(·).
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Initial Design

For strategy 2, the mean for every ωℓ ∈ {ωℓ}
180
ℓ=1 was

emulated selecting an initial design θ∗1, . . . , θ
∗
L, with L = 10.

Latin hypercube sampling was used to evenly spread the
design points in the corresponding input domain. Such input
domain was [k0, k0 + ǫ], with k0 = 1 and ǫ = 0.3. Once the
training runs were obtained, NE = 20 values
η(ωℓ, θ1), . . . , η(ωℓ, θ20) were emulated and their mean was
computed.

An improvement in the accuracy of the approximation was
observed. This strategy took 1.98 seconds, outperforming
both Monte Carlo simulation and strategy 1. In Figure 15,
the diamonds are the emulated means. The stars are the
same Monte Carlo benchmark means and the shaded area
is the superposition of the 104 simulations of η(ω, θ).
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Initial Design

Figure 15: Emulation taking design points in the θ-dimension of η(·).
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Random field discretisation

Title: Bayesian Emulators and the Stochastic Finite Element
Method

Conference: The Sixth International Conference on
Engineering Computational Technology; Athens, Greece.

Rationale: The efficient evaluation of discretised random
fields is necessary for calculating the response of complex
engineering systems with uncertain parameters. In such
cases, few training runs of an expensive simulator that
computes the corresponding Karhunen-Loève expansion
can be employed to build an emulator that approximates the
random field involved.
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Random field discretisation

The Stochastic Finite Element Method (SFEM) models the
elastic, mass and damping properties with the following
equilibrium equation

D(x, θ)u(x, θ) = f(x, θ) (12)

where D(x, θ) ∈ R
d×d is a random matrix, u(x, θ) ∈ R

d is the
random response vector, f(x, θ) ∈ R

d is the (possibly)
random forcing vector, and d is the number of degrees of
freedom (dof) in the finite element mesh.

The random matrix D(x, θ) is modeled with a random field
as:

D(x, θ) = H(x, θ)Ddet (13)

where Ddet is a deterministic matrix.
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Random field discretisation

A convenient discretisation of the random field H(x, θ) is the
Karhunen-Loève expansion (KLE), for which

H(x, θ) = µ(x) +
∞∑

i=1

√
λiξi(θ)φi(x) (14)

where µ(x) is the mean of the process, {ξi(θ)}
∞
i=0 are

random variables, {λi}
∞
i=0 and {φi(x)}∞i=0 are the eigenvalues

and eigenfunctions of the covariance kernel K(·, ·), obtained
by solving the integral equation

∫

Ω

K(xi, xj)φn(x)dxi = λnφn(xj) (15)
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Random field discretisation

A Gaussian homogeneous two-dimensional random field
with mean µ, variance σ2 and exponential covariance kernel
was considered, that is

K(xi, xj) = σ2e−(|x(1)
i −x(1)

j |/γ1+|x(2)
i −x(2)

j |/γ2) (16)

where the parameters γ1, γ1 are known as correlation
lengths.

If the order of the KLE is M , then the relevant simulator is

η(x, θ) = µ +

M∑

i=1

√
λiξi(θ)φi(x) (17)
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Random field discretisation

The spatial domain of the simulator was chosen to be the
region RL = [0, L] × [0, L]. Hence, the number of dof in the
finite element mesh was d = (L + 1)2.

The initial spatial design {x1, . . . , xn} was selected using
Latin hypercube sampling, such that n was 10% of d.

Figure 16 shows the values of the emulator’s predictive
mean compared against the simulator’s realization of the
random field, as well as the initial design.
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Random field discretisation
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Figure 16: Emulation of the values of H(x, θ) at the nodal points and initial design.
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Random field discretisation

The time employed to produce one realization of H(x, θ) for
an increasing number of nodes is shown in Table 1.

No. Nodes Time (sec.) Direct Time (sec.) Emulator

121 9.56 0.07

256 19.92 0.24

441 34.43 0.75

961 76.23 6.05

1681 131.29 17.76

2601 273.18 59.66

Table 1: Number of nodes vs. CPU time employed
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Polynomial chaos expansion

Title: Coupling Polynomial Chaos Expansions with
Gaussian Process Emulators: An Introduction

Conference: 27th International Modal Analysis Conference
(IMAC-XXVII); Orlando, Florida, USA.

Rationale: Several methods to solve linear systems of stochastic
partial differential equations are available in the literature. Despite their
theoretical appeal, their implementation presents at least one of the
following disadvantages: a) lack of the geometrical appeal; b) limited
applicability due to restrictive analytical constraints; c) non-guaranteed
convergence of the series expansions involved; d) potentially high
computational cost. The Polynomial Chaos Expansion Method (PCEM)
has gained attention for addressing a) - c). However, this method’s
applicability is still bounded by computational cost.
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Polynomial chaos expansion

Aiming to solve the system in Eq.(12), the PCEM expresses
each component of the random displacement vector u(x, θ)
as a series of orthogonal polynomials (e.g. Hermite)
{Ψj(θ)}

∞
j=0, such that

u(x, θ) =
P−1∑

j=0

cj(x)Ψj(θ) (18)

where each cj is a deterministic vector.

Simultaneously, the random field defining the random matrix
D(x, θ) in Eq.(12) is discretised through the truncated
Karhunen-Loève expansion such that
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Polynomial chaos expansion

D(x, θ) =
M∑

i=0

Di(x)ξi(θ) (19)

where each Di is a deterministic matrix.

The approximate solution is obtained by minimizing the
underlying residual

R(x, θ) =
M∑

i=0

P−1∑

j=0

Dicj(x)ξi(θ)Ψj(θ) − f(x, θ) (20)

by means of a projection onto the space spanned by
{Ψj(θ)}

P−1
j=0 .
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Polynomial chaos expansion

It can be shown that the PCEM eventually yields a system of
the form

K · U = F (21)

where K is a global stiffness matrix of size NP × NP , where
N is the number of dof.

Unfortunately, the number of polynomials P in the expansion
grows very rapidly for small increases in the order of the
polynomials p, and in the number of terms in the
Karhunen-Loève expansion M , namely

P (p,M) =

p∑

k=0

(
M + k − 1

k

)
(22)
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Polynomial chaos expansion

A polynomial chaos simulator was used to solve a problem
involving a cantilever thin square plate subject to a uniform
tension along the free edge.

The modulus of elasticity was modeled as a Gaussian
random process with known mean and known exponential
covariance structure.

The aim was to calculate the norm of the displacement of
each node in the finite element model of the plate. The plate
was assumed to coincide with the set [0, 1] × [0, 1].

The following table illustrates how quickly can the method
become computationally intractable, even for the seemingly
simple case of 25 nodes.

Aberystwyth, 16 December 2008 GPE Appch. for Eng. Mechs. – p.51/59



Polynomial chaos expansion

For 25 nodes, the table shows the time employed to assemble the global
stiffness matrix K and its size for a given order of the polynomial chaos
expansion and order of the Karhunen-Loève expansion equal to 4. The
parentheses indicate that Matlab returned an out-of-memory message.

No. nodes p Secs. Global Size Global

25 2 0.73 7502

25 4 14.2 3,5002

25 6 301.44 10,5002

25 8 1,722.73 24,7502

25 10 7,420.65 (50,0502)

Table 2: Computation time of the simulator, 25 of nodes.
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Polynomial chaos expansion

For 64 nodes, the table shows the time employed to assemble the global
stiffness matrix K and its size for a given order of the polynomial chaos
expansion and order of the Karhunen-Loève expansion equal to 4. The
parentheses indicate that Matlab returned an out-of-memory message.

No. nodes p Secs. Global Size Global

64 2 4.57 1,9202

64 4 294.28 8,9602

64 6 2,937.46 26,8802

64 8 16,409.48 (63,3602)

Table 3: Computation time of the simulator, 64 of nodes.
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Polynomial chaos expansion

For 121 nodes, the table shows the time employed to assemble the
global stiffness matrix K and its size for a given order of the polynomial
chaos expansion and order of the Karhunen-Loève expansion equal to 4.
The parentheses indicate that Matlab returned an out-of-memory
message.

No. nodes p Secs. Global Size Global

121 2 30.27 3,6302

121 4 1,289.50 16,9402

121 6 12,464.53 (50,8202)

Table 4: Computation time of the simulator, 121 of nodes.
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Polynomial chaos expansion

Solving for a small number of nodes, and computing the
norms of their displacements, an emulator was used to infer
the corresponding norms in the rest of the nodes.

The nodes were selected generating a Latin hypercube in
[0, 1] × [0, 1] and taking the closest node to each point
generated, aiming to spread evenly the set of "design nodes"
across the plate. The number of design nodes was chosen
to be around 15% of the total.

Figure 13 shows the norms of the node displacements as a
function of the nodes’ location, for the case of p = 6, M = 4
and 121 nodes. The circles correspond to the displacements
of the design nodes, whereas the stars are emulated norms
of displacements for the rest of the nodes.
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Polynomial chaos expansion

Figure 17: Norms of the displacements.
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Webpage

Figure 18: Visit us at engweb.swan.ac.uk/∼diazdelao.
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Future Works

Validation measures for stochastic emulators.

Emulation of more general random fields, such as Gaussian
with a variety of correlation structures and non-Gaussian.

Comparison of emulators applied to the PCEM compared
against emulators applied to the spectral representation
method.

Emulators for the solution of the Fredholm integral equation
compared against emulators for the Karhunen-Loève
expansion.

Exploration of regions of the input domain via efficient
genetic algorithms such as particle swarm optimization.
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