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Abstract

Combined state and parameter estimation of dynamical systems plays an important role
in many branches of applied science and engineering. A wide variety of methods have been
developed to tackle the joint state and parameter estimation problem. The Extended Kalman
Filter (EKF) method is a popular approach which combines the traditional Kalman filtering
and linearisation techniques to effectively tackle weakly nonlinear and non-Gaussian problems.
Its mathematical formulation is based on the assumption that the probability density function
(PDF) of the state vector can be reasonably approximated to be Gaussian. Recent investigations
have been focused on Monte Carlo based sampling algorithms in dealing with strongly nonlinear
and non-Gaussian models. Of particular interest is the Ensemble Kalman Filter (EnKF) and
the Particle Filter (PF). These methods are robust in handling general forms of nonlinearities
and non-Gaussian models, albeit with higher computational costs. In this paper we report the
joint state and parameter estimation of noise-driven oscillatory systems undergoing limit cycle
oscillation using EKF, EnKF and PF.

I. Introduction

A wide variety of methods have been developed to tackle the joint state and parameter
estimation of dynamical systems in the data assimilation research community.1–3 Due to its
mathematical simplicity, Kalman Filter (KF) has gained immense popularity for optimal state
estimation problems in linear systems with additive Gaussian noise.4 KF results in a recursive
analytical solution of the posterior probability distribution function (PDF) of the system state.

In the framework of filtering theory applied to parameter estimation, one or more unknown
system parameters are appended to the original state vector.1,2 In general, the augmented state
vector evolves nonlinearly regardless of whether the original system model is linear or nonlinear.
This fact precludes the direct application of KF. Under certain conditions however, KF can be
extended to the nonlinear case by linearising the model and measurement operators around the
current estimate of the state vector, leading to the popular (but no longer optimal) Extended
Kalman Filter (EKF).1,5 The major limitation of KF and EKF is the assumption of Gaussian
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state vector which may produce instabilities and even divergence of the filter estimates, when
applied to strongly nonlinear systems.6

Recently, Monte Carlo based sequential filtering algorithms have been developed to tackle
the general case of nonlinear systems perturbed by non-Gaussian noise. Monte Carlo based
approach involves representing the probability density of the state estimate by a finite number of
randomly generated system states. Examples of Monte Carlo based filters include the Ensemble
Kalman Filter (EnKF);1 and (ii) the Particle Filter (PF).7

The usefulness of EnKF has been successfully demonstrated for different applications in
data assimilation problem.1 EnKF inherits the same analysis step from KF. Subsequently, the
ensemble members are propagated in time using the original nonlinear model operator. The
measurement error covariance matrix in EnKF is estimated statistically from the ensemble.1

EnKF resolves the issue of poor error covariance evolution associated with EKF in many appli-
cations.1 In the context of structural dynamics, the EnKF has recently been introduced as a
non-parametric identification tool by Ghanem and Ferro.8

The Gaussian assumption in EnKF greatly simplifies the analysis step. Although this ap-
proach to parameter estimation has been widely available in the literature, some publications
reported rather poor performance by EnKF in certain applications.9 A more general approach,
namely PF, is developed in the framework of Bayesian inference.7 This methodology relaxes
the assumption of Gaussian posterior PDF and linearity of model and measurement operators.
In this approach, the ensemble members (so-called particles) are properly weighted based on
some metric relating to the observational data. In contrast to EnKF, the trajectories of the
particles evolve independently without any analysis step (as detailed later). This fact partly
undermines the efficacy of PF mandating larger ensembles incurring higher computational costs.
This problem is partly alleviated using the so-called resampling technique.7 In the context of
nonlinear dynamics, Manohar and Roy10 applied PF to identify a nonlinear stiffness parameter
of a Duffing oscillator.11,12 To improve the performance of PF, hybrid filtering algorithms which
combine EnKF with PF have also been proposed.13

In this paper, an extensive numerical experimentation is conducted to assess the performance
of EKF, EnKF and PF in joint state and parameter estimation for Limit Cycle Oscillation
(LCO). In particular, the attention is focused on tracking LCO of a Duffing oscillator perturbed
by random noise. To the authors’ best knowledge, such comparative study has not been widely
reported in the literature of structural dynamics. The paper is organized as follows: A brief
introduction to the EnKF is presented in Section II. In Section III, the formulation of the PF is
reviewed. Section IV reports the results from a numerical example elucidating the capability of
various filtering techniques. The paper concludes in Section V where a summary and findings
of the current investigation are detailed.

II. The Ensemble Kalman Filter

EnKF, an extension of traditional KF for strongly nonlinear and non-Gaussian problems,
is based on the representation of the probability density of the state estimate by a finite num-
ber (say N) of randomly generated system states (also called ensemble members).1 In this
approach, the estimates of the state vector and the associated error covariance matrix are sta-
tistically estimated from the ensemble. As the observational data is assimilated using standard
KF analysis step, each sample is then integrated forward in time independently using the full
nonlinear evolution model.
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Consider a general representation of the evolution and measurement equations:7,10, 14

xk+1 = gk (xk, fk,qk) , (1)

dk = hk (xk, ǫk) (2)

where qk and ǫk are independent zero-mean random vectors.
The EnKF has the following algorithm:1

1. Create an ensemble
{

x
f
0,i

}

of size N with i = 1, . . . , N , using the prior PDF of x0.

2. For each subsequent step, recursively, obtain perturbed measurements and estimated mea-
surement error covariance matrix:

dk,i = dk + ǫk,i, (3)

Γk =
1

N − 1

N
∑

j=1

ǫk,jǫ
T

k,j . (4)

3. Analysis step:

Ck =
∂hk (xk, ǫk)

∂xk

, (5)

Dk =
∂hk (xk, ǫk)

∂ǫk

, (6)

Kk = P
f
kC

T

k

[

DkΓkD
T

k + CkP
f
kC

T

k

]

−1

, (7)

xa
k,i = x

f
k,i + Kk

(

dk,i − hk

(

x
f
k,i, ǫk,i

))

, (8)

xa
k ≈ 1

N

N
∑

j=1

xa
k,j, (9)

Pa
k = [I − KkCk]P

f
k . (10)

4. Forecast step:

x
f
k+1,i = Ψk

(

xa
k,i, fk,qk,i

)

, (11)

x
f
k+1

≈ 1

N

N
∑

j=1

x
f
k+1,j, (12)

P
f
k+1

≈ 1

N − 1

N
∑

j=1

(

x
f
k+1,j − x

f
k+1

) (

x
f
k+1,j − x

f
k+1

)T

. (13)

In the above equations, the superscript a denotes analysis and f denotes forecast. In dealing
with the nonlinear measurement operator, we have shown the traditional approach of linearizing
the nonlinear measurement operator. For the case of additive measurement noise, the lineariza-
tion can be avoided by augmenting the state vector with hk (xk) as described by Evensen.15

For the numerical investigation conducted here, the measurement operator is linear and thus
this linearisation step does not arise.
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III. The Particle Filter

Consider the model and measurement equations as described by Eqs. 1-2. The state and the
measurement matrices are defined7,10, 14 as

Xk = {x0,x1, . . . ,xk} , (14)

Dk = {d0,d1, . . . ,dk} . (15)

By Bayes’ Theorem,7,10, 14 we have

p (Xk|Dk) =
p (Dk|Xk) p (Xk)

∫

p (Dk|Xk) p (Xk) dXk

. (16)

Thus,

p (xk|Dk) =

∫

p (Dk|Xk) p (Xk ) dXk−1
∫

p (Dk|Xk) p (Xk) dXk

. (17)

One obtains the mean of the state vector by

xk =

∫

xkp (Dk|Xk) p (Xk ) dXk
∫

p (Dk|Xk) p (Xk) dXk

. (18)

PF has the following algorithm:

1. Create an ensemble
{

x
f
0,i

}

of size N with i = 1, . . . , N , using the prior PDF of x0.

2. Analysis step:

xa
k,i = x

f
k,i, (19)

wk,i =
p

(

dk|xf
k,i

)

wk−1,i

∑N
j=1 p

(

dk|xf
k,j

)

wk−1,j

, (20)

xa
k ≈

N
∑

i=1

wk,ix
a
k,i, (21)

Pa
k ≈

N
∑

j=1

wk,i

(

xa
k,j − xa

k

) (

xa
k,j − xa

k

)T
. (22)

3. Forecast step:

x
f
k+1,i = Ψk

(

xa
k,i, fk,qk,i

)

, (23)

x
f
k+1

≈
N

∑

j=1

wk,ix
f
k+1,j, (24)

P
f
k+1

≈
N

∑

j=1

wk,i

(

x
f
k+1,j − x

f
k+1

) (

x
f
k+1,j − x

f
k+1

)T

. (25)

Eq. (19) implies the need for a choice for the values w0,i, i = 1, . . . , N . One can start with
w0,i = 1/N .
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A. Resampling

In most practical applications of the particle filter, after a certain number of recursive steps,
all but one particle (sample) will have negligible weights wk,i. This is known as the degeneracy
phenomenon.7 As a result of degeneracy, a large computational effort is wasted in updating
particles which make little contribution to the state vector estimate. A suitable measure of
degeneracy is the effective sample size given by

Neff =
1

∑N
i=1 (wk,i)

2
. (26)

Degeneracy can be detected when when Neff falls below a threshold Nthr. In that case, we
perform resampling to reduce the degree of degeneracy:

1. Draw N particles from the current particle set with probabilities equal to their weights
wk,i, replacing the current particle set with the new one.

2. Set wk,i = 1/N for i = 1, . . . , N .

IV. Application to Non-linear Dynamical Systems

For numerical illustration, we consider a Duffing oscillator undergoing Limit Cycle Oscilla-
tion (LCO). In this section, we investigate the performance of EKF, EnKF and PF in tracking
LCO. In particular, we examine the influence of measurement and model noise and sparsity of
observational data on the tracking capabilities of EKF, EnKF and PF.

A. Duffing oscillator model

The equation of motion of a Duffing oscillator11 subjected to combined deterministic and random
inputs is described as:

ü (t) + cu̇ (t) + k1u (t) + k3u
3 (t) = T cos (ωt) + σ1ξ1 (t) . (27)

Here c is the damping coefficient, k1 and k3 are the linear and nonlinear stiffness coefficients,
u (t) is the displacement, T and ω are the amplitude and frequency of the sinusoidal input, ξ1 (t)
is a Gaussian white noise describing the random input and σ1 denotes its strength.

Despite its mathematical simplicity, the Duffing system displays a wide range of dynamics
from periodic to chaotic motion with a slight change in its model parameters. For instance,
when a Duffing system exhibits a double-well potential function for its autonomous counterpart,
qualitatively different LCOs emerge by slight variations in the amplitude of the harmonic input
T for the forced system. These facts prompted the use of the Duffing oscillator as a paradigm
model in this investigation.

Using nonlinear filtering techniques, we are primarily interested in estimating the stiffness
parameters leading to noisy LCOs of the Duffing oscillator from a set of noisy observational
data obtained at discrete times tk:

dk = u (tk) + ǫk . (28)

Before we discuss joint state and parameter estimation using nonlinear filters, let us rewrite
Eq. (27) in the state-space form as:

ẋ1 = x2 (29)

ẋ2 = −
[

cx2 + k1x1 + k3x
3
1

]

+ T cos (ωt) + σ1ξ1 (t) , (30)
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where x1 = u and x2 = u̇. The unknown parameters to be estimated are the stiffness coefficients
k1 and k3. We augment the state vector by appending the coefficients k1 and k3 as two new state
variables x3 = k1 and x4 = k3. The new variables are assumed to evolve using the following
model

ẋ3 = σ2ξ2 (t) (31)

ẋ4 = σ3ξ3 (t) . (32)

The following Itô Stochastic Differential Equations (SDEs) represents the above equations:

dx1 = x2dt (33)

dx2 = −
[

cx2 + x3x1 + x4x
3
1 − T cos (ωt)

]

dt + σ1ξ1 (t) dt. (34)

dx3 = σ2ξ2 (t) dt (35)

dx4 = σ3ξ3 (t) dt. (36)

where ξj (t) dt = dWj = Wj (tk+1) − Wj (tk) are Brownian path increments.
The discrete representation the above coupled Itô SDEs using the Euler-Maruyama stochas-

tic integration scheme16 with time step ∆t provides the following discrete state-evolution equa-
tions:

{x1}k+1 = {x1}k + ∆t {x2}k (37)

{x2}k+1 = {x2}k − ∆t
[

c {x2}k + {x3}k {x1}k + {x4}k {x1}3
k − T cos (ωtk)

]

+ σ1

√
∆tε1,k

(38)

{x3}k+1 = {x3}k + σ2

√
∆tε2,k (39)

{x4}k+1 = {x4}k + σ3

√
∆tε3,k. (40)

where ε1,k, ε2,k and ε3,k are independent standard Gaussian random variables. The measurement
equation remains the same as in Equation (28).

The purpose of introducing the perturbation terms whose amplitudes are σ2 and σ3 is to
inflate the variance of the parameter estimates and thus avoid filter divergence. Several methods
are reported in the literature for inflating the estimates:17 (1) Additive inflation in which noise
is added to the estimates; (2) Multiplicative inflation where the estimate covariance matrix is
multiplied by a constant factor, usually greater than one; (3) Model-specific inflation where only
a subset of the model parameters are perturbed. In this investigation, we employ model-specific
additive inflation. From extensive numerical experiments, the values σ2 = 0.03 and σ3 = 0.03
lead to rapid convergence of the filter estimates. Setting these values too large lead to divergence
of the estimates, whereas the convergence of the estimates is slower for smaller values of these
parameters.

B. LCO of the Duffing oscillator

Next we investigate the LCO of the Duffing system. In particular, we examine one subharmonic
LCO as described later in this section. The following numerical values of the system parameters
are considered: c = 0.3, k1 = −1, k3 = 1, ω = 1.25 and ∆t = 5 × 10−4. For this parameter set,
the autonomous system has three fixed points. The fixed point at u = 0 is unstable, while the
two fixed points at ±1 are stable. Fig. 1 displays the steady-state displacement u and its phase-
space diagram under purely deterministic loading (σ = 0) for T = 0.3. The two trajectories
in Fig. 1 represent the steady state LCOs about the stable fixed points, starting with different
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initial conditions. In the absence of modelling noise (σ = 0), when T = 0.3, the system exhibits
a period-two subharmonic LCO with period 4π/ω.

Fig. 2 presents sample trajectories and the associated phase-space diagram of the noisy LCO
perturbed by weak random noise (σ = 0.01) with T = 0.3. Note that the transient response
associated with the initial conditions is not shown. Under such mild random perturbation, the
periodic response of LCO is gently disturbed as evident in the banded structure in the phase-
space diagrams. In other words, the regularity of the LCO largely remains intact as observed
in the left panels of Fig. 2.
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Figure 1. Response of the Duffing oscillator under purely deterministic input with T = 0.3, σ = 0: (a) two steady-state
trajectories, (b) the associated phase-space diagrams
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Figure 2. Response of the Duffing oscillator under combined deterministic and random input with T = 0.3, σ = 0.01:
(a) steady-state trajectory, (b) the associated phase-space diagram

C. Transition PDFs of LCO

The transition PDF of the system driven purely by random noise (T = 0 and σ = 0.01) is shown
in Fig. 3 with initial conditions x1 ∼ U[−2, 2] and x2 = 0. The transition PDF is obtained using
3 × 106 Monte-Carlo samples running in parallel on a shared-memory multiprocessor machine
(SGI Altix350) using message-passing interface (MPI).18 To expedite the statistical convergence
with fewer samples, Latin Hypercube Sampling (LHS) was employed as an efficient sampling
technique. The initial uniform PDF of x1 converges to a bimodal (strongly non-Gaussian)
stationary distribution having dominant peaks at the stable fixed points u = ±1.

Next we turn our attention to the forced system. The transition PDF of the displacement
x1 is plotted in Fig. 4 under combined deterministic and random excitations (σ = 0.01). The
transition PDFs are generated using 3 × 106 random samples using LHS. Initial conditions
are x1 ∼ U[−2, 2] and x2 = 0. The strongly non-Gaussian trends in the transition PDFs are
clearly evident in Fig. 4. In Fig. 4, the probability mass is centred around the two stable fixed
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points u = ±1. This is due to the fact that the oscillation is predominantly confined in the
neighborhood of potential wells around u = ±1.

Nonlinear filtering techniques estimate the conditional PDFs of the system given noisy ob-
servational data. The effective performance of these filters relies heavily on the characteristics
of the conditional PDFs. For example, strong non-Gaussian features in the conditional PDFs
diminishes the efficacy of EKF. On the contrary, PF is robust to non-Gaussian trends. It is
therefore instructive to focus on the nature of the conditional PDF to judiciously apply nonlin-
ear filters. Some examples of the conditional PDF are presented in the bottom panels of Fig. 5
using two measurements dk ± 0.5 corrupted by Gaussian noise for T = 0.3. The variance of
the zero-mean Gaussian measurement noise is taken to be 0.1. The initial and transition PDF
are shown in the top panel of Fig. 5. Strong non-Gaussian features in the conditional PDF are
clearly evident which point out the need to use nonlinear filtering techniques such as EnKF and
PF.
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Figure 3. Transition PDF of the system under purely random input with σ = 0.01 and T = 0: (a) Initial uniform
PDF, (b) PDF at t = 3 time units, (c) PDF at t = 6 time units, (d) PDF at t = 9 time units, (e) PDF at t = 12 time
units, (f) PDF at t = 15 time units, (g) PDF at t = 18 time units, (h) PDF at t = 21 time units, (i) PDF at t = 24
time units

D. Joint State and Parameter Estimation

Next we conduct extensive numerical experiments related to joint parameter and state es-
timation of LCO using nonlinear filters. In Fig. 6, the top panel shows the displacement
of the oscillator and the associated observational data dk contaminated by Gaussian noise
ǫk ∼ N (0, 6.2 × 10−3) for the case of T = 0.3. The standard deviation of the measurement
noise is taken to be 10% of the root-mean-square (RMS) value of the true displacement. The
modelling error has an amplitude of σ = 0.02. The observational data is acquired and analyzed
at intervals of 1 time unit. For EnKF and PF, an ensemble size of N = 1000 is used. To further
minimize sampling errors, LHS19,20 is employed as an efficient sampling scheme by both EnKF
and PF.

The result of the joint state and parameter estimation are shown in Figures 7-8. Initial
conditions are x1 ∼ N (0, 0.01), x2 ∼ N (0, 0.01), k1 = x3 ∼ N (−0.75, 0.01) and k3 =
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Figure 4. Transition PDF of the system under combined deterministic and random input with σ = 0.01 and T = 0.3:
(a) Initial uniform PDF, (b) PDF at t = 12 time units, (c) PDF at t = 24 time units, (d) PDF at t = 36 time units,
(e) PDF at t = 48 time units, (f) PDF at t = 60 time units, (g) PDF at t = 72 time units, (h) PDF at t = 84 time
units, (i) PDF at t = 96 time units
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Figure 5. Conditional PDF of the system with σ = 0.01 and T = 0.3: (a) Initial uniform PDF, (b) prior PDF at t = 48
time units, (c) conditional PDF given measurement dk = 0.5, (d) conditional PDF given measurement dk = −0.5

x4 ∼ N (0.75, 0.01). The choice of initial conditions is another factor that influences the
convergence of the filters. This set of initial conditions is chosen to illustrate the ability of the
filtering algorithms to successfully track the system even with inaccurate initial estimates of
the parameters. If the initial conditions are grossly inaccurate, the filters may diverge in which
case one has to rerun the filters with different initial conditions. Normally, the prior knowledge,
whenever available, should influence the choice of initial conditions.

The estimates of displacement of the oscillator using EKF (second panel from the top), EnKF
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(third panel from the top) and PF (fourth panel from the top) are plotted in Figure 6. The
moving average of the normalized RMS errors of the estimates are plotted in the bottom-most
panel of Fig. 6. The error is normalized by the variance of the true displacement and the average
is taken over the last 50 time units. The threshold effective ensemble size for PF for resampling
purposes is chosen to be 75% of the ensemble size (i.e. Nthr = 0.75N). From the experience
gained by the authors through numerical investigations, this value for the threshold ensemble
size turned out to be adequate for effective resampling. All three filters give satisfactory results.
The estimates for the stiffness coefficients k1 and k3 are plotted in Figures 7-8, respectively. EKF
estimates are plotted in the first panel from the top, EnKF estimates in the second panel from
the top, and PF estimates are plotted in the third panel from the top. Again, all three filters
give similar estimates. While comparing the standard deviation of the error in the estimates, it
is clear that PF leads to smaller error standard deviation.
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Figure 6. True, measured and estimated displacement of the Duffing oscillator: (a) true (solid line) and measured
(circles) displacement, (b) EKF estimate (blue line with stars) ± 3 error standard deviations (light blue area), (c)
EnKF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (d) PF estimate
(blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (e) time-averaged normalized
RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid line with stars)

1. Effect of ensemble size

To demonstrate the effect of ensemble size for EnKF and PF on the state and parameter
estimates, we consider the observational data acquired at every 1 time unit contaminated by
Gaussian noise ǫk ∼ N (0, 6.2 × 10−3), same as in the previous experiment, but with a smaller
ensemble size of N = 10 for EnKF and PF, in contrast to N = 1000 used in the previous
experiment. The estimates of displacement of the oscillator using EKF (second panel from
the top), EnKF (third panel from the top) and PF (fourth panel from the top) are plotted in
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Figure 7. k1 parameter estimates: (a) EKF estimate (blue line with stars) ± 3 error standard deviations (light blue
area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (c)
PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (e) time-averaged
normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid line with stars)
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Figure 8. k3 parameter estimates: (a) EKF estimate (blue line with stars) ± 3 error standard deviations (light blue
area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (c)
PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000, (e) time-averaged
normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid line with stars)

Figure 9. The moving average of the normalized RMS errors of the estimates are plotted in the
bottom-most panel of Fig. 9. The estimates for the stiffness coefficients k1 and k3 are plotted
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in Figures 10-11, respectively. EKF estimates are plotted in the first panel from the top, EnKF
estimates in the second panel from the top, and PF estimates are plotted in the third panel from
the top. Comparing the estimates obtained in this experiment with the ones obtained from the
previous experiment, it is obvious that decreasing the ensemble size from N = 1000 samples to
N = 50 significantly degrades the performance of PF. PF also results in smaller error variance
estimates with a smaller ensemble size. In contrast, EnKF provides similar estimates using a
smaller ensemble size of N = 50 when compared to N = 1000.
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Figure 9. True, measured and estimated displacement of the Duffing oscillator using a smaller ensemble for EnKF
and PF: (a) true (solid line) and measured (circles) displacement, (b) EKF estimate (blue line with stars) ± 3 error
standard deviations (light blue area), (c) EnKF estimate (blue line with stars) ± 3 error standard deviations (light
blue area) with N = 50, (d) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with
N = 50, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid
line with stars)

2. Effect of measurement noise

To demonstrate the effect of measurement noise on the state estimates, we consider the observa-
tional data acquired at every 1 time unit, same as in the previous experiment, but with stronger
measurement noise, in contrast to the previous experiment. Fig. 12 shows the displacement of
the oscillator for T = 0.3 and the measured displacement dk contaminated by Gaussian noise
ǫk ∼ N (0, 6.2 × 10−1). The variance of the measurement noise is taken to be equal to the
mean-square value of the true displacement.

The state estimation results using EKF, EnKF and PF are shown in the second, third and
fourth panels from the top in Fig. 12. In relation to the results from the first experiment shown
in Fig. 6, it is evident that an increase in the strength of measurement noise deteriorates the
accuracy of the estimates for all filters, although PF provides more accurate results than EnKF.
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Figure 10. k1 parameter estimates using a smaller ensemble for EnKF and PF: (a) EKF estimate (blue line with
stars) ± 3 error standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard
deviations (light blue area) with N = 50, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light
blue area) with N = 50, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line)
and PF (solid line with stars)
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Figure 11. k3 parameter estimates using a smaller ensemble for EnKF and PF: (a) EKF estimate (blue line with
stars) ± 3 error standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard
deviations (light blue area) with N = 50, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light
blue area) with N = 50, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line)
and PF (solid line with stars)
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The estimates of EnKF are moderately accurate. The performance of EKF is the worst. It is
believed that the superior performance of PF in this experiment is due to stronger non-Gaussian
features in the conditional PDF in comparison to the previous case. This maybe inferred, for
instance, looking at the conditional PDFs plotted in Fig. 5 where the increase in measurement
noise more effectively retains the non-Gaussian features in the posterior PDF. In contrast to
the previous case, the error standard deviation of the estimates is greater for all three filters.
The increase in error standard deviation of the estimates is due to an increase in the variance
of the measurement noise. PF estimates display smaller error covariances when compared to
those of EKF and EnKF.

The estimates for the stiffness coefficients k1 and k3 are plotted in Figures 13-14, respectively.
EKF estimates are plotted in the first panel from the top, EnKF estimates in the second
panel from the top, and PF estimates are plotted in the third panel from the top. Comparing
the estimates obtained in this experiment to those from the first experiment, an increase in
measurement noise intensity leads to divergence for EKF and poor convergence for EnKF. PF
gives the most accurate parameter estimates in this case.
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Figure 12. True, measured and estimated displacement of the Duffing oscillator with stronger measurement noise:
(a) true (solid line) and measured (circles) displacement, (b) EKF estimate (blue line with stars) ± 3 error standard
deviations (light blue area), (c) EnKF estimate (blue line with stars) ± 3 error standard deviations (light blue area)
with N = 1000, (d) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000,
(e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid line with
stars)

3. Effect of observational data sparsity

In this subsection, we consider the case of sparse observational data. In particular, we consider
observations obtained at time intervals of 4 time units, instead of 1 time unit used in the
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Figure 13. k1 parameter estimates with stronger measurement noise: (a) EKF estimate (blue line with stars) ± 3
error standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations
(light blue area) with N = 1000, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area)
with N = 1000, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF
(solid line with stars)
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Figure 14. k3 parameter estimates with stronger measurement noise: (a) EKF estimate (blue line with stars) ± 3
error standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations
(light blue area) with N = 1000, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area)
with N = 1000, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF
(solid line with stars)
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previous experiments. The standard deviation of measurement noise is 10% of that of the RMS
value of the true displacement. The true and measured displacement are shown in the top most
panel in Fig. 15. The state estimates of EKF, EnKF and PF are shown in subplots (b) through
(d) in Fig. 15. Similar to the last experiment, EKF again leads to highly biased estimates, in
this case due to an increase in data sparsity. PF provides slightly more accurate results than
EnKF. The infrequent assimilation of data permits the PDF of the state variables to regain its
non-Gaussian features over the measurement interval as observed in the transition PDF as in
Fig. 4. Such non-Gaussian trends degrade the performance of EKF.

The estimates for the stiffness coefficients k1 and k3 are plotted in Figures 16-17, respectively.
EKF estimates are plotted in the first panel from the top, EnKF estimates in the second panel
from the top, and PF estimates are plotted in the third panel from the top. As in the previous
experiment, EKF estimates diverge with an increase in data sparsity. EnKF PF provide similarly
accurate parameter estimates.
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Figure 15. True, measured and estimated displacement of the Duffing oscillator with sparse observational data: (a)
true (solid line) and measured (circles) displacement, (b) EKF estimate (blue line with stars) ± 3 error standard
deviations (light blue area), (c) EnKF estimate (blue line with stars) ± 3 error standard deviations (light blue area)
with N = 1000, (d) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with N = 1000,
(e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid line with
stars)

V. Conclusion

This paper investigates nonlinear filtering techniques, namely EKF, EnKF and PF, for the
joint state and parameter estimation of noisy LCO. For the LCO of a Duffing system, extensive
numerical experiments are conducted to bring out the superiority and limitations of these filters

16 of 19

American Institute of Aeronautics and Astronautics



0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

time

k 1 e
st

im
at

e

(a)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

time

k 1 e
st

im
at

e

(b)

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

time

k 1 e
st

im
at

e

(c)

0 10 20 30 40 50 60 70 80 90 100
10

−0.8

10
−0.1

time

R
M

S
 e

rr
or

(d)

Figure 16. k1 parameter estimates with sparse observational data: (a) EKF estimate (blue line with stars) ± 3 error
standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations (light
blue area) with N = 1000, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with
N = 1000, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid
line with stars)
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Figure 17. k3 parameter estimates with sparse observational data: (a) EKF estimate (blue line with stars) ± 3 error
standard deviations (light blue area), (b) EnKF estimate (blue line with stars) ± 3 error standard deviations (light
blue area) with N = 1000, (c) PF estimate (blue line with stars) ± 3 error standard deviations (light blue area) with
N = 1000, (e) time-averaged normalized RMS estimate errors of EKF (dashed line), EnKF (solid line) and PF (solid
line with stars)
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with respect to ensemble size as well as measurement errors and sparsity of observational data.
The salient features emerging from this investigation are:

1. EKF provides similarly accurate state and parameter estimates in comparison to EnKF
and PF in the case of relatively dense observational data and small measurement noise.
The accuracy of EKF is due to the highly Gaussian nature of the state vector in the
presence of dense observational data contaminated by relatively weak Gaussian noise.

2. The performance of PF turns out to be superior to EKF and EnKF when the measure-
ment noise increases. EKF is most severely affected by an increase in measurement noise.
The accuracy of the EnKF estimates is moderate (being superior to EKF but inferior to
PF). This can be explained from the fact that an increase in the strength of Gaussian
measurement noise translates to a conditional pdf featuring stronger non-Gaussian traits.
Being a fully non-Gaussian filter, PF provides the best estimates.

3. The increase in data sparsity has a detrimental effect on the state estimates of EKF. In-
creased data sparsity has little effect on the EnKF and PF estimates in the case examined.
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