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An Unified Parametric-Nonparametric Uncertainty
Quantification Approach for Linear Dynamical Systems

Sondipon Adhikari∗
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Uncertainties need to be taken into account for credible predictions of the dynamic response of complex
aerospace structural systems. Such uncertainties include uncertainties in the system parameters (parametric
uncertainty) and those arising due to the modelling of a complex system (nonparametric uncertainty). Over the
past four decades distinct methods have been developed to quantify these two types of uncertainties seperately.
In this paper we proposed an unified approach to model both parametric and nonparametric uncertainties
simultaneously. The proposed approach is based on a noncentral Wishart distribution whose parameters are
obtained such that the covariance matrices of the elements of the mass, stiffness and damping matrices arising
due to parametric uncertainties are satisfied in a least-square sense. The existing nonparametric distribution (a
central Wishart distribution) can be obtained as a special case of the proposed noncentral Wishart distribution.
A simple simulation algorithm is developed to implement the noncentral Wishart random matrix model in
conjunction with the conventional finite element method. The method is applied to the vibration of a cantilever
plate with uncertainties. The dynamic response obtained using the noncentral Wishart random matrix model
agrees well with the results obtained from the stochastic finite element method.

Nomenclature

G mean of a system matrix
CG n2 × n2 covariance matrix of a system matrix
D(ω) dynamic stiffness matrix
f(t) forcing vector
G symbol for a system matrix, G ≡ {M, C, K}
Gn n2 × n(n + 1)/2-dimensional duplication matrix
H(ω) frequency response function (FRF) matrix
Hn Left Moore-Penrose inverse of the duplication matrix Gn

In identity matrix of dimension n
Knn n2 dimensional commutation matrix1 (also known as the vec-permutation matrix2)
M, C and K mass, damping and stiffness matrices respectively
On,m null matrix of dimension n×m
Ω,Θ a n× n real matrix parameters of noncentral Wishart distribution
q(t) response vector
Γn (a) multivariate gamma function
ν order of the inverse-moment constraint
ω excitation frequency
φ(•) characteristic function of of (•)
vech (•) vech operation on a symmetric matrix
vec (•) vec operation on a matrix
n number of degrees of freedom
p,Σ scalar and matrix parameters of the Wishart distribution
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Conventions

(•)T matrix transposition
R space of real numbers
R+

n space n× n real positive definite matrices
Rn×m space n×m real matrices
|•| determinant of a matrix
etr {•} exp {Trace (•)}
E [(•)] mathematical expectation operator
‖•‖F Frobenius norm of a matrix, ‖•‖F =

(
Trace

(
(•)(•)T

))1/2

⊗ Kronecker product (see3)
∼ distributed as
Trace (•) sum of the diagonal elements of a matrix
p(•) (X) probability density function of (•) in (matrix) variable X
FRF Frequency Response Function
pdf probably density function

I. Introduction

UNCERTAINTIES are unavoidable in the description of complex aerospace structures. The quantification of uncer-
tainties plays a crucial role in establishing the credibility of a numerical model.4, 5 Uncertainties can be broadly

divided into two categories. The first type is due to the inherent variability in the system parameters, for example,
different cars manufactured from a single production line are not exactly the same. This type of uncertainty is often
referred to as aleatoric uncertainty and generally considered to be irreducible. If enough samples are present, it is pos-
sible to characterize the variability using the well established statistical methods and consequently the probably density
functions (pdf) of the parameters can be obtained. The second type of uncertainty is due to the lack of knowledge re-
garding a system, often referred to as epistemic uncertainty. This kind of uncertainty generally arise in the modelling
of complex systems, for example, in the modeling of cabin noise in helicopters. Due to its very nature, it is compara-
tively difficult to quantify or model this type of uncertainties. This uncertainty is reducible provided more knowledge
regarding the system is available. There are two broad approaches to quantify uncertainties in a model. The first is
the parametric approach and the second is the non-parametric approach. In the parametric approach the uncertainties
associated with the system parameters, such as Young’s modulus, mass density, Poisson’s ratio, damping coefficient
and geometric parameters are quantified using statistical methods and propagated, for example, using the stochastic
finite element method.6–15 This type of approach is suitable to quantify aleatoric uncertainties. Epistemic uncertainty
on the other hand do not explicitly depend on the system parameters. For example, there can be unquantified errors
associated with the equation of motion (linear on non-linear), in the damping model (viscous or non-viscous16), in the
model of structural joints, and also in the numerical methods (e.g, discretisation of displacement fields, truncation and
roundoff errors, tolerances in the optimization and iterative algorithms, step-sizes in the time-integration methods). It
is evident that the parametric approach is not suitable to quantify this type of uncertainties. As a result non-parametric
approaches16–19 have been proposed for this purpose.

Although we have mentioned and made differences between the two different types of uncertainties, in practical
problems it is in general very difficult, if not impossible, to distinguish them. Recently reported experimental studies
by Adhikari et. al.20, 21 on one hundred nominally identical beams and plates emphasize this fact. As result, to come
up with a credible numerical model of complex dynamical systems, we need to quantify and model both types of
uncertainties simultaneously. Uncertainties associated with a variable can be characterized using the probabilistic
approach or possibilistic approaches based on interval algebra, convex sets, Fuzzy sets or generalized Dempster-
Schafer theory. In this paper probabilistic approach has been adopted. The equation of motion of a damped n-degree-
of-freedom linear dynamic system can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices respectively. In order to completely quantify the
uncertainties associated with system (1) we need to obtain the probability density functions of the random matrices M,
C and K. Using the parametric approach, such as the stochastic finite element method, one usually obtains a problem
specific covariance structure for the elements of system matrices. The nonparametric approach17–19 on the other hand
results in a central Wishart distribution for the system matrices. The central Wishart matrix has its own covariance
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structure which in general may not agree with the covariance structure obtained using the parametric method. This is
one of the main difficulty in using the central Wishart matrices for parametric uncertainty quantification.

The aim of this paper is to develop a parametric-nonparametric uncertainty quantification tool which can simul-
taneously model both types of uncertainties in an unified manner. The overall uncertainly modeling approach is
diagrammatically explained in Fig. 1. The approach proposed here is based on noncentral Wishart distribution. The
noncentral Wishart distribution has more parameters compared to the central Wishart distribution. As a result it is
more capable to capture the parametric nature of uncertainty. The central idea of the paper is to exploit this additional
statistical degrees of freedom provided by the noncentral distribution. A least-square error minimization approach is
developed to obtain the parameters of the noncentral distribution so that it satisfy the covariance matrix of each of the
system matrices appearing in Eq. (1). A simple and easy-to-implement simulation algorithm is given to implement
the new approach. In the next section we briefly outline some aspects of random matrix theory required for further

Figure 1. Symbolic representation of the proposed parametric-nonparametric uncertainly modeling in structural dynamics.

developments.

II. Brief Review of Random Matrix Distributions

In this section we introduce the concept of matrix variate probability density functions or random matrices. Ran-
dom matrices were introduced by Wishart22 in the late 1920s in the context of multivariate statistics. Research on
random matrices has attracted interests in multivariate statistics, physics, number theory and more recently in mechan-
ical and electrical engineering. We refer the books23–28 for the history and applications of random matrix theory. The
probability density function of a random matrix can be defined in a manner similar to that of a random variable or
random vector. If A is a n×m real random matrix, then the matrix variate probability density function of A ∈ Rn×m,
denoted by pA(A), is a mapping from the space of n×m real matrices to the real line, i.e., pA(A) : Rn×m → R. Here
we define probability density functions of few random matrices which are relevant to stochastic mechanics problems.

Gaussian random matrix: A rectangular random matrix X ∈ Rn×p is said to have a matrix variate Gaussian
distribution with mean matrix M ∈ Rn×p and covariance matrix Σ⊗Ψ, where Σ ∈ R+

n and Ψ ∈ R+
p provided the

pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2 etr
{
−1

2
Σ−1(X−M)Ψ−1(X−M)T

}
. (2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ⊗Ψ).
Wishart matrix: A n × n symmetric positive definite random matrix S is said to have a Wishart distribution with

parameters p ≥ n and Σ ∈ R+
n , if its pdf is given by

pS (S) =
{

2
1
2 np Γn

(
1
2
p

)
|Σ| 12 p

}−1

|S| 12 (p−n−1)etr
{
−1

2
Σ−1S

}
. (3)

This distribution is usually denoted as S ∼ Wn(p,Σ). Using a maximum entropy approach, Adhikari18, 19 proved that
the system matrices arising in linear structural dynamics should be Wishart matrices.
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Matrix variate gamma distribution: A n×n symmetric positive definite random matrix W is said to have a matrix
variate gamma distribution with parameters a and Ψ ∈ R+

n , if its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a
}−1

|W|a− 1
2 (n+1) etr {−ΨW} ; <(a) >

1
2
(n− 1). (4)

This distribution is usually denoted as W ∼ Gn(a,Ψ). The matrix variate gamma distribution has been used by
Soize17 for the random system matrices of linear dynamical systems.

The main difference between the matrix variate gamma distribution and the Wishart distribution is that historically
only integer values were considered for the shape parameter p in the Wishart matrices. It is however a misconcep-
tion that the scope of Wishart distribution is limited to the integer values of p only (see the second para in pp. 87
in Muirhead27 and the para after Eq. (3.2.2) in Gupta and Nagar,29 pp. 89). From an analytical point of view the
gamma and the Wishart distributions are identical as the gamma distribution can be related to the Wishart distribution
as Wn (p,Σ) = Gn

(
p/2, 1

2Σ
−1

)
. For this reason, modern random matrix theory normally does not make any dis-

tinctions between them. Because the Wishart random matrix is the oldest22 and perhaps the most widely used random
matrix model,24, 25, 27 in this paper we present our results in terms of the Wishart matrices only.

Noncentral Wishart matrix: A n × n symmetric positive definite random matrix S is said to have a noncentral
Wishart distribution with parameters p ≥ n, Σ ∈ R+

n and Θ ∈ R+
n , if its pdf is given by

pS (S) =
{

2
1
2 np Γn

(
1
2
p

)
|Σ| 12 p

}−1

etr
{
−1

2
Θ

}
etr

{
−1

2
Σ−1S

}
|S| 12 (p−n−1)

0F1(p/2,ΘΣ−1S/4). (5)

where 0F1 the hypergeometric function (Bessel function) of a matrix argument.27, 29 This distribution is usually
denoted as S ∼ Wn(p,Σ,Θ). Note that if the noncentrality parameter Θ is a null matrix, then noncentral Wishart
distribution in Eq. (5) reduces to the Wishart distribution in Eq. (3).

In Eqs. (3) – (5), the function Γn (a) is the multivariate gamma function, which can be expressed in terms of
products of the univariate gamma functions as

Γn (a) = π
1
4 n(n−1)

n∏

k=1

Γ
[
a− 1

2
(k − 1)

]
; for <(a) >

1
2
(n− 1). (6)

For more details on the matrix variate distributions we refer to the books by Mezzadri and Snaith,23 Tulino and
Verdú,24 Eaton,25 Girko,26 Muirhead27 and Mehta.28 Among the four types of random matrices introduced above, the
distributions given by Eqs. (3) – (5) will always result in symmetric and positive definite matrices. Therefore, they
can be possible candidates for modeling random system matrices arising in probabilistic structural mechanics.

III. Limitations of the Nonparametric Distribution

Suppose that the mean values of M, C and K are given by M, C and K respectively. This information is likely to
be available, for example, using the deterministic finite element method. However, there are uncertainties associated
with our modelling so that M, C and K are actually random matrices. The distribution of these random matrices should
be such that they are

(a) symmetric

(b) positive-definite, and

(c) the moments of the inverse of the dynamic stiffness matrix

D(ω) = −ω2M + iωC + K (7)

should exist ∀ω. That is, if H(ω) is the frequency response function (FRF) matrix

H(ω) = D−1(ω) =
[−ω2M + iωC + K

]−1
(8)

then the following condition must be satisfied for positive values of ν:

E [‖H(ω)‖ν
F] < ∞, ∀ω (9)
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Because the matrices M, C and K have similar probabilistic characteristics, for notational convenience we will use
the notation G which stands for any one the system matrices. Soize (see17 and references therein) fitted a central
Wishart distribution using the entropy optimization approach and showed that G ∼ Wn (p,Σ), where the distribution
parameters are given by

p = n + 1 + θ (10)

and Σ = G/(n + 1 + θ). (11)

The constant θ, which controls the ‘randomness’ of the model, can be related to the standard deviation of the random
matrix as

θ =
1
δ2
G



1 +

{Trace
(
G

)}2

Trace
(
G

2
)



− (n + 1). (12)

Here δG is known as the dispersion parameter which characterize the uncertainty in the random matrix G. The
parameter δG is defined as

δ2
G =

E
[
‖G− E [G] ‖2F

]

‖E [G] ‖2F
=

Trace (cov (vec (G)))

Trace
(
G

2
) . (13)

From this expression observe that δG can be viewed as the mean-normalized standard deviation of the random matrix
G. Although the distribution proposed by Soize17 produces positive definite and invertible random matrix ensemble,
it was later shown18, 19 that the ‘mean of the inverse’ and the ‘inverse of the mean’ can be significantly different. For
large systems, when n is more than several thousands, the difference between E

[
G−1

]
and G

−1
can be more than

few orders of magnitude. To avoid this non-physical case, using a matrix factorization approach in conjunction with
least-square error minimization, Adhikari18, 19 showed that the optimal distribution of G should be G ∼ Wn (p,Σ),
where

p = n + 1 + θ (14)

and Σ = G/α. (15)

The constant θ is given by Eq. (12) and α is given by

α =
√

θ(n + 1 + θ) =
√

p(p− n− 1). (16)

For these parameter selections the mean of the matrix and its inverse produce minimum deviations from their respective
deterministic values.

The first moment (mean) and the elements of the covariance tensor are given by29

E [G] = pΣ = pG/α (17)

cov (Gij , Gkl) = p (ΣikΣjl + ΣilΣjk) =
1
θ

(
GikGjl + GilGjk

)
. (18)

The covariance tensor can alternatively be expressed in a matrix form as

cov (vec (G)) = pΣ⊗Σ + [pΣ⊗Σ] Knn = (In2 + Knn) (pΣ⊗Σ) . (19)

The matrix Knn is known as the commutation matrix1 or vec-permutation matrix2 of order n2 × n2. In Eq. (18),
the values of Gik etc. are fixed by the mean matrix. Therefore, the only parameter which controls the uncertainty
in the distribution is θ. This is a gross ‘oversimplification’ of the naturae of the uncertainty in some sense. Any
n × n symmetric matrix G, supposing fully populated, can have N = n(n + 1)/2 number of independent elements.
Therefore, its covariance matrix is N2 = n2(n + 1)2/4 dimensional and symmetric. Which implies that it can have
N(N +1)/2 = n(n+1)(n(n+1)+2)/8 number of independent elements. Nonparametric approach, therefore, only
offers a single parameter to quantify uncertainty which can potentially be expressed by n(n + 1)(n(n + 1) + 2)/8
number of independent parameters. However, when very little information regarding the covariance tensor of G is
available, then a central Wishart distribution is the best one can use to quantify uncertainty. If more reliable information
regarding the covariance tensor of G is available, then we need a matrix variate distribution which not only satisfy the
constrains mentioned before, but also must offer more parameters to fit the ‘known’ covariance tensor of G. This is
the central motivation of the work taken up in this paper.
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IV. Derivation of the Unified Distribution

A. Functional Form of the Distribution

Because G is a symmetric and positive-definite random matrix, it can be always be factorized as

G = XXT (20)

where X ∈ Rn×p, p ≥ n is in general a rectangular matrix. Since the factorization in Eq. (20) will always (for p ≥ n)
guarantee the satisfaction of the the symmetry and the positive-definiteness condition, we assume that this is the form
of the random system matrices arising in structural dynamics. Now we need to study the probabilistic nature of the
random matrix X. Once the pdf of X is known, the pdf G will be derived using the non-linear matrix transformation
in Eq. (20).

Suppose the mean of X is M ∈ Rn×p, p ≥ n and the covariance tensor of X is given by Σ ⊗ Ip ∈ Rnm×nm

where Σ ∈ R+
n . How to obtain p, M and Σ will be discussed later. At this point it is suffice to assume that the mean

and covariance of the random matrix X exist. Suppose the matrix variate probability density function of X ∈ Rn×p is
given by pX (X) : Rn×p → R. We have the following information and constrains to obtain pX (X):

∫

X∈Rn×p
pX (X) dX = 1 (normalization) (21)

∫

X∈Rn×p
X pX (X) dX = M (the mean matrix) (22)

and
∫

X∈Rn×p
[X−M]⊗ [X−M]T pX (X) dX = Σ⊗ Ip (the covariance matrix). (23)

The integrals appearing in the above three equations are n×p dimensional. Extending the standard maximum entropy
argument to the matrix case we can say that the pdf of X is given by the matrix variate Gaussian distribution, that is,
X ∼ Nn,p (M,Σ⊗ Ip).

We first derive the characteristic function of G = XXT . Since X ∼ Nn,p (M,Σ⊗ Ip), a rectangular Gaussian
random matrix with mean M and covariance matrix [Σ ⊗ Ip] ∈ Rnp×np , the probability density function of X can
be obtained from Eq. (2) as

pX (X) = (2π)−np/2 |Σ|−p/2 etr
{
−1

2
Σ−1(X−M)(X−M)T

}
. (24)

The matrix variate characteristic function of G can be defined as

φG (Z) = E [etr {−ZG}] =
∫

G>0

etr {−ZG} pG (G) dG (25)

where Z is a symmetric matrix. Using the definition in (25) we have

φG (Z) = E [etr {−ZG}] = E
[
etr

{−ZXXT
}]

. (26)

Using the probability density function of X in Eq. (24) we have

φG (Z) = (2π)−np/2 |Σ|−p/2
∫

Rn×p
etr

{
−ZXXT − 1

2
Σ−1(X−M)(X−M)T

}
dX. (27)

The domain of the above integral is the space of n× p real matrices. This integral can be evaluated exactly to obtain

φG (Z) = |Σ|−p/2 ∣∣2Z + Σ−1
∣∣−p/2

etr
{

1
2
Θ +

1
2
ΘΣ−1

(
2Z + Σ−1

)−1
}

(28)

where Θ = Σ−1MMT . Taking the matrix variate inverse matrix Laplace transform of (28), it can be shown (see the
books by Gupta and Nagar29 and Muirhead27 for relevant mathematical details on matrix variate Laplace transforms)
that the pdf of G follows the noncentral Wishart distribution given in Eq. (5), that is

pG (G) =
{

2
1
2 np Γn

(
1
2
p

)
|Σ| 12 p

}−1

etr
{
−1

2
Θ

}
etr

{
−1

2
Σ−1G

}

|S| 12 (p−n−1)
0F1

(
1
2
p,

1
4
ΘΣ−1G

)
. (29)
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From the discussions so far, we have the following fundamental result regarding the unified uncertainty modelling of
structural dynamic systems:

Theorem 1. The unified parametric-nonparametric probability density function a random system matrix G ≡ {M, C, K}
follows the noncentral Wishart distribution, that is G ∼ Wn(p,Σ,Θ) where p > n is a real scalar, Σ and Θ are
symmetric positive-definite n× n real matrices.

If the noncentrality parameter Θ is a null matrix, the unified distribution reduces to the nonparametric distribution
(central Wishart distribution). The unified distribution derived here is therefore further generalization of the nonpara-
metric distribution. The additional parameters provided by the matrix Θ ∈ R+

n allow to model parametric uncertainty
which is not available within the scope of the nonparametric distribution.

B. Properties of the Distribution

For notational convenience, suppose
Ω = MMT . (30)

Therefore,
Θ = Σ−1MMT = Σ−1Ω, (31)

that is
Ω = ΣΘ. (32)

The first moment (mean), the second-moment and the elements of the covariance tensor can be obtained29 as

E [G] = pΣ + Ω, (33)

E
[
G2

]
= pTrace (Σ)Σ + pΣ2 + p2Σ2 + pΩΣ + ΩΣ (34)

+ Trace (Ω)Σ + Trace (Σ)Ω + ΣΩ + pΣΩ + Ω2,

and cov (Gij , Gkl) = (pΣij + Ωij) (pΣkl + Ωkl) (35)
+ p (ΣikΣjl + ΣilΣjk) + (ΣjlΩik + ΣilΩjk + ΣjkΩil + ΣikΩjl) .

The covariance tensor can alternatively be expressed in a matrix form as

cov (vec (G)) = pΣ⊗Σ + Ω⊗Σ + Σ⊗Ω + [pΣ⊗Σ + Ω⊗Σ + Σ⊗Ω] Knn

= (In2 + Knn) (pΣ⊗Σ + Ω⊗Σ + Σ⊗Ω) .
(36)

Comparing these expressions with the equivalent expressions (17)–(19) corresponding to the nonparametric distribu-
tion in section III, observe that the unified distribution offers more parameters to ‘capture’ the parametric nature of
uncertainty.

C. Parameter Identification of the Distribution

The unknown parameters of the unified distribution are p ∈ R, Σ ∈ R+
n and Ω ∈ R+

n . There are in total n + n(n + 1)
number of unknowns in this distribution. A least-square error minimization approach based on the expressions of the
mean and covariance matrix in Eqs. (33) and (36) is developed in this part.

Before proceeding to the parameter identification of the matrix variate distribution, let us look at the information
an analyst is likely to have. The mean of system matrices can be considered as the baseline finite element model so
that we have G ∈ R+

n . For systems with uncertain parameters we can also obtain the covariance matrix of G, denoted
by

CG = cov (vec (G)) ∈ R+
n2 . (37)

If a random field model is assumed for the system parameters, then the covariance matrix can be obtained by discretis-
ing the random fields using the well established stochastic finite element approach6–15 (e.g., using the Karhunen–Loéve
expansion). However, in general it is difficult to obtain the correlation function and other information regarding the
random fields describing the system parameters accurately and reliably. Therefore, the elements of the covariance
matrix CG of the system matrix G are, at best, good approximations. Error in the elements of the covariance matrix
arises not because of the numerical methods to obtain them, but due to the lack of knowledge regarding uncertainty in
the system. As a result, every element of the covariance matrix CG may not be very reliable for practical problems.
Consequently here we satisfy them in a least-square sense and not in an‘ element-by-element’ basis.
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Nonparametric analysis only considers the trace of CG and therefore neglects all the non-diagonal elements. Here
we aim to consider the complete covariance matrix in a least-square sense. The idea behind the lest-square satisfaction
is steaming from the fact that the elements of CG are only accurate to the extent of underlying information available
regarding the detailed nature of uncertainty (e.g, correlation functions, correlation lengths, standard deviations of the
uncertain parameters). With the least-square satisfaction of the covariance matrix, combined with the random matrix
model, we hope to take both parametric and non-parametric uncertainty into account simultaneously.

The mean of a systems matrix, G, is symmetric and positive definite. From Eq. (33) we have

pΣ + Ω = G (38)

or Σ =
(
G−Ω

)
/p (39)

Substituting Σ into the expression of the covariance matrix in Eq. (36) and simplifying one obtains

cov (vec (G)) = (In2 + Knn)
1
p

(
G⊗G−Ω⊗Ω

)
. (40)

We aim to obtain the normalized standard deviation defined in Eq. (13). First note that

E
[
‖G− E [G] ‖2F

]
= E

[
Trace

(
[G− E [G]][G− E [G]]T

)]

= Trace
(
E

[
[G− E [G]][G− E [G]]T

])

= Trace (cov (vec (G)))

= Trace
(

(In2 + Knn)
1
p

(
G⊗G−Ω⊗Ω

))

=
1
p

(
Trace

(
(In2 + Knn)

(
G⊗G

))− Trace ((In2 + Knn) (Ω⊗Ω))
)

=
1
p

(
Trace

(
G

2
)

+
{
Trace

(
G

)}2 −
(
Trace

(
Ω2

)
+ {Trace (Ω)}2

))
.

(41)

In calculating the preceding expression we have interchanged the E [•] and Trace (•) as they linear operators and used
Theorem 16.4.1 in Harville.2 Therefore

δ2
G =

E
[
‖G− E [G] ‖2F

]

‖E [G] ‖2F
=

Trace
(
G

2
)

+
{
Trace

(
G

)}2 −
(
Trace

(
Ω2

)
+ {Trace (Ω)}2

)

pTrace
(
G

2
) . (42)

From this expressions we obtain

p =
1
δ2
G

Trace
(
G

2 −Ω2
)

+
{
Trace

(
G

)}2 − {Trace (Ω)}2

Trace
(
G

2
) . (43)

In the above expression Ω ∈ Rn is unknown. For the central Wishart distribution, Ω is a null matrix. We are trying to
identify a non-null Ω matrix for the noncentral distribution.

For any symmetric matrix G, one has
vech (G) = Hnvec (G) (44)

where Hn is the left Moore-Penrose inverse of the duplication matrix Gn (see Chapter 16 of the book by Harville2).
From this we have

cov (vech (G)) = cov (Hnvec (G)) E
[
Hnvec (G) vec (G)T HT

n

]
= Hncov (vec (G)) HT

n . (45)

Substituting the expression of the covariance matrix from Eq. (40) into the preceding expression and using the deriva-
tions in Section 16.4 in Harville2 we have

cov (vech (G)) = Hncov (vec (G)) HT
n = Hn (In2 + Knn)

1
p

(
G⊗G−Ω⊗Ω

)
HT

n

=
2
p

Hn

(
G⊗G−Ω⊗Ω

)
HT

n .

(46)
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We suppose that CG = cov (vec (G)) ∈ R+
n2 is known. Using the relationship in Eq. (45), and equating the known

covariance matrix to (46) we have

HnCGHT
n =

2
p

Hn

(
G⊗G−Ω⊗Ω

)
HT

n (47)

or Hn

[
CG − 2

p

(
G⊗G−Ω⊗Ω

)]
HT

n = On(n+1)/2,n(n+1)/2 (48)

Since the rank of Hn is n(n + 1)/2, the above equation will be satisfied if

CG =
2
p

(
G⊗G−Ω⊗Ω

)
(49)

or Ω⊗Ω = G⊗G− pCG/2. (50)

We need to solve this equation to obtain Ω. The solution of Ω will contain p and as noted in Eq. (43), p in turn is
expressed in terms of Ω. Therefore some iterative type solution method is required to obtain both the parameters.

Supposing G is fully populated CG can have n(n+1)(n(n+1)+2)/8 number of independent elements. Whereas
Ω has only n(n + 1)/2 number of independent elements. Clearly an unique solution of Ω cannot be obtained. Here
a least-square error minimization method is adopted. Specifically we are aiming to identify Ω such that the following
norm

‖A−Ω⊗Ω‖F (51)

where
A = G⊗G− pCG/2 ∈ Rn2×n2

(52)

is minimized. The problem of identifying general real matrices Ω1 and Ω2 which minimizes ‖A−Ω1 ⊗Ω2‖F was
first discussed by Van Loan and Pitsianis.30 This problem is known as the ‘nearest Kronecker product’. We refer to
the papers by Langville and Stewart31–33 for further discussions. More recently Van Loan [personal communication]
provided an elegant solution of problem (51) which is a constrained version of the general nearest Kronecker product
problem discussed in the earlier paper.30

From the discussion so far we can say that the unified parametric-nonparametric distribution of a structural matrix
can be expressed by a noncentral Wishart distribution so that G ∼ Wn(p,Σ,Θ). The parameters of the distribution,
namely p ∈ R, Σ ∈ R+

n and Ω ∈ R+
n can be calculated by following these steps:

1. Obtain the mean matrix (corresponding to the baseline system) G ∈ R+
n from the standard FE analysis. Ob-

tain the covariance matrix CG = cov (vec (G)) ∈ R+
n2 corresponding to G (e. g., using the Kerhunen Love

expansion7 of the parametric random fields). The elements of CG do not have to be very accurate (with the un-
derstanding that inaccuracies are arising due to the lack knowledge regarding the parametric stochastic fields).

2. Obtain the normalized standard deviation δG of G from

δ2
G =

E
[
‖G− E [G] ‖2F

]

‖E [G] ‖2F
=

Trace (CG)

Trace
(
G

2
) . (53)

3. Begin with Ω = On,n (as in the case of non-parametric distribution) and obtain the initial value of p from Eq.
(43) as

p =
1
δ2
G

Trace
(
G

2
)

+
{
Trace

(
G

)}2

Trace
(
G

2
) . (54)

From the discussion in section III, note that this value of p is used in the non-parametric approach. The steps
below are aimed at incorporating parametric uncertainties.

4. Form the matrix A = G ⊗G − pCG/2 ∈ Rn2×n2
and obtain Ω ∈ Rn×n by least-square minimization of the

Frobenius norm
‖A−Ω⊗Ω‖F .
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5. Using this value of Ω ∈ Rn×n, calculate the new value of p from Eq. (43) as

pnew =
1
δ2
G

Trace
(
G

2 −Ω2
)

+
{
Trace

(
G

)}2 − {Trace (Ω)}2

Trace
(
G

2
) .

6. Calculate δp = |p− pnew|/n

(a) If δp ≤ εp (εp is a small number, say εp = 0.01) then the iteration has converged. Select p = pnew and
exit.

(b) Else if δp > εp then the iteration steps. Select p = pnew and go back to step 4.

7. Finally calculate
Σ =

(
G−Ω

)
/p

and
Θ = Σ−1Ω.

This iterative procedure completely defines all the unknown parameters in the noncentral Wishart distribution.

V. Numerical Implementation of the Unified Model

The parameters of the distribution G ∼ Wn(p,Σ,Θ), namely p ∈ R, Σ ∈ R+
n and Ω ∈ R+

n can be calculated
by following the method outlined in the previous section. In this section we outline a numerical procedure to generate
the samples of the system matrix satisfying the unified distribution. The proposed method is based on the derivation
itself, as described in subsection A.

The simulation procedure is surprisingly simple and hinges on the factorization in Eq. (20). Basically one only
needs to simulate a Gaussian random matrix X ∼ Nn,p (M,Σ⊗ Ip) and use this equation to generate the samples of
the system matrix. This can be achieved by following these simple steps

1. Obtain the distribution parameters p ∈ R, Σ ∈ R+
n and Ω ∈ R+

n from G and CG using the iterative procedure
described in the previous section. Approximate p to its nearest integer (because p is in the order of several
thousands, this introduces very little error).

2. Perform the Cholesky factorizations of the positive definite matrices Σ ∈ R+
n and Ω ∈ R+

n as

Σ = DDT , D ∈ Rn×n (55)

and Ω = M̂M̂T
, M̂ ∈ Rn×n. (56)

3. Calculate the n× n square matrix
M̃ = D−1M̂ (57)

4. Construct the n× p rectangular mean matrix

M = [M̃, On,n−p] ∈ Rn×p. (58)

5. Obtain the matrix Y ∈ Rn×p containing uncorrelated Gaussian random numbers with mean M and unit stan-
dard deviation.

6. Generate the samples of a system matrix as

G = DYYT DT ∈ R+
n . (59)

One needs to repeat the above procedure for the mass, stiffness and damping matrices. The above procedure can be
implemented very easily. For example, in MATLABr, the following four lines of code will generate the samples of
the system matrices:
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D=[chol(Sigma)]’; Mhat=[chol(Omega)]’;
Mtilde=D\Mhat;
Y=[Mtilde zeros(n,p-n)] + randn(n,p);
G=D*Y*Y’*D’;

Once the samples of the system matrices are generated, the rest of the analysis is identical to any Monte Carlo simu-
lation based approach. In the next section the proposed approach is illustrated thorough an example.

VI. Numerical Example: Dynamic Response of a Clamped Plate With Randomly
Inhomogeneous Properties

A cantilever steel plate with uncertain properties is considered to illustrate the application of the derived unified
distribution in probabilistic structural dynamics. The diagram of the plate together with the deterministic numerical
values assumed for the system parameters are shown in Fig. 2. The plate is excited by an unit harmonic force and
the response is calculated at the point shown in the diagram. The standard four-noded thin plate bending element

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8
−0.5

0

0.5

1

X direction (length)

Output

Input

Fixed edge

Y direction (width)

Figure 2. The Finite Element (FE) model of a steel cantilever plate: 25×15 elements, 416 nodes, 1200 degrees-of-freedom. The deterministic
properties are: Ē = 200 × 109N/m2, µ̄ = 0.3, ρ̄ = 7860kg/m3, t̄ = 3.0mm, Lx = 0.6m, Ly = 0.5m. Input node number: 79, output
node number: 112, modal damping factor: 2% for all modes.

(resulting 12 degrees of freedom per element) is used. The plate is divided into 8 elements along the x-axis and 6
elements along the y-axis for the numerical calculations. The resulting system has 168 degrees of freedom so that
n = 168. It is assumed that the Young’s modulus, Poissons ratio, mass density and thickness are random fields of the
form

E(x) = Ē (1 + εEf1(x)) (60)
µ(x) = µ̄ (1 + εµf2(x)) (61)
ρ(x) = ρ̄ (1 + ερf3(x)) (62)

and t(x) = t̄ (1 + εtf4(x)) . (63)

The two dimensional vector x denotes the spatial coordinates. The strength parameters are assumed to be εE = 0.15,
εµ = 0.10, ερ = 0.15 and εt = 0.15. The random fields fi(x), i = 1, · · · , 4 are assumed to be delta-correlated
homogenous Gaussian random fields. A 600-sample Monte Carlo simulation is performed to obtain the FRFs.

Direct stochastic finite-element Monte Carlo Simulation of the amplitude and phase of the cross-FRF are shown
in Figs. 3 and 4 respectively. The realizations of the amplitude and phase of the FRF for each sample are shown
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(a) Amplitude across the frequency range (b) Amplitude in the Low-frequency range

(c) Amplitude in the Medium-frequency range (d) Amplitude in the High-frequency range

Figure 3. Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the cross-FRF of the plate with randomly distributed
material properties.

(a) Phase across the frequency range (b) Phase in the Low-frequency range

(c) Phase in the Medium-frequency range (d) Phase in the High-frequency range

Figure 4. Direct stochastic finite-element Monte Carlo Simulation of the phase of the cross-FRF of the plate with randomly distributed
material properties.
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together with the ensemble mean, 5% and 95% probability points and the results for the baseline system. In Figs.
3(b)-(d) and 4(b)-(d) we have separately shown the low, medium and high-frequency response, obtained by zooming
in the appropriate frequency ranges in Figs. 3(a) and 4(a) respectively. There are of course no fixed and definite
boundaries between the low, medium and high-frequency ranges. We have selected 0− 0.7KHz as the low-frequency
range, 0.7− 1.4KHz as the medium-frequency range and 1.4− 2.0KHz as the high-frequency range. These frequency
boundaries are selected on the basis of the qualitative nature of the response and devised purely for the clarity in
presenting the results. The proposed noncentral Wishart matrix approach is independent of these selections. The
ensemble mean of the response amplitude follows the deterministic result closely in the low and medium frequency
ranges. However, the ensemble mean of the phase of the response is quite different from the deterministic result
in the medium and high frequency ranges. Overall the spread in the amplitude and phase of the response increases
with increasing frequency. The direct stochastic finite-element Monte Carlo Simulation of the amplitude and phase of
the driving-point-FRF are shown in Figs. 5 and 6 respectively. The realizations of the amplitude and phase of the

(a) Amplitude across the frequency range (b) Amplitude in the Low-frequency range

(c) Amplitude in the Medium-frequency range (d) Amplitude in the High-frequency range

Figure 5. Direct stochastic finite-element Monte Carlo Simulation of the amplitude of the driving-point-FRF of the plate with randomly
distributed material properties.

FRF for each sample are shown together with the ensemble mean, 5% and 95% probability points and the results for
the baseline system. In Figs. 5(b)-(d) and 6(b)-(d) we have separately shown the low, medium and high-frequency
response, obtained by zooming in the appropriate frequency ranges in Figs. 5(a) and 6(a) respectively. The ensemble
mean follows the deterministic result closely across the frequency range. The amount of spread in the amplitude
and phase of the response in this case is smaller compared to the cross-FRF. This is due to the fact that the affect of
distributed random material properties is more when we measure the response at a point further to the source.

Now we want to see if the results obtained from the direct stochastic finite element Monte Carlo Simulation can
be reproduced using noncentral Wishart random matrices whose parameters are identified according to the method
outlined before. We want to see whether the proposed method can predict the known variability in the response in
the case when very accurate information regarding parametric uncertainty is available. The purpose of this is simply
to validate the proposed formulation. The intended use of the proposed approach is however for the case when the
elements of the covariance matrix of the system matrices are not very accurate. The details of the parametric variations
of the random fields will not be used in the noncentral Wishart matrix approach. From the simulated random mass and
stiffness matrices we obtain we obtain CM , CK , n = 168, δM = 0.1194 and δK = 0.2711. Since 2% constant modal
damping factor is assumed for all the modes, δC = 0 and CC = On2,n2 . The only uncertainty related information
used in the random matrix approach are the values of CM , CK , δM and δK . The detailed information regarding which
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(a) Phase across the frequency range (b) Phase in the Low-frequency range

(c) Phase in the Medium-frequency range (d) Phase in the High-frequency range

Figure 6. Direct stochastic finite-element Monte Carlo Simulation of the phase of the driving-point-FRF of the plate with randomly
distributed material properties.

element property functions are random fields, nature of these random fields (correlation structure, Gaussian or non-
Gaussian) and the amount of randomness are not used in the noncentral Wishart matrix approach. This is aimed at
depicting a realistic situation where accurate information regarding these quantities are in general not available. Using
n = 168, δM = 0.1194, δK = 0.2711 and the covariance matrices, together with the deterministic values of M and
K, from the iterative procedure in subsection C we obtain

pM = 15256 and pK = 2713. (64)

Using these, the samples of the mass and stiffness matrices are simulated following the procedure outlined in section V.
The amplitude and the phase of the cross-FRF obtained using the samples of the noncentral Wishart matrices are
shown in Figs. 7 and 8 respectively. The realizations of the amplitude and phase of the FRF for each sample are
shown together with the ensemble mean, 5% and 95% probability points and the results for the baseline system. In
Figs. 7(b)-(d) and 8(b)-(d) the low, medium and high-frequency response, obtained by zooming in the appropriate
frequency ranges in Figs. 7(a) and 8(a), are shown separately. The equivalent results for the driving-point-FRF are
shown in Figs. 9 and 10. It may be observed that the qualitative features of the response is similar to what obtained
using the detailed stochastic finite element simulation in Figs. 3–6.

The predicted mean and standard deviation of the amplitude and phase using the direct stochastic finite element
simulation and the noncentral Wishart matrix approach are compared in Figs. 11–14 for the cross-FRF and the driving-
point-FRF respectively. In Figs. 11(b)-(d), 12(b)-(d), 13(b)-(d) and 14(b)-(d) the low, medium and high-frequency
response, obtained by zooming in the appropriate frequency ranges are shown respectively. The mean of the response
amplitude obtained from the proposed noncentral Wishart matrix approach is very close to the results obtained using
the stochastic finite element simulation across the frequency range considered. The standard deviations of the response
amplitude obtained from the proposed noncentral Wishart matrix theory match reasonably well to the standard devi-
ations obtained using the stochastic finite element simulation. It is interesting to note that the proposed noncentral
Wishart matrix approach produces accurate results in the medium frequency range. For the low frequency region, the
predication of the standard deviation is better around the resonance compared to the antiresonance. This is promising
because the response around the resonance peaks are often most useful in practice.

The predicted 5% and 95% probability points using the direct stochastic finite element simulation and proposed
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(a) Amplitude across the frequency range (b) Amplitude in the Low-frequency range

(c) Amplitude in the Medium-frequency range (d) Amplitude in the High-frequency range

Figure 7. Monte Carlo Simulation of the amplitude of the cross-FRF of the plate using noncentral Wishart mass and stiffness matrices,
n = 168, δM = 0.1194 and δK = 0.2711.

(a) Phase across the frequency range (b) Phase in the Low-frequency range

(c) Phase in the Medium-frequency range (d) Phase in the High-frequency range

Figure 8. Monte Carlo Simulation of the phase of the cross-FRF of the plate using noncentral Wishart mass and stiffness matrices, n = 168,
δM = 0.1194 and δK = 0.2711.
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(a) Amplitude across the frequency range (b) Amplitude in the Low-frequency range

(c) Amplitude in the Medium-frequency range (d) Amplitude in the High-frequency range

Figure 9. Monte Carlo Simulation of the amplitude of the driving-point-FRF of the plate using noncentral Wishart mass and stiffness
matrices, n = 168, δM = 0.1194 and δK = 0.2711.

(a) Phase across the frequency range (b) Phase in the Low-frequency range

(c) Phase in the Medium-frequency range (d) Phase in the High-frequency range

Figure 10. Monte Carlo Simulation of the phase of the driving-point-FRF of the plate using noncentral Wishart mass and stiffness matrices,
n = 168, δM = 0.1194 and δK = 0.2711.
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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(d) Amplitude in the High-frequency range

Figure 11. Comparison of the mean and standard deviation of the amplitude of the cross-FRF obtained using the direct stochastic finite
element simulation and proposed noncentral Wishart matrix method.
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(a) Phase across the frequency range
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(b) Phase in the Low-frequency range
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(c) Phase in the Medium-frequency range
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(d) Phase in the High-frequency range

Figure 12. Comparison of the mean and standard deviation of the phase of the cross-FRF obtained using the direct stochastic finite element
simulation and proposed noncentral Wishart matrix method.
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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Figure 13. Comparison of the mean and standard deviation of the amplitude of the driving-point-FRF obtained using the direct stochastic
finite element simulation and proposed noncentral Wishart matrix method.
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(a) Phase across the frequency range
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(b) Phase in the Low-frequency range
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(c) Phase in the Medium-frequency range
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(d) Phase in the High-frequency range

Figure 14. Comparison of the mean and standard deviation of the phase of the driving-point-FRF obtained using the direct stochastic finite
element simulation and proposed noncentral Wishart matrix method.

18 of 22

American Institute of Aeronautics and Astronautics Paper 2007-2396



noncentral Wishart matrix method are compared in Figs. 15–18. The essential feature of these plots are similar to the
standard deviation plots shown before.
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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(d) Amplitude in the High-frequency range

Figure 15. Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF obtained using the direct stochastic finite
element simulation and proposed noncentral Wishart matrix method.

VII. Conclusions

When uncertainties in the system parameters (parametric uncertainty) and modelling (nonparametric) are consid-
ered, the discretized equation of motion of linear dynamical systems is characterized by random mass, stiffness and
damping matrices. A new unified parametric-nonparametric uncertainty quantification (UQ) method for linear dy-
namical systems has been proposed. Based on a matrix factorization approach, it is shown that the matrix variate
probability density function of the random system matrices can be represented by the so called noncentral Wishart
distribution. Existing nonparametric distribution is the central Wishart distribution, which is a special case of the
proposed noncentral Wishart distribution. Matrix variate distributions proposed for structural dynamic problems are
summarized in Table 1. The noncentral Wishart distribution has more parameters than the nonparametric central
Wishart distribution to accommodate the parametric nature of uncertainty. The discovery of the noncentral Wishart
distribution in this context is significant. On the one hand it eliminates some of the drawbacks of the nonparamet-
ric distribution, and in the other hand it can incorporate some parametric features while keeping the nonparametric
features unchanged. This approach is particularly suitable when all elements of the covariance matrix of the system
matrices are not known accurately (e.g, due to the lack of knowledge regarding the correlation functions, correlation
lengths and standard deviations of the uncertain parameters).

A simple numerical simulation algorithm (which only requires the generation of Gaussian random numbers) has
been outlined to implement the new distribution for structural dynamic problems. The derived noncentral Wishart ran-
dom matrix model is applied to the forced vibration problem of a plate with stochastically inhomogeneous properties.
Numerical results show that it is possible to predict the variation of the dynamic response using the noncentral Wishart
matrices across a wide range of driving frequency. These results suggest that the noncentral Wishart matrices may be
used as a consistent and unified uncertainty quantification tool valid across the whole frequency spectrum for linear
vibration problems.
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(a) Phase across the frequency range
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(b) Phase in the Low-frequency range
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(c) Phase in the Medium-frequency range
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(d) Phase in the High-frequency range

Figure 16. Comparison of the 5% and 95% probability points of the phase of the cross-FRF obtained using the direct stochastic finite
element simulation and proposed noncentral Wishart matrix method.
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(a) Amplitude across the frequency range
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(b) Amplitude in the Low-frequency range
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(c) Amplitude in the Medium-frequency range
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(d) Amplitude in the High-frequency range

Figure 17. Comparison of the 5% and 95% probability points of the amplitude of the driving-point-FRF obtained using the direct stochastic
finite element simulation and proposed noncentral Wishart matrix method.

20 of 22

American Institute of Aeronautics and Astronautics Paper 2007-2396



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3

−2

−1

0

1

2

3

4

Frequency (Hz)

Ph
as

e 
of

 H (9
1,

91
) (ω

)

 

 

5% points: Direct Simulation
5% points: noncentral Wishart
95% points: Direct Simulation
95% points: noncentral Wishart

(a) Phase across the frequency range
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(b) Phase in the Low-frequency range
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(c) Phase in the Medium-frequency range
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(d) Phase in the High-frequency range

Figure 18. Comparison of the 5% and 95% probability points of the phase of the driving-point-FRF obtained using the direct stochastic
finite element simulation and proposed noncentral Wishart matrix method.
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)

}
and

δ2
G =

E
h‖G−E[G] ‖2

F

i

‖E[G] ‖2

F

= Trace(CG)

Trace(G
2
)

(a) The trace of the covariance matrix of
the elements of a system matrix is required.
(b) The mean of the inverse and the inverse
of the mean of the system matrices can be
significantly different from each other for
the choice of the distribution parameters.

Adhikari18, 19 (2006) Central Wishart/gamma random matrix
Wn(p,Σ), with Σ = G/

√
p(p− n− 1)

and the rest is as defined above.

(a) The trace of the covariance matrix of
the elements of a system matrix is required.
(b) Parameters are obtained using a least-
square error minimization approach. The
mean of the matrix and its inverse produce
minimum deviations from their respective
deterministic values.

This paper Noncentral Wishart random matrix
Wn(p,Σ,Θ), with
Σ =

(
G−Ω

)
/p, Θ = Σ−1Ω, p =

Trace(G
2
−Ω2

)+{Trace(G)}2−{Trace(Ω)}2

δ2
GTrace(G

2
)

,

Ω ⊗ Ω = G ⊗ G − pCG/2 and δG is as
defined above.

(a) This distribution requires the same in-
formation as the previous two distribu-
tions, namely G ∈ R+

n and CG ∈ R+
n2 .

(b) If Ω = On,n then this distribution re-
duces to the central distribution proposed
before.
(c) The matrix Ω ∈ R+

n captures the para-
metric uncertainty through a least-square
error minimization involving the covari-
ance matrix CG.

17Soize, C., “Random matrix theory for modeling uncertainties in computational mechanics,” Computer Methods in Applied Mechanics and
Engineering, Vol. 194, No. 12-16, 2005, pp. 1333–1366.

18Adhikari, S., “A non-parametric approach for uncertainty quantification in elastodynamics,” 47th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics & Materials Conference, Newport, Rhode Island, USA, May 2006.

19Adhikari, S., “Matrix variate distributions for probabilistic structural mechanics,” AIAA Journal, 2007, accepted for publication.
20Adhikari, S., Lonkar, K., and Friswell, M. I., “Experimental case studies on uncertainty quantification in structural dynamics,” Proceedings

of the 25th International Modal Analysis Conference (IMAC-XXV), Orlando, Florida, USA, February 2007.
21Adhikari, S., Friswell, M. I., and Lonkar, K., “Uncertainty in structural dynamics: Experimental case studies on beams and plates,” Proceed-

ings of the Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2007), Crete, Greece, June 2007.
22Wishart, J., “The generalized product moment distribution in samples from a normal multivariate population,” Biometrika, Vol. 20, No. A,

1928, pp. 32–52.
23Mezzadri, F. and Snaith, N. C., editors, Recent Perspectives in Random Matrix Theory and Number Theory, London Mathematical Society

Lecture Note, Cambridge, U. K., 2005, Cambridge University Press.
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