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ABSTRACT
Proportional damping is a widely used approach to model dissipative forces in complex engineering

structures and it has been used in various dynamic problems for more than ten decades. A major limitation
of the mass and stiffness proportional damping approximation is the lack of generality of the model to allow
for experimentally observed variation of damping factors with respect to vibration frequency in complex
structures. To remedy this, a new generalized proportional damping model is proposed. The proposed
method requires only the measurements of natural frequencies and modal damping factors which can be
obtained using a point measurement of the frequency response function (FRF). Simulation examples are
provided to illustrate the proposed method. Verification of the proposed technique in lab scale experiments
is presented. It is concluded that the present method has significant potential in modelling damping in
industrial scale structures.

INTRODUCTION
Modal analysis is the most popular and efficient method for solving engineering dynamic problems. The

concept of modal analysis, as introduced by Lord Rayleigh (1877), was originated from the linear dynamics
of undamped systems. The undamped modes or classical normal modes satisfy an orthogonality relationship
over the mass and stiffness matrices and uncouple the equations of motion, i.e., if Φ is the modal matrix
then ΦT MΦ and ΦT KΦ are both diagonal matrices. This significantly simplifies the dynamic analysis
because complex multiple degree-of-freedom (MDOF) systems can be effectively treated as a collection of
single degree-of-freedom oscillators.

Real-life systems are not undamped but possess some kind of energy dissipation mechanism or damping.
In order to apply modal analysis of undamped systems to damped systems, it is common to assume the
proportional damping, a special type of viscous damping. The proportional damping model expresses the
damping matrix as a linear combination of the mass and stiffness matrices, that is

C = α1M + α2K (1)

where α1, α2 are real scalars. This damping model is also known as ‘Rayleigh damping’ or ‘classical damping’.
Modes of classically damped systems preserve the simplicity of the real normal modes as in the undamped
case. Caughey and O’Kelly (1965) have derived the condition which the system matrices must satisfy so that
viscously damped linear systems possess classical normal modes. They have also proposed a series expression
for the damping matrix in terms of the mass and stiffness matrices so that the system can be decoupled by
the undamped modal matrix and have shown that the Rayleigh damping is a special case of this general
expression. In this paper a more general expression of the damping matrix is proposed while retaining the
advantage of classical normal modes.

Complex engineering structures in general have non-proportional damping. For a non-proportionally
damped system, the equations of motion in the modal coordinates are coupled through the off-diagonal terms
of the modal damping matrix and consequently the system possesses complex modes instead of real normal
modes. Practical experience in modal testing also shows that most real-life structures possess complex modes.
Complex modes can arise for various other reasons also (Phani, 2004), for example, due to the gyroscopic
effects, aerodynamic effects, nonlinearity and experimental noise. Adhikari and Woodhouse (2001a,b) have
proposed few methods to identify damping from experimentally identified complex modes. In spite of a large
amount of research, understanding and identification of complex modes is not well developed as real normal
modes. The main reasons are:
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• In contrast with real normal modes, the ‘shapes’ of complex modes are not in general clear. It appears
that unlike the (real) scaling of real normal modes, the (complex) scaling or normalization of complex
modes has a significant effect on their geometric appearance. This makes it particularly difficult to
experimentally identify complex modes in a consistent manner (Adhikari, 2004).

• The imaginary parts of the complex modes are usually very small compared to the real parts, especially
when the damping is small. This makes it difficult to reliably extract complex modes using numerical
optimization methods in conjunction with experimentally obtained transfer function residues. A
minimum phase scaling has be suggested by Phani (2004) which has the distinct advantage that the
real part of the damped complex mode is closest to the undamped real mode.

• The phase of complex modes are highly sensitive to experimental errors and hence not reliable.

In order to bypass these difficulties, often real normal modes are used in experimental modal analysis. Chen
et al. (1996), Ibrahim (1983), and Balmès (1997) have proposed methods to obtain the best real normal modes
from identified complex modes. The damping identification method proposed in this paper assumes that the
system is effectively proportionally damped so that the complex modes can be neglected. The outline of the
paper is as follows. In section 3, a background of proportionally damped systems is provided. The concept
of generalized proportional damping is introduced in section 4. The damping identification method using the
generalized proportional damping is discussed in section 5. Based on the proposed damping identification
technique, a general method of modelling of damping for complex systems has been outlined in section 6.
Numerical examples are provided to illustrate the proposed approach.

BACKGROUND OF PROPORTIONALLY DAMPED SYSTEMS
The equations of motion of free vibration of a viscously damped system can be expressed by

Mq̈(t) + Cq̇(t) + Kq(t) = 0. (2)

Caughey and O’Kelly (1965) have proved that a damped linear system of the form (2) can possess classical
normal modes if and only if the system matrices satisfy the relationship KM−1C = CM−1K. This is an
important result on modal analysis of viscously damped systems and is now well known. However, this result
does not immediately generalize to systems with singular mass matrices (Newland, 1989). This apparent
restriction in Caughey and O’Kelly’s result may be removed by considering the fact that all the three system
matrices can be treated on equal basis and therefore can be interchanged. In view of this, when the system
matrices are non-negative definite we have the following theorem:

Theorem 1. A viscously damped linear system can possess classical normal modes if and only if at least
one of the following conditions is satisfied:
(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c) MC−1K = KC−1M.

This can be easily proved by following Caughey and O’Kelly’s approach and interchanging M, K and C
successively. If a system is (•)-singular then the condition(s) involving (•)−1 have to be disregarded and
remaining condition(s) have to be used. Thus, for a positive definite system, along with Caughey and
O’Kelly’s result (condition (a) of the theorem), there exist two other equivalent criterion to judge whether a
damped system can possess classical normal modes. It is important to note that these three conditions are
equivalent and simultaneously valid but in general not the same.

Example 1.

Assume that a system’s mass, stiffness and damping matrices are given by

M =




1.0 1.0 1.0
1.0 2.0 2.0
1.0 2.0 3.0


 , K =




2 −1 0.5
−1 1.2 0.4
0.5 0.4 1.8




and C =




15.25 −9.8 3.4
−9.8 6.48 −1.84
3.4 −1.84 2.22


 .

(3)
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It may be verified that all the system matrices are positive definite. The mass-normalized undamped modal
matrix is obtained as

Φ =




0.4027 −0.5221 −1.2511
0.5845 −0.4888 1.1914
−0.1127 0.9036 −0.4134


 . (4)

Since Caughey and O’Kelly’s condition

KM−1C = CM−1K =




125.45 −80.92 28.61
−80.92 52.272 −18.176
28.61 −18.176 7.908




is satisfied, the system possess classical normal modes and that Φ given in equation (4) is the modal matrix.
Because the system is positive definite the other two conditions,

MK−1C = CK−1M =




2.0 −1.0 0.5
−1.0 1.2 0.4
0.5 0.4 1.8




and

MC−1K = KC−1M =




4.1 6.2 5.6
6.2 9.73 9.2
5.6 9.2 9.6




are also satisfied. Thus all three conditions described in Theorem 1 are simultaneously valid although none
of them are the same. So, if any one of the three conditions proposed in Theorem 1 is satisfied, a viscously
damped positive definite system possesses classical normal modes.

Example 2.

Suppose for a system

M =
[
7.0584 1.3139
1.3139 0.2446

]
, K =

[
3.0 −1.0
−1.0 4.0

]
and C =

[
1.0 −1.0
−1.0 3.0

]
. (5)

It may be verified that the mass matrix is singular for this system. For this reason, Caughey and O’Kelly’s
criteria is not applicable. But, as the other two conditions in Theorem 1,

MK−1C = CK−1M =
[
1.6861 0.3139
0.3139 0.0584

]

and

MC−1K = KC−1M =
[
29.5475 5.5

5.5 1.0238

]

are satisfied, all three matrices can be diagonalized by a congruence transformation using the undamped
modal matrix

Φ =
[
0.9372 −0.1830
0.3489 0.9831

]
.

GENERALIZED PROPORTIONAL DAMPING
In spite of a large amount of research, the understanding of damping forces in vibrating structures is

not well developed. A major reason for this is that, by contrast with inertia and stiffness forces, the physics
behind the damping forces is in general not clear. As a consequence, obtaining a damping matrix from the
first principles is difficult, if not impossible, for real-life engineering structures. For this reason, assuming
M and K are known, we often want to express C in terms of M and K such that the system still possesses
classical normal modes. Of course, the earliest work along this line is the proportional damping shown in
equation (1) by Rayleigh (1877). It may be verified that expressing C in such a way will always satisfy
the conditions given by Theorem 1. Caughey (1960) proposed that a sufficient condition for the existence
of classical normal modes is: if M−1C can be expressed in a series involving powers of M−1K. His result
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generalized Rayleigh’s result, which turns out to be the first two terms of the series. Later, Caughey and
O’Kelly (1965) proved that the series representation of damping

C = M
N−1∑

j=0

αj

(
M−1K

)j
(6)

is the necessary and sufficient condition for existence of classical normal modes for systems without any
repeated roots. This series is now known as the ‘Caughey series’ and is possibly the most general form of
damping matrix under which the system will still possess classical normal modes.

Assuming that the system is positive definite, a further generalized and useful form of proportional
damping will be proposed in this paper. Consider the conditions (a) and (b) of Theorem 1; premultiplying
(a) by M−1 and (b) by K−1 one has

(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)
or AB = BA(

K−1M
) (

K−1C
)

=
(
K−1C

) (
K−1M

)
or AD = DA,

(7)

where A = M−1K, B = M−1C and D = K−1C. Notice that condition (c) of Theorem 1 has not been
considered. Premultiplying (c) by C−1, one would obtain a similar commutative condition. Because it would
involve C terms in both the matrices, any meaningful expression of C in terms of M and K will be difficult
to deduce. For this reason only the two commutative relationships in equation (7) will be considered.
The eigenvalues of A, B and D are positive due to the positive-definitiveness assumption of the system
matrices. For any two matrices A and B, if A commutes with B, β(A) also commutes with B where the
real function β(x) is smooth and analytic in the neighborhood of all the eigenvalues of A. Thus, in view of the
commutative relationships in equation (7), one can use several well known functions to represent M−1C in
terms of M−1K and also K−1C in terms of K−1M. This implies that representations like C = Mβ(M−1K)
and C = K β(K−1M) are valid expressions. The damping matrix can be expressed by adding these two
quantities as

C = M β1

(
M−1K

)
+ K β2

(
K−1M

)
(8)

such that the system possesses classical normal modes. Postmultiplying condition (a) of Theorem 1 by M−1

and (b) by K−1 one has
(
KM−1

) (
CM−1

)
=

(
CM−1

) (
KM−1

)
(
MK−1

) (
CK−1

)
=

(
CK−1

) (
MK−1

)
.

(9)

Following a similar procedure we can express the damping matrix in the form

C = β3

(
KM−1

)
M + β4

(
MK−1

)
K (10)

such that system (2) possesses classical normal modes. The functions βi(•) should be analytic in the
neighborhood of all the eigenvalues of their argument matrices. This implies that β1(•) and β3(•) should
be analytic around ω2

j , ∀ j and β1(•) and β3(•) should be analytic around 1/ω2
j , ∀ j. Clearly these functions

can have very general forms. However, the expressions of C in equations (8) and (10) get restricted because
of the special nature of the arguments in the functions. As a consequence, C represented in (8) or (10) does
not cover the whole RN×N , which is well known that many damped systems do not possess classical normal
modes.

Rayleigh’s result (1) can be obtained directly from equation (8) or (10) as a special case by choosing each
matrix function βi(•) as a real scalar times an identity matrix, that is

βi(•) = αiI. (11)

The damping matrix expressed in equation (8) or (10) provides a new way of interpreting the ‘Rayleigh
damping’ or ‘proportional damping’ where the scalar constants αi associated with M and K are replaced
by arbitrary matrix functions βi(•) with proper arguments. This kind of damping model will be called
generalized proportional damping. We call the representation in equation (8) right-functional form and that
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in equation (10) left-functional form. The functions βi(•) will be called as proportional damping functions
which are consistent with the definition of proportional damping constants (αi) in Rayleighs model.

It is well known that for any matrix A ∈ RN×N , all Ak, for integer k > N , can be expressed as a linear
combination of Aj , j ≤ (N − 1) by a recursive relationship using the Cayley-Hamilton theorem (Kreyszig,
1999). Because all analytic functions have a power series form via Taylor series expansion, the expression
of C in (8) or (10) can in turn be represented in the form of Caughey series (6). However, since all βi(•)
can have very general forms, such a representation may not be always straightforward. For example, if
C = M(M−1K)−e the system possesses normal modes, but it is neither a direct member of Caughey series
(6) nor is it a member of the series involving rational fractional powers given by Caughey (1960) as e is
an irrational number. However, we know that e = 1 + 1

1! + · · · + 1
r! + · · ·∞, from which we can write

C = M(M−1K)−1(M−1K)−
1
1! · · · (M−1K)−

1
r! · · ·∞, which can in principle be represented by Caughey

series. From a practical point of view it is easy to verify that, this representation is not simple and requires
truncation of the series up to some finite number of terms. Therefore, the damping matrix expressed in the
form of equation (8) or (10) is a more convenient representation of Caughey series. From this discussion we
have the following general result for damped linear systems:

Theorem 2. Viscously damped positive definite linear systems will have classical normal modes if and only
if the damping matrix can be represented by
(a) C = M β1

(
M−1K

)
+ K β2

(
K−1M

)
, or

(b) C = β3

(
KM−1

)
M + β4

(
MK−1

)
K

where βi(•) are smooth analytic functions in the neighborhood of all the eigenvalues of their argument ma-
trices.

A proof of the theorem is given in the appendix. For symmetric positive-definite systems both expressions
are equivalent and in the rest of the paper only the right functional form (a) will be considered.

Example 3.

This example is chosen to show the general nature of the proportional damping functions which can
be used within the scope of conventional modal analysis. It will be shown that the linear dynamic system
satisfying the following equation of free vibration

Mq̈+
[
Me

−
“
M−1K

”2
/2 sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K

π

]
q̇ + Kq = 0

(12)

possesses classical normal modes. Numerical values of M and K matrices are assumed to be the same as in
example 1.

Direct calculation shows

C = −



67.9188 104.8208 95.9566
104.8208 161.1897 147.7378
95.9566 147.7378 135.2643


 . (13)

Using the modal matrix calculated before in equation (4), we obtain

ΦT CΦ =



−88.9682 0.0 0.0

0.0 0.0748 0.0
0.0 0.0 0.5293


 ,

a diagonal matrix. Analytically the modal damping factors can be obtained as

2ζjωj = e−ω4
j /2 sinh

(
1
ω2

j

ln
4
3
ωj

)
+ ω2

j cos2
(

1
ω2

j

)
1√
ωj

tan−1 ωj

π
(14)

where ωj are the undamped natural frequencies of the system.
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This example shows that using the generalized proportional damping it is possible to model any variation
of the damping factors with respect to the frequency. This is the basis of the damping identification method
to be proposed later in the paper. With Rayleigh’s proportional damping in equation (1), the modal damping
factors have a special form

ζj =
1
2

(
α1

ωj
+ α2ωj

)
. (15)

Clearly, not all form of variations of ζj with respect to ωj can be captured using equation (15). The damping
identification method proposed in the next section removes this restriction.

DAMPING IDENTIFICATION USING GENERALIZED PROPORTIONAL DAMPING

Derivation of the identification method
The damping identification method is based on the expressions of the proportional damping matrix given

in theorem 2. Considering expression (a) in theorem 2 it can be shown that (see the Appendix for details)

ΦT CΦ = β1

(
Ω2

)
+ Ω2β2

(
Ω−2

)

or 2ζ Ω = β1

(
Ω2

)
+ Ω2β2

(
Ω−2

)
.

(16)

The modal damping factors can be expressed from equation (16) as

ζj =
1
2

β1(ω2
j )

ωj
+

1
2
ωjβ2

(
1/ω2

j

)
. (17)

For the purpose of damping identification the function β2 can be omitted without any loss of generality. To
simplify the identification procedure, the damping matrix is expressed by

C = Mf
(
M−1K

)
. (18)

Using this simplified expression, the modal damping factors can be obtained as

2ζjωj = f
(
ω2

j

)
(19)

or ζj =
1

2ωj
f

(
ω2

j

)
= f̂(ωj) (say). (20)

The function f̂(•) can be obtained by fitting a continuous function representing the variation of the measured
modal damping factors with respect to the natural frequencies. From equations (18) and (19) note that in
the argument of f(•), the term ωj can be replaced by

√
M−1K while obtaining the damping matrix. With

the fitted function f̂(•), the damping matrix can be identified using equation (20) as

2ζjωj = 2ωj f̂(ωj) (21)

or Ĉ = 2M
√

M−1K f̂
(√

M−1K
)

. (22)

The following example will clarify the identification procedure.

Example 4.

Suppose figure 1 shows modal damping factors as a function of frequency obtained by conducting simple
vibration testing on a structure. The damping factors are such that, within the frequency range considered,
they show very low values in the low frequency region, high values in the mid frequency region and again
low values in the high frequency region. We want to identify a damping model which shows this kind of
behavior. The first step is to identify the function which produces this curve. Here this (continuous) curve
was simulated using the equation

f̂(ω) =
1
15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3

)
. (23)
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Figure 1: Variation of modal damping factors; —- original, ◦ recalculated.

From the above equation, the modal damping factors in terms of the discrete natural frequencies, can be
obtained by

2ξjωj =
2ωj

15
(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
. (24)

To obtain the damping matrix, consider equation (24) as a function of ω2
j and replace ω2

j by M−1K (that is

ωj by
√

M−1K) and any constant terms by that constant times I. Therefore, from equation (24) we have

C =M
2
15

√
M−1K

[
e−2.0

√
M−1K − e−3.5

√
M−1K

]

×
[
I + 1.25 sin

(
1
7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

] (25)

as the identified damping matrix. Using the numerical values of M and K from example 1 we obtain

C =




2.3323 0.9597 1.4255
0.9597 3.5926 3.7624
1.4255 3.7624 7.8394


× 10−2. (26)

If we recalculate the damping factors from the above constructed damping matrix, it will produce three
points corresponding to the three natural frequencies which will exactly match with our initial curve as
shown in figure 1.

The method outlined here can produce accurate damping matrix if the modal damping factors are known.
All polynomial fitting methods can be employed to approximate f̂(ω) and one can construct a damping
matrix corresponding to the fitted function by the procedure outlined here. As an example, if 2ξjωj can be
represented in a Fourier series

2ξjωj =
a0

2
+

∞∑
r=1

[
ar cos

(
2πrωj

Ω

)
+ br sin

(
2πrωj

Ω

)]
(27)
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then the damping matrix can also be expanded in a Fourier series as

C = M

(
a0

2
I +

∞∑
r=1

[
ar cos

(
2πrΩ−1

√
M−1K

)
+ br sin

(
2πrΩ−1

√
M−1K

)])
. (28)

The damping identification procedure itself does not introduce significant errors as long as the modes are not
highly complex. From equation (22) it is obvious that the accuracy of the fitted damping matrix depends
heavily on the accuracy the mass and stiffness matrix models. In summary, this identification procedure can
be described by the following steps:

1. Measure a suitable transfer function Hij(ω) by conducting vibration testing.
2. Obtain the undamped natural frequencies ωj and modal damping factors ζj , for example, using the

circle-fitting method.
3. Fit a function ζ = f̂(ω) : R+ → R+ which represents the variation of ζj with respect to ωj for the

range of frequency considered in the study.
4. Calculate the temporary matrix

T =
√

M−1K (29)

5. Obtain the damping matrix using
Ĉ = 2 M T f̂ (T) (30)

Most of the currently available finite element based modal analysis packages usually offer Rayleigh’s pro-
portional damping model and a constant (frequency independent) damping factor model. A generalized
proportional damping model together with the proposed damping identification technique can be easily in-
corporated within the existing tools to enhance their damping modelling capabilities without using significant
additional resources.

Comparison with the existing methods
The proposed method is by no means the only approach to obtain the damping matrix within the scope of

proportional damping assumption. Géradin and Rixen (1997) have outlined a systematic method to obtain
the damping matrix using Caughey series (6). The coefficients αj in series (6) can be obtained by solving
the linear system of equations

Wα = ζv (31)

where

W =
1
2




1
ω1

ω1 ω3
1 · · ·ω2N−3

1

1
ω2

ω2 ω3
2 · · ·ω2N−3

2

...
...

...
...

1
ωN

ωN ω3
N · · ·ω2N−3

N




, α =





α1

α2

...
αN





and ζv =





ζ1

ζ2

...
ζN





. (32)

The mass and stiffness matrices and the constants αj calculated from the preceding equation can be sub-
stituted in equation (6) to obtain the damping matrix. Géradin and Rixen (1997) have mentioned that the
coefficient matrix W in (32) becomes ill-conditioned for systems with well separated natural frequencies.

Another simple, yet very general, method to obtain the proportional damping matrix is by using the
inverse modal transformation method. Adhikari and Woodhouse (2001a) have also used this approach in
the context of identification of non-proportionally damped systems. From experimentally obtained modal
damping factors and natural frequencies one can construct the diagonal modal damping matrix C′ = ΦT CΦ
as

C′ = 2ζΩ. (33)

From this, the damping matrix in the original coordinate can be obtained using the inverse transformation
as

C = Φ−T C′Φ−1. (34)
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The damping matrix identification using equation (34) is essentially numerical in nature. In that it is
difficult to visualize any underlying structure of the modal damping factors of a particular system. With
the proposed method it is possible to identify the proportional damping functions corresponding to several
standard components such as damped beams, plates and shells, and investigate if there are any inherent
functional forms associated with them. It will be particularly useful if one can identify typical functional
forms of modal damping factors associated with different structural components.

For a given structure, if the degrees-of-freedom of the finite element (FE) model and experimental model
(that is the number of sensors and actuators) are the same, equation (34) and the proposed method would
yield similar damping matrices. Usually the numerical model of a structure has more degrees-of-freedom
compared to the degrees-of-freedom of the experimental model. With the conventional modal identification
method it is also difficult to accurately estimate the modal parameters (natural frequencies and damping
factors) beyond the first few modes. Suppose the numerical model has dimension N and we have measured
the modal parameters of first n < N number of modes. The dimension of C′ in equation (33) will be n× n
whereas for further numerical analysis using FE method we need the C matrix to be of dimension N ×N .
This implies that there is a need to extrapolate the available information. If the modal matrix from an FE
model is used, one way this can be achieved is by using a N × n rectangular Φ matrix in equation (34),
where the n columns of Φ would consist of the mode shapes corresponding to the measured modes. Since Φ
becomes a rectangular matrix, a pseudo-inverse is required to calculate Φ−T and Φ−1 in equation (34). Be-
cause pseudo-inverse of a matrix essentially arises from a least-square error minimization, it would introduce
unquantified errors in the modal damping factors associated with the higher modes (which have not been
measured). The proposed method handles this situation in a natural way. Since a continuous function has
been fitted to the measured damping factors, the method would preserve the functional trend to the higher
modes for which the modal parameters have not been measured. This property of the proposed identification
method is particularly useful provided the modal damping factors of the structure under investigation do not
show significantly different behavior in the higher modes. These issues are clarified in the following example.

Example 5.

A partly damped linear array of spring-mass oscillator is considered to illustrate the application of proposed
damping identification method. The objective of this study is to compare the performance of the proposed
method with existing methods. The system, together with the numerical values assumed for different pa-
rameters are shown in figure 2. The mass matrix of the system has the form M = mI where I is the N ×N

m m m
......

m

k k k
k

c

Figure 2: Linear array of N spring-mass oscillators, N = 30, m = 1 kg, k = 3.95× 105 N/m. Dampers
are attached between 8th and 23rd masses with c = 40 Ns/m.

identity matrix. The stiffness matrix of the system is given by

K = k




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

. . . . . . −1
−1 2




. (35)

Some of the masses of the system shown in figure 2 have viscous dampers connecting them to each other. The
damping matrix C has similar form to the stiffness matrix except that it has non-zero entries corresponding
to the masses attached with the dampers only. With such a damping matrix it is easy to verify that the
system is actually non-proportionally damped. For numerical calculations, we have considered a thirty-
degree-of-freedom system so that N = 30. Values of the mass and stiffness associated with each unit are
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assumed to be the same with numerical values of m = 1 kg and k = 3.95×105 N/m. The resulting undamped
natural frequencies then range from approximately 10 to 200 Hz. The value c = 40 Ns/m has been used for
the viscous damping coefficient of the dampers.

We consider a realistic situation where the modal parameters of only first ten modes are known. Numerical
values of ωj and ζj for the first ten modes are shown in table 1. Because the system is non-proportionally
damped, the complex eigensolutions are obtained using the state-space analysis (Newland, 1989) and the
modal damping factors are calculated from the complex eigenvalues as ζj = −Re(λj)/|Im(λj)|. Using this

Table 1: Natural frequencies (Hz) and modal damping factors for first ten modes

Modes: 1 2 3 4 5 6 7 8 9 10
Natural

10.1326 20.2392 30.2938 40.2707 50.1442 59.8890 69.4800 78.8927 88.1029 97.0869frequencies
Damping

0.0005 0.0032 0.0057 0.0060 0.0067 0.0095 0.0117 0.0117 0.0125 0.0155factors

data, the following three methods are used to fit a proportional damping model:
(a) method using Caughey series
(b) inverse modal transformation method
(c) the method using generalized proportional damping

The modal damping factors corresponding to the higher modes, that is from mode number 11 to 30, are
available from simulation results. The aim of this example is to see how the modal damping factors obtained
using the identified damping matrices from the above three methods compare with the ‘true’ modal damping
factors corresponding to the higher modes.

For the method using Caughey series, it has not been possible to obtain the constants αj from equation
(31) since the associated W matrix become highly ill-conditioned. Numerical calculation shows that the
10 × 10 matrix W has a condition number of 1.08 × 1051. To apply the inverse modal transformation
method, only the first ten columns of the analytical modal matrix Φ are retained in the truncated modal
matrix Φ̂ ∈ R30×10. Using the pseudo inverse, the damping matrix in the original coordinate has been
obtained from equation (34) as

C =
[(

Φ̂
T
Φ̂

)−1

Φ̂
T
]T

[2ζΩ]
[(

Φ̂
T
Φ̂

)−1

Φ̂
T
]

. (36)

From the identified C matrix, the modal damping factors are recalculated using

ζ =
1
2
[ΦT CΦ]Ω−1 (37)

where Φ is the full 30× 30 modal matrix.
Now consider the proposed method using generalized proportional damping. Using the data in table 1,

figure 3 shows the variation of modal damping factors for first the ten modes. Looking at the pattern of the
curve in figure 3 we have selected the function f̂(•) as

ζ = f̂(ω) = θ1ω + θ2 sin (θ3ω) (38)

where θi, i = 1, 2, 3 are undetermined constants. Using the data in table 1, together with a nonlinear
least-square error minimization approach results

θ1 = 0.0245× 10−3 and θ2 = −0.5622× 10−3 and θ3 = 9.0. (39)

Recalculated values of ζj using this fitted function is compared with the original function in figure 3. This
simple function matches well with the original modal data. Note that neither the function in equation (38),
nor the parameter values in equation (39) are unique. One can use more complex functions and sophisticated
parameter fitting procedures to obtain more accurate results.
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Figure 3: Modal damping factors for first ten modes; –◦– original, · · ·∗· · · fitted generalized proportional
damping function.

The damping matrix corresponding to the fitted function in equation (38) can be obtained using equation
(22) as

C = 2M
√

M−1K f̂
(√

M−1K
)

= 2M
√

M−1K
[
θ1

√
M−1K + θ2 sin

(
θ3

√
M−1K

)]

= 2θ1 K + 2θ2 M
√

M−1K sin
(
θ3

√
M−1K

)
(40)

The first part of the C matrix in equation (40) is stiffness proportional and the second part is mass propor-
tional in the sense of generalized proportional damping.

As mentioned earlier, the aim of this study is to see how the different methods work when modal damping
factors are compared against full set of 30 modes. In figure 4, the values of ζj obtained by the inverse modal
transformation method in equation (37) is compared with the original damping factors for all the 30 modes
calculated using complex modal analysis. As expected, there is a perfect match with the original damping
factors for the first ten modes. However, beyond the first ten modes the damping factors obtained using the
inverse modal transformation method do not match with the true damping factors. This is also expected
since this information has not been used in equations (36) and (37) and the method itself is not capable of
extrapolating the available modal information. Modal damping factors using the fitted function in equation
(38) are also shown in figure 4 for all 30 modes. The ‘predicted’ damping factors for modes 11 to 30 matched
well with the original modal damping factors. This is due to the fact that the pattern of the variation of
modal damping factors with natural frequencies does not change significantly beyond the first ten modes
and hence the fitted function provides a good description of the variation. This study demonstrates the
advantage of using generalized proportional damping over the conventional proportional damping models.
DAMPING MODELLING OF COMPLEX SYSTEMS

The method proposed in the previous section is ideally suitable for small structures for which ‘global’
measurements can be obtained. For a large complex structure such as an aircraft, neither the global vibration
measurements, nor the processing of global mass and stiffness matrices in the manner described before are
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Figure 4: Modal damping factors for all 30 modes; –◦– original, .-.¤.-. fitted using inverse modal
transformation, · · · ∗ · · · fitted usiing generalized proportional damping.

straightforward. However, it is possible to identify the generalized proportional damping models for different
components or substructures chosen suitably. For example, to model the damping of an aircraft fuselage one
could fit generalized proportional damping models for all the ribs and panels by testing them separately and
then combine the element (or substructure) damping matrices in a way similar to the assembly of the mass
and stiffness matrices in the standard finite element method. The overall damping modelling procedure can
be described as follows:

1. Divide a structure into m elements/substructures suitable for individual vibration testing.
2. Measure a transfer function H

(e)
ij (ω) by conducting vibration testing of e-th element/substructure.

3. Obtain the undamped natural frequencies ω
(e)
j and modal damping factors ζ

(e)
j for e-th element/substructure.

4. Fit a function ζ(e) = f̂(e)(ω) which represents the variation of damping factors with respect to fre-
quency for the e-th element/substructure.

5. Calculate the matrix T(e) =
√

M−1
(e)K(e)

6. Obtain the element/substructure damping matrix using the fitted proportional damping function as
Ĉ(e) = 2 M(e)T(e)f̂(e)

(
T(e)

)
7. Repeat the steps from 2 to 6 for all e = 1, 2, · · · ,m.
8. Obtain the global damping matrix as Ĉ =

∑m
e=1 Ĉ(e). Here the summatation is over the relevant

degrees-or-freedom as in the standard finite element method.

It is anticipated that the above procedure would result in a more realistic damping matrix compared to
simply using the damping factors arising from global vibration measurements. Using this approach, the
damping matrix will be proportional only within an element/substructure level. After the assembly of the
elementt/substructure matrices, the global damping matrix will in general be non-proportional. Experimen-
tal and numerical works are currently in progress to test this method for large systems.
EXPERIMENTAL STUDIES
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Damping identification in a free-free beam
System model and experimental methodology

A steel beam with uniform rectangular cross-section is considered for the experiment. The physical and
geometrical properties of the steel beam are shown in Table 2. For the purpose of this experiment a double
sided glued tape is sandwiched between the beam and a thin aluminum plate. This arrangement is similar to
a constrained layer damping (Ungar, 2000). The impulse is applied at 11 uniformly spaced locations on the

Table 2: Material and geometric properties of the beam considered for the experiment

Beam Properties Numerical values
Length (L) 1.00 m
Width (b) 39.0 mm
Thickness (th) 5.93 mm
Mass density (ρ) 7800 Kg/m3

Youngs modulus (E) 2.0× 105 GPa
Cross sectional area (a = bth) 2.3127× 10−4 m2

Moment of inertia (I = 1/12bt3h) 6.7772× 10−10 m4

Mass per unit length (ρl) 1.8039 Kg/m
Bending rigidity (EI) 135.5431 Nm2

beam. We have tried to simulate the free-free condition for the beam by hanging it using two strings. The
two string arrangement for suspending the beam is found to reduce torsional modes. A schematic diagram
of the experimental set-up is shown in figure 5.

The vibration response of the beam is measured using the PolytecTM laser vibrometer. The laser beam,
which is targeted at a selected measurement point on the test structure, is reflected and interferes with a
reference beam inside the scanning head. Since the surface of the test structure is moving in space with
a varying velocity due to vibrations, the reflected laser beam will have a frequency which is different from
that of the reference beam. This is due to the well known Doppler effect. Measuring this shift in frequency
permits the determination of the velocity component of the surface in a direction parallel to the laser beam.
The interfered light is processed by the vibrometer controller, which generates an analogue voltage signal
that is proportional to the surface target velocity in the direction parallel to the emitted laser beam. By
sampling a reference signal the laser scanner can be triggered by an external excitation source signal such as
an impulse hammer signal. The excitation and laser measurement signals are fed to a PC with independent
data logging ability.

The PolytecTM vibrometer software allows one to choose the data acquisition settings such as the sampling
frequency, vibrometer sensitivity scale, filters, window functions etc.. The in-house data logging software is
used to process the measured signals. This software has the capability to log time series, calculate spectra,
and perform modal analysis and curve fitting to extract natural frequencies and mode shapes.

Results and discussions
Results from the initial testing on the ‘undamped beam’, that is without the damping mechanism,

showed that damping is extremely light. This ensures that the significant part of the damping comes from
the localized constrained damping layer only. Measured natural frequencies, damping factors and natural
frequencies obtained from the finite element (FE) method for the first eleven modes are shown in Table 3.
Timoshenko bending beam elements were used for the finite element (FE) model. The degrees-of-freedom
of the FE model (N) used in this study is 90 and the associated FE mesh is shown in Figure 6. Percentage
errors in the natural frequencies obtained from the finite element method with respect to the experimental
methods are also shown in Table 3.

From the first two columns of this table we fit a continuous function. Figure 7 shows the variation of
modal damping factors for the first eleven modes. Looking at the pattern of the curve in figure 7 we have
selected the function f̂(•) as

ζ = f̂(ω) = a0 +
(
a1ω

−1 + a2ω
−2 + a3ω

−3
)

+ a4 exp
{−a5(ω − a6)2

}
(41)
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Figure 5: Schematic representation of the experimental set-up of the free-free beam.

Table 3: Measured natural frequencies, damping factors and natural frequencies obtained from the finite
element (FE) method of the free-free beam for the first eleven modes (the numbers in the parenthesis
correspond to the percentage error with respect to the experimental result)

Natural frequencies, Hz Damping factors Natural frequencies, Hz
(experimental) (in % of critical damping) (from FE)

33.00 0.6250 30.81 (-6.64 %)
85.00 0.2000 85.24 (0.29 %)
166.00 0.0833 167.61 (0.97 %)
276.00 0.0313 277.73 (0.63 %)
409.00 0.0625 415.67 (1.63 %)
569.00 0.1250 581.42 (2.18 %)
758.00 0.1163 774.94 (2.24 %)
976.00 0.1786 996.20 (2.07 %)
1217.00 0.8621 1245.15 (2.31 %)
1498.00 0.7143 1521.77 (1.59 %)
1750.00 0.3571 1826.06 (4.35 %)

Figure 6: Schematic representation of the Finite element mesh of the of the free-free beam shown in
figure 5.

where ai, i = 1, · · · , 6 are undetermined constants. Using the data in Table 3, together with a nonlinear
least-square error minimization approach, the fitted parameters are found to be:

a0 = 0.0031, a1 = −6.26, a2 = 4.01× 103, a3 = −5.18× 105,

a4 = 0.0079, a5 = 6.96× 10−7 and a6 = 8.4× 103.
(42)

Recalculated values of ζj using this fitted function is compared with the original function in figure 7. This
function (the dotted line) matches well with the original modal data. We have also plotted the f̂(ω) in (41)
as functions of the natural frequencies from experimental measurement and FE in figure 7. Both plots are
reasonably close because the difference between the measured and FE natural frequencies are small in this
case. Note that neither the function in Eq. (41), nor the parameter values in Eq. (42) are unique. One can
use more complex functions and sophisticated parameter fitting procedures to obtain more accurate results.
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Figure 7: Modal damping factors and fitted generalized proportional damping function for the first
eleven modes.

Now that the function f̂(ω) has been identified, the next step is to substitute the 90× 90 FE mass and
stiffness matrices in Eq. (22) (or equivalently in Eq. (30)) to obtain the damping matrix. For this example
we have

Ĉ = 2MT
[
a0I +

(
a1T−1 + a2T−2 + a3T−3

)
+ a4 exp

{
−a5 (T− a6I)

2
}]

∈ R90×90

= 2 (a1M + a3K) + 2M
√

M−1K
[
a0I + a2K−1M + a4 exp

{
−a5

(√
M−1K− a6I

)2
}]

.
(43)

Interestingly, the first part of the Ĉ matrix in Eq. (43) is the classical Rayleigh damping while the second
part is mass proportional in the sense of generalized proportional damping. The second part can be viewed
as the correction needed to the Rayleigh damping model for the measured data set. Here we have compared
our damping identification method with the four methods described before. The modal damping factors
obtained using the proposed generalized proportional damping matrix in Eq. (43) is shown in figure 8. In
the same plot the results obtained from the other methods are also shown. In order to apply the inverse
modal transformation method, only the first eleven columns of the analytical modal matrix are retained to
obtain the truncated modal matrix Φ̂ ∈ R90×11. This approach reproduces the damping factors for the first
eleven modes very accurately. However, beyond the first eleven modes the damping factors obtained using
the inverse modal transformation method is just zero (that is effectively all the modes become undamped).
The best fitted Rayleigh damping matrix for this example is obtained as

Ĉb = 2.28M + 1.06× 10−6K. (44)

It was not possible to obtain the constants αj from Eq. (31) using Caughey method because the associated
W matrix became highly ill-conditioned. For the polynomial fit method, only a second order polynomial
could be fitted to avoid the ill-conditioning problem. The best fitted second-order polynomial in this case
turns out to be

ζ = p1 + p2ω + p3ω
2 (45)

where
p1 = 0.00236, p2 = −2.93× 10−7 and p3 = 6.2× 10−11. (46)
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Figure 8: Comparison of modal damping factors using different proportional damping matrix identifica-
tion method.

The damping matrix corresponding to the polynomial in Eq. (45) can be obtained as

Ĉd = 2MT
[
p1I + p2T + p3T2

]
= 2p2K + 2(p1M + p3K)

√
M−1K. (47)

This matrix, like the Rayleigh damping matrix, shows high modal damping values beyond the fitted modes.

Damping identification in a clamped plate with slots
System model and experimental methodology

In this section we consider a two dimensional structure. A schematic model of the test structure is shown
in figure 9. This is fabricated by making slots in a mild steel rectangular plate of 2 mm thickness, resulting
in three cantilever beams joined at their base by a rectangular plate. A schematic diagram of the test rig

�����
�����
�����

�����
�����
�����

LB

S

W

1

2

3

Figure 9: Geometric parameters of the plate with slots: B = 50mm, L = 400mm, S = 10mm,
W = 20mm. The source of damping in this test structure is the wedged foam between the beams 1
and 2.

is shown in figure 10. The test system is fixed to a heavy table at the root so that the three cantilever-like
vanes are free to oscillate. A pendulum type impulse hammer is used to excite each vane of the structure
close to the base of each vane. This mechanism delivers the impulse exactly at the same point repeatedly,
so that better measurements can be obtained.

The data flow in the experiments is as follows. The impulse hammer signal is passed through a charge
amplifier and then fed to the PC data logging system. The vibration response measured by the vibrometer is
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Figure 10: Schematic representation of the experimental set-up of the clamped plate with slots.

also fed to the PC to compute the FRF. The frequency response of this system, shown in figure 11, exhibits
characteristic clustering of vibration modes in to bands (Phani, 2004). Notice that the coherence is very
close to unity (zero on log scale) till 500 Hz and the data of interest is in the range of 10-300 Hz. Thus a good
FRF for each input/output combination was obtained. Also the peaks in each pass band are identifiable
and hence modal identification methods can be applied with ease on this data. The mode shapes for the
three modes in the second and third band are as shown in figures figure 12 and figure 13 respectively. It
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Figure 11: Typical measured FRF on the three cantilever system. Coherence is also shown on the same
plot. Each pass band and flexural modes are labelled. Note that the peaks are clearly visible and hence
modal identification can be performed with ease.

can be seen that in the second pass band, the cantilever beams deform in the second mode and in the third
pass band they deform in the third mode. Thus the approximate mode shapes in each pass band are [1 1
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Figure 12: Mode shapes corresponding to the three modes in the second pass band. It can be noticed
that each of the cantilever beams deforms in its second mode in this band. Also notice that the second
beam does not deform at all in the second mode of the pass band i.e.it is a node.
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Figure 13: Mode shapes corresponding to the three modes in the third pass band. It can be noticed
that each of the cantilever beams deforms in its third mode in this band. Also notice that the second
beam does not deform at all in the second mode of the pass band i.e.it is a node.
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Table 4: Measured natural frequencies, damping factors and natural frequencies obtained from the
finite element (FE) method of the clamped plate with slots for the first nine modes (the numbers in the
parenthesis correspond to the percentage error with respect to the experimental result)

Natural frequencies, Hz Damping factors Natural frequencies, Hz
(experimental) (in % of critical damping) (from FE)

12.46 0.1032 13.14 (5.44 %)
14.36 0.0969 14.45 (0.65 %)
15.01 0.1159 15.08 (0.45 %)
75.60 0.1404 81.32 (7.56 %)
88.94 0.1389 89.68 (0.83 %)
93.97 0.1254 94.49 (0.55 %)
232.74 0.1494 225.95 (-2.92 %)
243.37 0.0953 248.53 (2.12 %)
261.93 0.1260 265.04 (1.19 %)

1], [1 0 -1], and [1 -2 1] based on a particular mode of single cantilever. Furthermore, by suitably varying
the geometric parameters such as B, L, S and W in figure 9, the modal overlap in each pass band can be
controlled.

Results and discussions
The finite element mesh of the test structure is shown in figure 14. Measured natural frequencies, damping

Figure 14: Schematic representation of the Finite element mesh of the of the clamped plate with slots
shown in figure 10.

factors and natural frequencies obtained from the finite element (FE) method for the first nine modes are
shown in Table 4. Four noded rectangular plate bending elements were used for the finite element (FE)
model using ABAQUS/standrad software (Hibbit, Kralson & Soresen, Inc.). The resulting system model
has 972 degrees of freedom. Percentage errors in the natural frequencies obtained from the finite element
method with respect to the experimental methods are also shown in this table.

From the first two columns of Table 4 we fit a continuous function. Figure 15 shows the variation of
modal damping factors for the first nine modes. Looking at the pattern of the curve in figure 15 we have
selected the function f̂(•) as

ζ = f̂(ω) = a0 + a1 exp
{−a2(ω − a3)2

}
+ a4 exp

{−a5(ω − a6)2
}

(48)

where ai, i = 0, · · · , 6 are undetermined constants. Using the data in Table 4, together with a nonlinear
least-square error minimization approach results

a0 = 9.53× 10−4, a1 = 4.51× 10−4, a2 = 2.27× 10−5, a3 = 475,

a4 = 5.41× 10−4, a5 = 3.7× 10−6, and a6 = 1.46× 103.
(49)

Recalculated values of ζj using this fitted function is compared with the original function in figure 15. This
function (the dotted line) matches well with the original modal data. We have also plotted the f̂(ω) in Eq.
(38) as functions of the natural frequencies from experimental measurement and FE in figure 15. Both plots
are reasonably close because the difference between the measured and FE natural frequencies are small in
this case. Again, neither the function in Eq. (48), nor the parameter values in Eq. (49) are unique. One can
use more complex functions and sophisticated parameter fitting procedures to obtain more accurate results.
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Figure 15: Modal damping factors and fitted generalized proportional damping function for the first
nine modes of the clamped plate with slots.

After the identification of the function f̂(ω), the next step is to substitute the 972 × 972 FE mass and
stiffness matrices in Eq. (22) (or equivalently in Eq. (30)) to obtain the damping matrix. For this example
we have

Ĉ = 2MT
[
a0I + a1 exp

{
−a2 (T− a3I)

2
}

+ a4 exp
{
−a5 (T− a6I)

2
}]

∈ R972×972. (50)

Again we have compared our damping identification method with the other four methods discussed before.
The modal damping factors obtained using the proposed generalized proportional damping matrix in Eq.
(50) is shown in figure 16. In the same plot the results obtained from the other methods are also shown.
In order to apply the inverse modal transformation method, only the first nine columns of the analytical
modal matrix are retained to obtain the truncated modal matrix Φ̂ ∈ R972×9. This approach reproduces the
damping factors for the first nine modes very accurately. However, beyond the first nine modes the damping
factors obtained using the inverse modal transformation method is just zero (that is effectively all the modes
become undamped). The best fitted Rayleigh damping matrix for this example is obtained as

Ĉb = 0.185M + 1.81× 10−6K. (51)

It was not possible to obtain the constants αj from Eq. (31) using Caughey method because the associated
W matrix became highly ill-conditioned. For the polynomial fit method, only a third-order polynomial could
be fitted to avoid the ill-conditioning problem. The best fitted third-order polynomial is case turns out to
be

ζ = p1 + p2ω + p3ω
2 + p4ω

3 (52)

where
p1 = 9.61× 10−4, p2 = 1.15× 10−6, p3 = −8.73× 10−10 and p3 = 1.57× 10−13. (53)

The damping matrix corresponding to the polynomial in Eq. (52) can be obtained as

Ĉd = 2MT
[
p1I + p2T + p3T2 + p4T3

]

= 2p2K + 2(p1M + p3K)
√

M−1K + 2p4KM−1K.
(54)
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Figure 16: Comparison of modal damping factors using different proportional damping matrix identifi-
cation method for the clamped plate with slots.

This matrix, like the Rayleigh damping matrix, shows high modal damping values beyond the fitted modes.
CONCLUSIONS

A method for identification of damping matrix using experimental modal analysis has been proposed.
The method is based on generalized proportional damping. The generalized proportional damping expresses
the damping matrix in terms of smooth continuous functions involving specially arranged mass and stiffness
matrices so that the system still posses classical normal modes. This enables one to model variations in the
modal damping factors with respect to the frequency in a simplified manner. Once a scalar function is fitted
to model such variations, the damping matrix can be identified very easily using the proposed method. This
implies that the problem of damping identification is effectively reduced to the problem of a scalar function
fitting. The method is simple and requires the measurement of damping factors and natural frequencies only.

The damping matrix identification method was applied to two laboratory based examples involving a
free-free beam and a plate with slots. The proposed method was compared to existing methods such as the
inverse modal transformation method, Rayleigh’s proportional damping Method, Caughey series Method and
polynomial fit method. The modal damping factors recalculated using the damping matrix obtained from the
proposed generalised viscous damping method agree well with the measured damping factors. The proposed
method is applicable to any linear structures provided accurate mass and stiffness matrices are available and
the modes are not significantly complex. If a system is heavily damped and modes are highly complex, the
proposed identified damping matrix can be a good starting point for more sophisticated analyses.
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APPENDIX I. THE PROOF OF THEOREM 2
Consider the ‘if’ part first. Suppose Φ is the mass normalized modal matrix and Ω is the diagonal matrix

containing the undamped natural frequencies. By the definitions of these quantities we have

ΦT MΦ = I (55)

and ΦT KΦ = Ω2. (56)

From these equations one obtains

M = Φ−T Φ−1, K = Φ−T Ω2Φ−1 (57)

M−1K = ΦΩ2Φ−1 and K−1M = ΦΩ−2Φ−1. (58)

Because the functions β1(•) and β2(•) are assumed to be analytic in the neighborhood of all the eigenvalues of
M−1K and K−1M respectively, they can be expressed in polynomial forms using the Taylor series expansion.
Following Bellman (1960) we may obtain

β1

(
M−1K

)
= Φ β1

(
Ω2

)
Φ−1 (59)

and β2

(
K−1M

)
= Φ β2

(
Ω−2

)
Φ−1. (60)

A viscously damped system will possess classical normal modes if ΦT CΦ is a diagonal matrix. Considering
expression (a) in the theorem and using equations (57) and (58) we have

ΦT CΦ = ΦT
[
M β1

(
M−1K

)
+ K β2

(
K−1M

)]
Φ

= ΦT
[
Φ−T Φ−1 β1

(
M−1K

)
+ Φ−T Ω2Φ−1 β2

(
K−1M

)]
Φ.

(61)

Utilizing equations (59) and (60) and carrying out the matrix multiplications, equation (61) reduces to

ΦT CΦ =
[
Φ−1 Φ β1

(
Ω2

)
Φ−1 + Ω2Φ−1 Φ β2

(
Ω−2

)
Φ−1

]
Φ

= β1

(
Ω2

)
+ Ω2β2

(
Ω−2

)
.

(62)

Equation (62) clearly shows that ΦT CΦ is a diagonal matrix.
To prove the the ‘only if’ part, suppose

P = ΦT CΦ (63)

is a general matrix (not necessary diagonal). Then there exist a non-zero matrix S such that (similarity
transform)

S−1PS = D (64)

where D is a diagonal matrix. Using equation (62) and (63) we have

S−1D1S = D (65)

where D1 is another diagonal matrix. Equation (65) indicates that two diagonal matrices are related by a
similarity transformation. This can only happen when they are the same and the transformation matrix is
an identity matrix, that is S = I. Using this in equation (64) proves that P must be a diagonal matrix.
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Nomenclature

α1, α2 proportional damping constants
α a vector containing the constants in Caughey series
C viscous damping matrix
βi(•), i = 1, · · · , 4 proportional damping functions
I identity matrix
K stiffness matrix
M mass matrix
Ω diagonal matrix containing the natural frequencies
Φ undamped modal matrix
q(t) generalized coordinates

T a temporary matrix, T =
√

M−1K
W coefficient matrix associated with the constants in Caughey series
ζ diagonal matrix containing the modal damping factors
ζv a vector containing the modal damping factors
λj complex eigenvalues, λj ≈ −ζjωj ± iωj

ωj natural frequencies
bf(•) fitted modal damping function
ζj modal damping factors
(•)T matrix transpose
(•)−1 matrix inverse
(•)−T matrix inverse transpose
(•)(e), (•)(e) (•) of e-th element/substructure
Im(•) imaginary part of (•)
Re(•) real part of (•)
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