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ABSTRACT

This paper considers the analysis of structures with nonlocal damping, where the reaction force at any point is
obtained as a weighted average of state variables over a spatial domain. The model yields an integro-differential
equation, and obtaining closed form solutions is only possible for a limited range of boundary conditions by
the transfer function method. Approximate solutions using the Galerkin method for beams are presented for
typical spatial kernel functions, for a nonlocal viscoelastic foundation model. This requires the approximation
of the displacement to be defined over the whole domain. To treat more complicated problems with variable
damping parameters, non-uniform section properties, intermediate supports or arbitrary boundary conditions,
a finite element method for beams is developed. However, in nonlocal damping models, nodes remote from the
element do have an effect on the energy expressions, and hence the damping matrix is no longer block diagonal.
The expressions for these direct and cross damping matrices are obtained for separable spatial kernel functions.
The approach is demonstrated on a range of examples.
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1. INTRODUCTION

The dynamic response analysis of damped structures is important in many areas of mechanical, civil and aerospace
engineering, such as the vibration isolation of precise equipment, aircraft noise, or the vibration of cable stayed
bridges. Although the damping model plays a key role in the dynamic analysis, particularly for complex struc-
tures, this model is often approximated by classical or proportional damping distributions for convenience. In
many practical situations this simplified approach does not describe the dynamics of the structure with sufficient
accuracy because of the complicated damping mechanisms that occur in practice. Theoretically speaking, any
model that makes the energy dissipation function non-negative is a possible candidate for a valid damping model.
Research into the dynamics of structures with viscoelastic materials has concentrated on the time dependence
using fractional derivative, GHM and other models.

A key issue in considering non-viscous damping is to decide on an appropriate damping model. There have
been detailed studies of material damping and damping of specific structural components. Lazan,1 Bert2 and
Ungar3 have given excellent accounts of different mathematical methods for modelling damping in a (solid)
material and their engineering applications. The book by Nashif et al.4 presents more recent studies in this
area. In the context of linear MDOF discrete systems, Adhikari5 and Wagner and Adhikari6 considered a non-
viscous damping model in which the damping forces are assumed to depend on velocity time histories as well as
instantaneous velocities. In the context of distributed parameter systems, Banks and Inman7 considered non-
viscous damping models in Euler-Bernoulli beams. They considered four different models of damping: viscous
air damping, Kelvin-Voigt damping, time hysteresis damping and spatial hysteresis damping, and used a spline
inverse procedure to form a least-squares fit to the experimental data. It was observed that the spatial hysteresis
model combined with a viscous air damping model gave the best quantitative agreement with the experimental
time histories. This study motivates us to consider general damping models in distributed parameter systems.

Further author information: (Send correspondence to M.I.F.)
Y.L.: E-mail: leiyj108@yahoo.com.cn
M.I.F.: E-mail: m.i.friswell@bristol.ac.uk, Telephone: +44 (0)117 9288695
S.A.: E-mail: s.adhikari@bristol.ac.uk, Telephone: +44 (0)117 9287694



This paper considers the effect of nonlocal damping on the response of a structure. In a nonlocal model,
the reaction force at any point is obtained as a weighted average of state variables over a spatial domain
via convolution integrals with spatial kernel functions that depend on a distance measure. In physical terms
the nonlocal damping or elasticity property often arises when two dimensional structures are modelled as one
dimensional.

2. LINEAR DAMPING MODELS FOR DISTRIBUTED PARAMETER SYSTEM

A linear damped continuous dynamic system in which the displacement vector u(r, t), where r is the spatial
position vector and t is time, specified in some domain D, is governed by a linear partial differential equation

ρ(r)ü(r, t) + (Le + Li) u̇(r, t) + Lku(r, t) = p(r, t); r ∈ D, t ∈ [0, T ] (1)

with homogeneous linear boundary conditions of the form

M1u(r, t) = g1(r, t); r ∈ Γ1 and M2u̇(r, t) = g2(r, t); r ∈ Γ2 (2)

specified on some boundary surfaces Γ1 and Γ2, for given functions g1(r, t) and g2(r, t).

In the above equation ρ(r) is the mass distribution of the system, p(r, t) is the distributed time-varying
forcing function, Lk is the spatial self-adjoint stiffness operator and M1 and M2 are linear operators acting on
the boundary. Le and Li are the external and internal damping operators, respectively, and can be written in
the form

Leu̇(r, t) =

∫

D

∫ t

−∞

Ce(r, ξ, t− τ)u̇(ξ, τ) dτ dξ (3)

Liu̇(r, t) =

∫

D

∫ t

−∞

Ci(r, ξ, t− τ)Lsu̇(ξ, τ) dτ dξ (4)

where Ce(r, ξ, t) and Ce(r, ξ, t) are the kernel functions for the external and internal damping. The internal and
external damping are treated differently because the external damping is only dependent on the displacement,
whereas the internal damping is dependent on the internal strains, which are given by spatial derivatives of the
displacement through the operator Ls. The stiffness operator in Eq. (1), Lk, may be treated in a similar way when
the distributed parameter dynamic system has nonlocal elastic or viscoelastic material. In this paper we only
consider the nonlocal influence of the damping operators, Le and Li, although the extension to nonlocal stiffness
is straight-forward. The velocities u̇(ξ, τ) at different time instants and spatial locations are coupled through this
kernel function. Kernel functions that serve similar purposes have been described by different names in different
subjects (for example, retardation functions, heredity functions, after-effect functions, relaxation functions), and
different models have been used to describe them. In principle, any function that makes the rate of energy
dissipation (given here for external damping only),

F(t) =
1

2

∫

D

{∫

D

∫ t

−∞

Ce(r, ξ, t− τ)u̇(ξ, τ)dτ dξ

}

u̇(r, t) dr (5)

non-negative can be used as a kernel function. Equation (1) together with Eqs. (3) and (4) represents a continuous
dynamic system with general linear damping. It may be noted that if Le = Li = 0 in Eq. (1), i.e. an undamped
system, or if the system satisfies the criteria given by Caughey and O’Kelly,8 then the system will possess classical
normal modes. However, due to the general nature of the operators Le and Li there is no definite reason why
the system should have classical normal modes. Thus, in general, the mode shapes and natural frequencies of
such systems will be complex in nature. Note that the system expressed by Eq. (1) and the damping operators
defined in Eqs. (3) and (4) represents a partial integro-differential equation with the boundary conditions given
in Eq. (2). In this paper we are interested in the natural frequencies and mode shapes of the system. Exact
closed-form expressions of such quantities for the general case are difficult to obtain. We make the following
general assumptions:

• the mass and stiffness distributions are homogeneous, that is, they do not vary with the position vector r,
and



• the damping kernel functions Ce(r, ξ, t) and Ci(r, ξ, t) are separable in space and time.

If the kernel function is separable in space and time, then either kernel function takes form

C(r, ξ, t− τ) = H(r)c(r − ξ)g(t− τ). (6)

Note the subscripts e and i have been dropped from the kernel function, and either externel or internal damping
kernels may be written in the form given in Eq. (6). Physically this model represents nonlocal viscoelastic
damping, for example, in a beam with viscoelastic material or an actively controlled piezoelectric patch. Viscous
damping has the form g(t− τ) = δ(t− τ), and local damping c(r − ξ) = δ(r − ξ).

The following functional forms for the kernel functions are common, and hence chosen to study further,

g(t) = g∞ µ exp(−µt) so that G(s) =
g∞ µ

s+ µ
(7)

and c(r − ξ) =
α

2
exp(−α|r − ξ|), H(r) ≥ 0, (8)

where g∞, µ and α are all positive constants. If α → ∞, µ → ∞ then one obtains the standard local viscous
model. If α→ ∞ and µ is finite one obtains the local non-viscous model and if α is finite but µ→ ∞ one obtains
the nonlocal viscous damping model. Thus, it is expected that the natural frequencies and the mode shapes in
these parameter cases of the general model should approach the appropriate special cases.

3. EQUATION OF MOTION FOR A BEAM

Suppose that nonlocal damping exists for a beam between locations x1 and x2, as shown in Fig. 1. These
locations could be different for the internal and external damping, but this extension is very straight-forward.
The internal damping model is taken as that given Sorrentino et al..9 The equation of motion for this beam
may be expressed as the following integro-partial-differential equation,

∂2

∂x2

(

EI (x)
∂2w (x, t)

∂x2

)

+ ρA (x)
∂2w (x, t)

∂t2
+

x2
∫

x1

t
∫

−∞

Ce (x, ξ, t− τ)
∂w (ξ, τ)

∂t
dτdξ

+

x2
∫

x1

t
∫

−∞

Ci (x, ξ, t− τ)
∂2

∂ξ2

(

γ (ξ)
∂3w (ξ, τ)

∂ξ2∂τ

)

dτdξ = f (x, t) (9)

where EI(x) is the bending stiffness, ρA(x) is the mass per unit length, γ(x) is the internal damping coefficient,
w(x, t) is the transverse displacement, and f(x, t) is the distributed external force. In Eq. (9), the third and
fourth terms are the nonlocal external and internal damping. Ce(x, ξ, t − τ) and Ci(x, ξ, t − τ) are the one-
dimensional kernel functions of the form described in the previous section, defined over the spatial sub domain
(x1, x2). Thus,

c (x− ξ) =
α

2
e−α|x−ξ|. (10)

Lei et al.10 gave examples of other common kernel functions.

The appropriate boundary conditions must be satisfied at x = 0 and L, and typically they are the three
simple cases of clamped, simple supported or free.

Taking the Laplace transform of Eq. (9) gives the eigenvalue problem for the free vibration of the beam as

∂2

∂x2

(

EI (x)
∂2W (x, s)

∂x2

)

+ s2ρA (x)W (x, s) + sGe(s)H0

x2
∫

x1

ce (x− ξ)W (ξ, s) dξ

+ sGi(s)

x2
∫

x1

ci (x− ξ)
∂2

∂ξ2

(

γ (ξ)
∂2W (ξ, s)

∂ξ2

)

dξ = 0 (11)
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Figure 1. A beam with a partial nonlocal damping patch.

where Ge (s) and Gi (s) are the Laplace transforms of the external and internal kernel functions ge (t) and gi (t),
and W (x, s) is the Laplace transform of w (x, t). Equation (11) is an integro-differential equation, and obtaining
closed form solutions is difficult. Approximate solutions may be obtained using the Galerkin method10, 11 or
finite element analysis.

4. THE GALERKIN SOLUTION FOR A NON-LOCALLY DAMPED BEAM

In the Galerkin approach, the response is approximated by the series,10, 11

W (x, s) =

N
∑

j=1

qj (s)φj (x) (12)

where φj(x), (j = 1, 2, . . . , N) are given admissible (or trial) functions satisfying the essential boundary con-
ditions, N is the number of admissible functions and is determined by the accuracy required. The admissible
functions φj(x) can be chosen in many ways, for example as trigonometric functions, interpolating polynomials,
orthogonal polynomials or exponential functions. A good choice for the beam vibration problem, especially with
light damping, is to use the undamped mode shapes.

Substituting W (x, s) into Eq. (11), multiplying by φk(x) and integrating with respect to x over the length
of the beam, gives

[

s2M + sGi(s)Ci + sGe(s)Ce + K
]

q = 0 (13)

where K, M, Ci and Ce are the mass, stiffness and damping (internal and external) matrices with respect to
the generalised co-ordinates q = {qj}. The elements of these matrices are, for free, simply supported or clamped
boundary conditions,10

Mkj =

∫ L

0

ρA (x)φj (x)φk (x) dx,

Cekj = H0

∫ x2

x1

∫ x2

x1

ce (x− ξ)φj (ξ)φk (x) dξdx,

Cikj =

∫ x2

x1

∫ x2

x1

ci (x− ξ)
d2

dξ2

(

γ (ξ)
d2φj (ξ)

dξ2

)

φk (x) dξdx,

Kkj =

∫ L

0

d2

dx2

(

EI (x)
d2φj (x)

dx2

)

φk (x) dx =

∫ L

0

EI (x)
d2φj (x)

dx2

d2φk (x)

dx2
dx.

(14)

If the undamped modes are used as admissible functions then the mass and stiffness matrices are diagonal.
In addition, the modes for beams with simple boundary conditions are trignometric functions, and hence may be
written in exponential form to perform the integration required to calculate the damping matrix for the kernel
given in Eq. (10).

The eigenvalues are obtained by solving

det
∣

∣s2M + sGi(s)Ci + sGe(s)Ce + K
∣

∣ = 0. (15)

The corresponding mode shape functions are obtained by substituting the eigenvalues into Eq. (13) and computing
the null space of the matrix. Alternatively, for kernel functions where G(s) is a rational polynomial, the internal
variable approach (for example the GHM method12–14) may be used to produce a linear eigenvalue problem,
where the size of the matrices is larger than those in Eq. (15).



Figure 2. The degrees of freedom of a beam finite element.

5. FINITE ELEMENT ANALYSIS

Finite element analysis may be considered as a Galerkin method, where the admissible functions are only defined
over a small region of the structure. Generally the approach adopted when developing models using finite element
analysis is to approximate the deformation within an element using nodal values of displacement and rotation.
The kinetic and strain energy for each element is then computed and the contributions of each element added
together to obtain a global model of the structure. One key aspect of finite element analysis is that the energy
contributions from each element only depends on the displacements and rotations at the nodes associated with
that element. Clearly for nonlocal damping this will not be the case, although the form of the kernel function
given by Eq. (10) does lead to considerable simplification. This paper only considers nonlocal damping, and so
the development of the mass and stiffness matrices follows the standard procedure, which will be outlined briefly
to establish notation.

A standard beam element is modelled using two nodes (at the ends of the beam element), and two degrees
of freedom per node (translation and rotation), as shown in Fig. 2. The deformation within the eth element,
we(z, t), is approximated using cubic shape shape functions, for z ∈ [0, ℓe], as

we(z, t) = Ne(z)qe(t), where Ne(z) =
[

Ne1(z) Ne2(z) Ne3(z) Ne4(z)
]

, qe(t) =















we1(t)
ψe1(t)
we2(t)
ψe2(t)















(16)

and

Ne1(z) = 1 − 3
z2

ℓ2e
+ 2

z3

ℓ3e
, Ne2(z) = z − 2

z2

ℓe
+
z3

ℓ2e
,

Ne3(z) = 3
z2

ℓ2e
− 2

z3

ℓ3e
, Ne4(z) = −

z2

ℓe
+
z3

ℓ2e
.

(17)

The kinetic energy, for a beam with M elements, is then approximated as

T =
1

2

L
∫

0

ρA(x)

(

∂w(x, t)

∂t

)2

dx =
1

2

M
∑

e=1

ℓe
∫

0

ρA(xe + z)

(

∂we(z, t)

∂t

)2

dz =
1

2

M
∑

e=1

q̇e(t)
TMeq̇e(t), (18)

where the eth node, corresponding to node 1 of the eth element, is located at xe, and the element mass matrix is

Me =

ℓe
∫

0

ρA(xe + z)NT
e Nedz. (19)

For nonlocal damping the global damping matrix is obtained in a similar way using the energy dissipation
function. Consider external damping only for the moment. The dissipation function is then

F(t) =
1

2

L
∫

0







L
∫

0

∫ t

−∞

Ce(x, ξ, t− τ)ẇ(ξ, τ)dτ dξ







ẇ(x, t) dx. (20)



Assuming that the kernel is separable, the order of integration may be changed, and that He(x) = 1, then

F(t) =
1

2

t
∫

−∞

ge(t− τ)







L
∫

0

L
∫

0

ce(x − ξ)ẇ(ξ, τ)ẇ(x, t) dξdx







dτ

=
1

2

t
∫

−∞

ge(t− τ)
M
∑

i,j=1

q̇i(t)
T Cijq̇j(τ)dτ

(21)

where

Cij =

ℓj
∫

0

ℓi
∫

0

ce(xj + x̂− xi − ξ̂)NT
i (ξ̂)Nj(x̂) dξ̂dx̂ (22)

and x̂ and ξ̂ are local co-ordinates, for example x = xj + x̂.

In general the degrees of freedom at all nodes will be coupled within a region where the structure has nonlocal
damping behaviour. This means the global damping matrix will be full, and each term must be determined
independently. However the exponential kernel function given in Eq. (10) leads to a significant simplification
for beams modelled using beam elements of equal length, so that Ni = N, ℓi = ℓ, ∀i. When i = j, the direct
damping matrix is

Cii =
1

α

ℓ
∫

0

ℓ
∫

0

e−α|x̂−ξ̂|NT (ξ̂)N(x̂) dξ̂dx̂. (23)

If j > i

Cij =
1

α

ℓ
∫

0

ℓ
∫

0

e−α(xj−xi+x̂−ξ̂)NT (ξ̂)N(x̂) dξ̂dx̂ = e−α(xj−xi)C̄ = e−α(j−i)ℓC̄, (24)

where the cross damping matrix is

C̄ =
1

α

ℓ
∫

0

ℓ
∫

0

e−α(x̂−ξ̂)NT (ξ̂)N(x̂) dξ̂dx̂ =
1

α





ℓ
∫

0

eαξ̂NT (ξ̂) dξ̂









ℓ
∫

0

e−αx̂N(x̂) dx̂



 . (25)

Similarly if j < i,
Cij = e−α(i−j)ℓC̄T . (26)

Thus only two element damping matrices need to be computed and then the complete global damping matrix is
easily derived. These matrices may be obtained explicitly by integrating Eqs. (23) or (25). Alternatively they
may be derived by numerical integration.

As an example to demonstrate how the damping matrix is assembled, suppose that a uniform beam is
modelled, where three elements have a nonlocal damped foundation. Then the damping matrix will be zero
apart from the eight degrees of freedom associated with the damped foundation, and the non-zero terms are

C =

[

Cii 044

044 044

]

+





022 024 022

042 Cii 042

022 024 022



 +

[

044 044

044 Cii

]

+ e−αℓ







[

042 C̄ 042

042 044 042

]

+





024 024

044 C̄

024 024



 +





024 024

C̄T 044

024 024



 +

[

042 044 042

042 C̄T 042

]







+ e−2αℓ

{[

044 C̄

044 044

]

+

[

044 044

C̄T 044

]}

(27)

where 0rs is the r × s zero matrix.



6. EXAMPLE

A pinned-pinned beam will be used as an example to compare the Galerkin and finite element methods. In
this case the ith mode of the undamped beam is φi(x) = Ai sin(iπx/L) where Ai is calculated to give mass
normalised mode shapes. These undamped mode shapes will be used as the admissible functions in the Galerkin
approach. The nonlocal damping layer is assumed to be external, which models a damped foundation. Initially
the dimensions are (see Fig. 1) L = 200mm, x1 = 50mm, and x2 = 150mm. The Young’s modulus is E =
70GN/m2, the density is ρ = 2700kg/m3, and the cross-section is 5 × 5mm.

Table 1 shows the first 3 eigenvalue pairs for the pinned-pinned beam example with viscous damping (µ → ∞),
α = 1, g∞ = 1 and H = 200 for the Galerkin method with 10 admissible functions and also for the finite element
method with 4, 8 and 40 elements.

Table 2 shows the first 3 eigenvalue pairs for the pinned-pinned beam example with a variety of non-viscous
and nonlocal damping, that is as µ and α vary, for the Galerkin method with 10 admissible functions.

Suppose now that the beam is clamped at one end and free at the other. All other dimensions are identical
to the pinned-pinned beam example. Table 3 shows the first 3 eigenvalue pairs for this cantilever beam example
with a variety of non-viscous and nonlocal damping, that is as µ and α vary, for the finite element method with
8 elements. Clearly both the nonlocal and non-viscous properties of the beam have a significant effect on the
damping within the structure.

Table 1. The first 3 eigenvalue pairs for the pinned-pinned beam example obtain from the Galerkin method with 10
admissible functions and the finite element (FE) method with 4, 8 and 40 elements. α = 1, g∞ = 1, H = 200, µ → ∞

Galerkin FE (4 elements) FE (8 elements) FE (40 elements)

-58.176 ± 1812.4j -58.174 ± 1812.9j -58.176 ± 1812.5j -58.176 ± 1812.4j

-0.72086 ± 7253.5j -0.72080 ± 7282.1j -0.72086 ± 7255.4j -0.72086 ± 7253.5j

-6.7383 ± 16320j -6.5458 ± 16618j -6.7359 ± 16341j -6.7384 ± 16320j

Table 2. The first 3 eigenvalue pairs for the pinned-pinned beam example obtained from the Galerkin method with 10
admissible functions for different values of µ and α.

µ ∞ 1000 1000 ∞

α 1 1 10 10

-58.176 ± 1812.4j -13.367 ± 1838.1j -92.218 ± 2006.0j -447.62 ± 1757.7j

-0.72086 ± 7253.5j -0.013445 ± 7253.6j -0.94926 ± 7260.4j -50.996 ± 7253.3j

-6.7383 ± 16320j -0.025225 ± 16321j -0.26635 ± 16325j -70.636 ± 16317j

7. CONCLUSIONS

This paper has introduced two approximate methods to estimate the eigenvalues of structures with nonlocal and
non-viscous damping. The Galerkin method may be applied if suitable admissible functions can be found to
approximate the displacement within the structure and also satisfy the essential boundary conditions. However
the finite element approach is more widely applicable to general structures. Although the nonlocal damping
properties cause a coupling between degrees of freedom not normally coupled in the finite element analysis, the
global damping matrix for a uniform beam with an exponential damping kernel only requires the calculation of
two element matrices. The approaches have been demonstrated on pinned-pinned and cantilever beam examples,
and the convergence of the finite element model, and the effect of nonlocal and non-viscous properties, have been
highlighted.



Table 3. The first 3 eigenvalue pairs for the cantilever beam example obtained from the finite element method with 8
elements for different values of µ and α.

µ ∞ 1000 1000 ∞

α 1 1 10 10

-17.841 ± 645.83j -12.672 ± 654.28j -102.77 ± 721.46j -141.58 ± 634.22j

-45.254 ± 4048.1j -2.6009 ± 4059.3j -20.277 ± 4132.1j -353.66 ± 4009.6j

-1.0206 ± 11343j -0.007875 ± 11343j -0.47410 ± 11348j -61.492 ± 11342j
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