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Matrix variate distributions are are used to quantify uncertainty in the mass,
stiffness and damping matrices. The proposed approach is based on the so called
Wishart random matrices. The probability density function of the system matri-
ces are derived using the maximum entropy method. It is assumed that the mean
of the system matrices are known. A new optimal Wishart distribution is pro-
posed to model the random system matrices. The optimal Wishart distribution
is such that the mean of the matrix and its inverse produce minimum deviations
from their deterministic values. The method proposed here gives a simple non-
parametric approach for uncertainty quantification and propagation for complex
aerospace structural systems. The new method is illustrated using two examples.

Nomenclature

D(ω) dynamic stiffness matrix
F symbol for the inverse of a system matrix, F ≡ {M−1,C−1,K−1}
f(t) forcing vector
G symbol for a system matrix, G ≡ {M,C,K}
H(ω) frequency response function (FRF) matrix
In identity matrix of dimension n
M, C and K mass, damping and stiffness matrices respectively
On,m null matrix of dimension n×m
q(t) response vector
Γn (a) multivariate gamma function
ν order of the inverse-moment constraint
ω excitation frequency
m,Ψ scalar and matrix parameters of the inverted Wishart distribution
n number of degrees of freedom
p,Σ scalar and matrix parameters of the Wishart distribution

Conventions

(•)T matrix transposition
C space of complex numbers
R space of real numbers
R

+
n space n× n real positive definite matrices

Rn,m space n×m real matrices
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|•| determinant of a matrix
etr {•} exp {Trace (•)}
E [•] expectation operator

‖•‖F Frobenius norm of a matrix, ‖•‖F =
(

Trace
(

(•)(•)T
))1/2

⊗ Kronecker product (see1)
∼ distributed as
Trace (•) sum of the diagonal elements of a matrix
p(•) (X) probability density function of (•) in (matrix) variable X
pdf probably density function

I. Introduction

Uncertainties are unavoidable in the description of real-life engineering systems. The quan-
tification of uncertainties plays a crucial role in establishing the credibility of a numerical model.
Uncertainties can be broadly divided into two categories. The first type is due to the inherent vari-
ability in the system parameters, for example, different cars manufactured from a single production
line are not exactly the same. This type of uncertainty is often referred to as aleatoric uncertainty.
If enough samples are present, it is possible to characterize the variability using well established
statistical methods and consequently the probably density functions (pdf) of the parameters can
be obtained. The second type of uncertainty is due to the lack of knowledge regarding a system,
often referred to as epistemic uncertainty. This kind of uncertainty generally arise in the modelling
of complex systems, for example, in the modeling of cabin noise in helicopters. Due to its very
nature, it is comparatively difficult to quantify or model this type of uncertainties.

Broadly speaking, there are two approaches to quantify uncertainties in a model. The first is
the parametric approach and the second is the non-parametric approach. In the parametric ap-
proach the uncertainties associates with the system parameters, such as Young’s modulus, mass
density, Poisson’s ratio, damping coefficient and geometric parameters are quantified using statisti-
cal methods and propagated, for example, using the stochastic finite element method. This type of
approach is suitable to quantify aleatoric uncertainties. Epistemic uncertainty on the other hand
do not explicitly depend on the systems parameters. For example, there can be unquantified errors
associated with the equation of motion (linear on non-linear), in the damping model (viscous or
non-viscous), in the model of structural joints, and also in the numerical methods (e.g, discreti-
sation of displacement fields, truncation and roundoff errors, tolerances in the optimization and
iterative algorithms, step-sizes in the time-integration methods). It is evident that the parametric
approach is not suitable to quantify this type of uncertainties and a non-parametric approach is
needed for this purpose. The aim of this paper is to develop a general non-parametric uncertainty
quantification tool for structural dynamic systems. The proposed approach is based on the random
matrix theory and the maximum entropy method.

Uncertainties associated with a variable can be characterized using the probabilistic approach or
possibilistic approaches based on interval algebra, convex sets, Fuzzy sets or generalized Dempster-
Schafer theory. In this paper probabilistic approach has been adopted. The equation of motion of
a damped n-degree-of-freedom linear dynamic system can be expressed as

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices respectively. The importance of
considering parametric and/or non-parametric uncertainty also depends on vibration frequency of
excitation. For example, in the high frequency vibration the wave lengths of the vibration modes
can become very small. As a result the vibration response can be very sensitive to the small details
of the system. In such situations a non-parametric uncertainty model may be adequate. Overall,
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three different approaches are currently available to analyze stochastic structural dynamic systems
across the frequency range:

• Low frequency vibration problems: Stochastic Finite Element Method2–4 (SFEM) - considers
parametric uncertainties in details;

• High frequency vibration problems: Statistical Energy Analysis5,6 (SEA) - do not consider
parametric uncertainties in details;

• Mid-frequency vibration problems: Hybrid method,7 substructure approach8.

The aim of this paper is to propose a method which will work across the frequency range. The
probability density functions of the random matrices M, C and K are derived to to completely
quantify the uncertainties associated with system (1). In the next section we briefly outline some
aspects of random matrix theory required for further developments.

II. Background of the Random Matrix Theory

Random matrices were introduced by Wishart9 in the late 1920s in the context of multivariate
statistics. However, random matrix theory (RMT) was not used in other branches until 1950s
when Wigner10 published his works on the eigenvalues of random matrices arising in high-energy
physics. Using an asymptotic theory for large dimensional matrices, Wigner was able to bypass
the Schrödinger equation and explain the statistics of measured atomic energy levels in terms of
the limiting spectrum of these random matrices. Since then, research on random matrices has
continued to attract interest in multivariate statistics, physics, number theory and more recently in
mechanical and electrical engineering. We refer the readers to the books by Mezzadri and Snaith,11

Tulino and Verdú,12 Muirhead13 and Mehta14 for history and applications Random Matrix Theory.
The probability density function of a random matrix can be defined in a manner similar to that

of a random variable. If A is an n×m real random matrix, the matrix variate probability density
function of A ∈ Rn,m, denoted as pA(A), is a mapping from the space of n ×m real matrices to
the real line, i.e., pA(A) : Rn,m → R. Here we define four types of random matrices which are
relevant to this study.

Definition 1. Gaussian random matrix : The random matrix X ∈ Rn,p is said to have a matrix
variate Gaussian distribution with mean matrix M ∈ Rn,p and covariance matrix Σ ⊗ Ψ, where
Σ ∈ R

+
n and Ψ ∈ R

+
p provided the pdf of X is given by

pX (X) = (2π)−np/2 |Σ|−p/2 |Ψ|−n/2 etr

{

−1

2
Σ−1(X − M)Ψ−1(X − M)T

}

(2)

This distribution is usually denoted as X ∼ Nn,p (M,Σ ⊗ Ψ).

Definition 2. Gaussian orthogonal ensembles (GOE): A random matrix H ∈ Rn,n belongs to the
Gaussian orthogonal ensemble (GOE) provided its pdf is given by

pH(H) = exp
(

−θ2Trace
(

H2
)

+ θ1Trace (H) + θ0
)

(3)

where θ2 is real and positive and θ1 and θ0 are real.

Definition 3. Wishart matrix : An n× n random symmetric positive definite matrix S is said to
have a Wishart distribution with parameters p ≥ n and Σ ∈ R

+
n , if its pdf is given by

pS (S) =

{

2
1
2
np Γn

(

1

2
p

)

|Σ|
1
2
p

}−1

|S| 12 (p−n−1)etr

{

−1

2
Σ−1S

}

(4)

This distribution is usually denoted as S ∼Wn(p,Σ).
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Definition 4. Matrix variate gamma distribution: An n × n random symmetric positive definite
matrix W is said to have a matrix variate gamma distribution with parameters a and Ψ ∈ R

+
n , if

its pdf is given by

pW (W) =
{

Γn (a) |Ψ|−a}−1 |W|a−
1
2
(n+1) etr {−ΨW} ; ℜ(a) >

1

2
(n− 1) (5)

This distribution is usually denoted as W ∼ Gn(a,Ψ). The matrix variate gamma distribution
was used by Soize15–17 for the random system matrices of linear dynamical systems.

Definition 5. Inverted Wishart distribution: An n×n random symmetric positive definite matrix
V is said to have a inverted Wishart distribution with parameters m and Ψ ∈ R

+
n , if its pdf is

given by

pV (V) =
2−

1
2
(m−n−1)n|Ψ| 12 (m−n−1)

Γn

(

1
2(m− n− 1)

)

|V|m/2
etr
{

−V−1Ψ
}

; m > 2n, Ψ > 0. (6)

This distribution is usually denoted as V ∼ IWn(m,Ψ).

In Eqs. (4)–(6), the function Γn (a) is the multivariate gamma function, which can be expressed
as a product of univariate gamma functions as

Γn (a) = π
1
4
n(n−1)

n
∏

k=1

Γ

[

a− 1

2
(k − 1)

]

; for ℜ(a) >
1

2
(n− 1) (7)

For more details on the matrix variate distributions we refer to the books by Tulino and Verdú,12

Gupta and Nagar,18 Muirhead13 and references therein.

III. Matrix Variate Distribution for Structural Mechanics

In this section an information theoretic approach is taken to obtain the matrix variate distri-
butions of the random system matrices M, C and K. First we look at the information available
to us and then consider the constraints the matrix variate distributions must satisfy in order to
be physically realistic. Once these steps are completed, the matrix variate distributions will be
obtained using the maximum entropy method. In a series of papers Soize15–17 used this approach
to obtain the probability density function of the system matrices.

Suppose that the mean values of M, C and K are given by M, C and K respectively. This
information is likely to be available, for example, using the deterministic finite element method.
However, there are uncertainties associated with our modelling so that M, C and K are actually
random matrices. The distribution of these random matrices should be such that they are

(a) symmetric

(b) positive-definite, and

(c) the moments of the inverse of the dynamic stiffness matrix

D(ω) = −ω2M + iωC + K (8)

should exist ∀ω. That is, if H(ω) is the frequency response function (FRF) matrix

H(ω) = D−1(ω) =
[

−ω2M + iωC + K
]−1

(9)

then the following condition must be satisfied:

E [‖H(ω)‖ν
F] <∞, ∀ω (10)
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Here ν is the order of the inverse-moment constraint. For example if H(ω) is considered to
be a second-order (matrix variate) random process then ν = 2 should be used. This constraint
clearly arising from the fact that the moments and the pdf of the response vector must exist for all
frequency of excitation. Because the matrices M, C and K have similar probabilistic characteristics,
for notational convenience we will use the notation G which stands for any one the system matrices.
Suppose the matrix variate density function of G ∈ R

+
n is given by pG (G) : R

+
n → R. We have

the following information and constrains to obtain pG (G):
∫

G>0
pG (G) dG = 1 (normalization) (11)

and

∫

G>0
G pG (G) dG = G (the mean matrix) (12)

The mean matrix G is symmetric and positive definite and the integrals appearing in the above
two equations are n(n+ 1)/2 dimensional. The maximum entropy method19 can be used to obtain
the probability density function of the random system matrices. Using this approach, Soize15–17

obtained the matrix variate gamma distribution given by Eq. (5) for G with parameters a =

λ+ 1
2(n− 1) and Ψ = {λ+ 1

2(n− 1)}G−1
where λ ∈ R is an undetermined coefficient. The main

difference between the matrix variate gamma distribution and the Wishart distribution is that
historically only integer values were considered for the shape parameter p in the Wishart matrices.
However, from an analytical point of view the gamma and the Wishart distributions are identical
and the modern random matrix theory normally does not make any distinctions between them.
Since the Wishart random matrices are used widely in different subjects,12,13 in this paper we
present our results in terms of the Wishart matrices. In the next subsections, the matrix variate
distributions are derived considering two separate cases.

A. Distribution Without the Inverse-Moment Constraint

The inverse-moment constraint of the dynamic stiffness matrix mentioned before (condition (c))
is difficult to implement analytically. Therefore, in this section we derive the pdf of the system
matrices without this constraint. This distribution is ‘maximally uncertain’ because minimum
number of constraints are used to derive this distribution. Once the distribution is obtained, the
consequence of ignoring the inverse-moment constraint will be discussed. In order to extend the
maximum entropy method to random matrices, first note that the entropy associated with the
matrix variate probability density function pG (G) can be expressed as

S
(

pG
)

= −
∫

G>0
pG (G) ln

{

pG (G)
}

dG (13)

Using this, together with the constrains in Eqs. (11) and (12) we construct the Lagrangian

L
(

pG
)

= −
∫

G>0
pG (G) ln

{

pG (G)
}

dG + (λ0 − 1)

(
∫

G>0
pG (G) dG − 1

)

+ Trace

(

Λ1

[
∫

G>0
G pG (G) dG − G

])

(14)

Here λ0 ∈ R and Λ1 ∈ Rn,n are the unknown Lagrange multiplies which need to be determined.
Using the variational calculus it can be shown that the optimal condition is given by

∂L
(

pG
)

∂pG
= 0 or −

(

1 + ln
{

pG (G)
})

+ (λ0 − 1) + Trace (Λ1G) = 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G)

or pG (G) = exp {−λ0} etr {−Λ1G}

(15)
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Using the matrix calculus,20,21 the Lagrange multipliers λ0 and Λ1 can be obtained exactly from
equations (11), (12) and (15) to obtain pG (G). After some algebra it can be shown that

pG (G) = r−nr {Γn(r)}−1
∣

∣G
∣

∣

−r
etr
{

−rG−1
G
}

, where r =
1

2
(n+ 1) (16)

Comparing Eq. (16) with the Wishart distribution in Eq. (4) it can be observed that G has
the Wishart distribution with parameters p = n + 1 and Σ = G/(n + 1). Therefore, we have
the following fundamental result regarding the non-parametric uncertainty modeling of structural
dynamic systems:

Theorem 1. If only the mean of a system matrix G ≡ {M,C,K} is available, say G, then the
maximum-entropy pdf of G follows the Wishart distribution with parameters (n+1) and G/(n+1),
that is G ∼Wn

(

n+ 1,G/(n+ 1)
)

.

B. Distribution With the Inverse-Moment Constraint

In the previous section we have ignored the constraint that the inverse-moments of the dynamic
stiffness matrix should exist for all frequencies. The exact application of this constraint requires
the derivation of the joint probability density function of the random matrices M, C and K, which
is analytically untractable within the scope of the present state of developments in the random
matrix theory. Therefore, we consider a simpler problem where it is required that inverse moments
of each of the systems matrices M, C and K must exist.15–17 Provided the system is damped, this
condition will always guarantee the existence of the moments of the frequency response function
matrix. This condition is only a sufficient condition and not a necessary condition. As a result, the
distributions arising from this approach will be more constrained than that is necessary.

Suppose the inverse moments (say up to order ν) of a system matrix exist. This implies
that E

[∥

∥G−1
∥

∥

F

ν]
should be finite. Because G is a symmetric positive-definite matrix, G can

be expressed in terms of its eigenvalues and eigenvectors as G = ΦλΦT . Here Φ ∈ Rn,n is an
orthonormal matrix containing the eigenvectors of G, that ie, ΦTΦ = In and λ is a real diagonal
matrix containing the eigenvalues of G. Note that for any α ∈ R, Gα = Φλ

αΦT . Recalling that

the Frobenius norm of the matrix G is given by ‖G‖F =
(

Trace
(

GGT
))1/2

and for any three
compatible matrices Trace (A1A2A3) = Trace (A3A1A2) = Trace (A2A3A1), we have

∥

∥G−1
∥

∥

F

ν
= Trace

(√

Φλ
−νΦT Φλ

−νΦT
)

= Trace
(

Φλ
−νΦT

)

= Trace
(

ΦTΦλ
−ν
)

= Trace
(

λ
−ν
)

= λ−ν
1 + λ−ν

2 + · · ·λ−ν
n

(17)

Because all the eigenvalues are positive, the condition E
[
∥

∥G−1
∥

∥

F

ν]
<∞ will also be satisfied when

E
[

lnλ−ν
1 + lnλ−ν

2 + · · · lnλ−ν
n

]

<∞
or E [−ν ln (λ1λ2 · · ·λn)] <∞
or E

[

ln |G|−ν] <∞
(18)

Equation (18) is the new constraint which should be satisfied. Therefore, the Lagrangian becomes

L
(

pG
)

= −
∫

G>0
pG (G) ln

{

pG (G)
}

dG + (λ0 − 1)

(
∫

G>0
pG (G) dG − 1

)

−

ν

∫

G>0
ln |G| pG dG + Trace

(

Λ1

[
∫

G>0
G pG (G) dG − G

])

(19)
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Although ν behaves like a Lagrange multiplier, it cannot be obtained uniquely because the constrain
in Eq. (18) in not finite. As a result we treat ν as a parameter in the optimization procedure.
Again, using the calculus of variation we have

∂L
(

pG
)

∂pG
= 0

or − ln
{

pG (G)
}

= λ0 + Trace (Λ1G) − ln |G|ν

or pG (G) = exp {−λ0} |G|ν etr {−Λ1G}

(20)

Using the expression of the matrix variate Laplace transform18

∫

T>0
etr {−ST} |T|a−(n+1)/2 dT = Γn(a) |S|−a , T ∈ Rn,n,S ∈ Cn,n, a > (n+ 1)/2 (21)

and substituting pG (G) from Eq. (20) into the constraint equations (11) and (12), the Lagrange
multipliers λ0 and Λ1 can be obtained exactly. After some algebra it can be again shown that

pG (G) = r−nr {Γn(r)}−1
∣

∣G
∣

∣

−r |G|ν etr
{

−rG−1
G
}

, where r = ν +
1

2
(n+ 1) (22)

Comparing Eq. (22) with the Wishart distribution in Eq. (4) it can be observed that G has the
Wishart distribution with parameters p = 2ν +n+ 1 and Σ = G/(2ν +n+ 1). Therefore, we have
the following basic result regarding the non-parametric uncertainty modeling of structural dynamic
systems:

Theorem 2. If ν-th order inverse-moment of a system matrix G ≡ {M,C,K} exists and only the
mean of G is available, say G, then the maximum-entropy pdf of G follows the Wishart distribution
with parameters p = (2ν+n+1) and Σ = G/(2ν+n+1), that is G ∼Wn

(

2ν + n+ 1,G/(2ν + n+ 1)
)

.

Observe that ν = 0 gives us the ‘maximal uncertain distribution’ derived in the previous sub-
section.

C. Statistical Properties of the System Matrices

From the discussion in the previous section it is clear that each system matrix follows a Wishart
distribution. The discovery of the Wishart distribution in this context turns out to be very useful
because it has been studied extensively in the multivariate statistics literature.13,18,22 Here we
outline some interesting properties of the distribution. For convenience we present the results in
terms of the general Wishart matrix G ∼ Wn (p,Σ), where , Σ = G/p and p = 2ν + n + 1 or
p = n+ 1 depending on whether the inverse-moment constraint is considered or not.

Perhaps the most useful property of a Wishart matrix is the fact that it can be decomposed in
terms of Gaussian random matrices:

Theorem 3. If X is a Gaussian random matrix such that X ∼ Nn,p (On,p,Σ ⊗ Ip), then G = XXT

has the Wishart distribution G ∼Wn (p,Σ).

The proof is available, for example, in reference.18 This result is particularly important because
it gives an easy simulation algorithm for the system matrices. From this representation, it is clear
that G is symmetric with probability one. Using Theorem 3.2.1 of Gupta and Nagar18 we can also
say that G is positive definite with probability one. Therefore, two out of the three requirements
outlined in the previous subsections are always satisfied by a Wishart matrix.
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The probability density function of G has been derived exactly in closed-form. Now we use
them to obtain the moments of the random matrix G. The characteristic function of G, that is
the joint characteristic function of G11, G12, Gnn, can be obtained as

ΦG(Z) = E [etr {iZG}] = |In − iZΣ|−p/2 (23)

where Z ∈ Rn,n is a symmetric matrix. The first moment (mean), second-moment, the elements of
the covariance tensor and the variance of G can be obtained18 as

E [G] = pΣ = G (24)

E
[

G2
]

= pΣ2 + pTrace (Σ)Σ + p2Σ2 =
1

2ν + n+ 1

[

(2ν + n+ 2)G
2
+ G Trace

(

G
)

]

(25)

cov (Gij , Gkl) = p (ΣikΣjl + ΣilΣjk) =
1

2ν + n+ 1

(

GikGjl +GilGjk

)

(26)

E
[

{G − E [G]}2
]

= E
[

G2
]

− G
2

=
1

2ν + n+ 1

[

G
2
+ G Trace

(

G
)

]

(27)

It is useful to define the normalized standard deviation of G (introduced by Soize15–17 as the
dispersion parameter) as

δ2G =
E
[

‖G − E [G] ‖2
F

]

‖E [G] ‖2
F

(28)

Because both E [•] and Trace (•) are linear operators their order can be interchanged. Now using
Eqs. (24) and (25) we have

E
[

‖G − E [G] ‖2
F

]

= E
[

Trace
(

[G − E [G]][G − E [G]]T
)]

= Trace
(

E
[

[G2 − GE [G] − E [G]G − E [G]2]
])

= Trace
(

E
[

G2
]

− E [G]2
)

= Trace
(

pΣ2 + pTrace (Σ)Σ + p2Σ2 − (pΣ)2
)

= pTrace
(

Σ2
)

+ p{Trace (Σ)}2

(29)

Therefore

δ2G =
pTrace

(

Σ2
)

+ p{Trace (Σ)}2

p2Trace
(

Σ2
) =

1

p

{

1 +
{Trace (Σ)}2

Trace
(

Σ2
)

}

=
1

2ν + n+ 1







1 +
{Trace

(

G
)

}2

Trace
(

G
2
)







(30)

Equation (30) shows that the the normalized standard deviation of G will be smaller for higher
values of ν. For a special case when G is an idempotent matrix or a diagonal matrix (such as the
mass matrix of a uniform spring-mass chain), we have

δ2G =
1

2ν + n+ 1

{

1 +
{n}2

n

}

=
1 + n

2ν + n+ 1
(31)

This equation clearly shows that for a system with fixed dimension, the uncertainty in the system
matrices reduces when ν increases. Recall that ν is the order of the inverse moment that we have
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enforced to exist. Intuitively Eq. (30) implies that if we enforce more constraint (in terms of the
order of the inverse-moment), the resulting distribution becomes less uncertain. This fact, in turn,
allows one to control the amount of uncertainty in the system by choosing different values of ν. It
is interesting to observe that the parameter ν, which was originally used as the the order of the
inverse-moment constraint, now solely controls the amount of variability in the matrices as both n
and G are fixed. If δ2G is known (e.g., from experiments or experience) then Eq. (30) can be used
to calculate ν. Next we consider the properties of the inverse of the system matrices.

D. Statistical Properties of the Inverse of the System Matrices

Suppose F = G−1 denotes the inverse of a system matrix. The jacobian of this transformation20 is
given by J(G → F) = |F|−(n+1). Using this, the pdf of the inverse of the system matrices can be
obtained from Eq. (22) as

pF (F) = J(G → F)pG
(

G = F−1
)

=
r−nr

Γn(r)

∣

∣G
∣

∣

−r |F|−(ν+n+1) etr
{

−rG−1
F−1

}

, where r = ν +
1

2
(n+ 1) (32)

Comparing this with the inverted Wishart distribution in Eq. (6) we can say that the inverse
of a system matrix has a inverted Wishart distribution with parameters m = 2(ν + n + 1) and

Ψ = (2ν + n+ 1)G
−1

. From this discussion we have the following basic result:

Theorem 4. If ν-th order inverse-moment of a system matrix G ≡ {M,C,K} exists and only the
mean of G is available, say G, then the pdf of G−1 follows the inverted Wishart distribution with

parameters m = 2(ν + n + 1) and Ψ = (2ν + n + 1)G
−1

, that is G−1 ∼ IWn(2(ν + n + 1), (2ν +

n+ 1)G
−1

).

The exact pdf of the inverse of the system matrices might be useful, for example, to obtain
the pdf of the response. At present mostly perturbation based methods are used for this purpose.
The first moment (mean), second-moment and the elements of the covariance tensor of G−1 can
be obtained18 exactly in closed-form as

E
[

G−1
]

=
Ψ

m− 2n− 2
=

2ν + n+ 1

2ν
G

−1
(33)

E
[

G−2
]

=
Trace (Ψ)Ψ + (m− 2n− 1)Ψ2

(m− 2n− 1)(m− 2n− 2)(m− 2n− 4)

=
(2ν + n+ 1)2Trace

(

G
−1
)

G
−1

+ 2νG
−2

2ν(2ν + 1)(2ν − 2)
(34)

cov
(

G−1
ij , G

−1
kl

)

=
2(m− 2n− 2)−1ψijψkl + ψikψjl + ψilψkj

(m− 2n− 1)(m− 2n− 2)(m− 2n− 4)

=

(

2ν + n+ 1)(ν−1G
−1
ij G

−1
kl +G

−1
ik G

−1
jl +G

−1
ilG

−1
kj

)

2ν(2ν + 1)(2ν − 2)
(35)

In the above equations G
−1
ij implies ij-th element of the G

−1
matrix (that is G

−1
ij 6= 1/Gij). From

Eq. (33) observe that ν must be more than 0 for the existence of the mean of the inverse matrices.
Similarly from Eq. (34), for the existence of the second inverse-moment ν must be more than 1.
This in turn implies that for the distribution given in Theorem 1, neither the mean nor the variance
of the inverse of the random system matrix exist. This is however not a limitation because we are
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interested in the existence of the inverse moments of the dynamic stiffness matrix. It is perfectly
possible (provided there is some damping in the system) that the inverse-moments of the dynamic
stiffness matrix exists while that for the individual system matrices do not.

Equation (33) also shows one intriguing fact. Suppose the degrees-of-freedom of a system
n = 100 and ν = 2. Therefore, from Eq. (24) we have E [G] = G and from Eq. (33) we have

E
[

G−1
]

=
2 × 2 + 100 + 1

4
G

−1
= 26.25G

−1
(36)

This is clearly unacceptable for engineering structural matrices because the randomness of real

system are not very large. Of course there is no reason as to why always E
[

G−1
]

= G
−1

. However,
we do not expect them to be so far apart! One possible way to reduce this ‘gap’ is to increase
the values of ν. However, this implies the reduction of the variance, that is, the assumption of
more constraints than necessary. The discrepancy between the mean of the inverse and inverse
of the mean of the random matrices appears to be a fundamental limitation of the matrix variate
distribution derived so far. A new approach based on optimal Wishart matrices is proposed in the
next section to address this issue.

IV. Optimal Wishart Distributions

From the previous discussions it follows that one could have formulated the maximum entropy
approach in terms of the inverse of the systems matrices also. In that case one would obtain a
very large difference between the E [G] and G. It is not quite obvious whether the maximum
entropy approach should be formulated with respect G or G−1 or indeed any other powers of G.
For structural vibration problems it is perhaps more logical to formulated the maximum entropy
approach in terms of the eigenvalues and eigenvectors of the system. Depending on the what
‘information’ we select, the resulting distribution can differ dramatically from one to another. To
avoid this problem of ‘information dependence’ in this section an optimal Wishart distribution is
proposed.

Here the main idea is that the distribution of G must be such that E [G] and E
[

G−1
]

be closest

to G and G
−1

respectively. Suppose G has Wishart distribution with parameters p = n+1+θ and
Σ = G/α, that is, G ∼ Wn

(

n+ 1 + θ,G/α
)

. Recall that the variance of the system is dependent
only on θ = 2ν. Therefore, the aim is to determine the parameter α ∈ R

+ such that E [G] and

E
[

G−1
]

become closest to G and G
−1

. To obtain the optimal value of α we define the ‘normalized
errors’ as

ε1 =
∥

∥G − E [G]
∥

∥

F
/
∥

∥G
∥

∥

F
(37)

and ε2 =
∥

∥

∥
G

−1 − E
[

G−1
]

∥

∥

∥

F
/
∥

∥

∥
G

−1
∥

∥

∥

F
(38)

Because G ∼Wn

(

n+ 1 + θ,G/α
)

we have

E [G] =
n+ 1 + θ

α
G (39)

and E
[

G−1
]

=
α

θ
G

−1
(40)

We define the objective function to be minimized as

χ2 = ε1
2 + ε2

2 (41)

Using Eqs. (37)–(40), this expression can be simplified as

χ2 =

(

1 − n+ 1 + θ

α

)2

+
(

1 − α

θ

)2
(42)
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The optimal value of α can be obtained as by setting

∂χ2

∂α
= 0

or α4 − α3θ − θ4 + (−2n+ α− 2) θ3 +
(

(n+ 1)α− n2 − 2n− 1
)

θ2 = 0

(43)

This fourth-order equation in α has the following four exact solutions

α = ±
√

θ(n+ 1 + θ) and α = θ/2 ± i
√

θ(n+ 1 + 3θ/4) (44)

Clearly, the only feasible value of α ∈ R
+ is

α =
√

θ(n+ 1 + θ) (45)

The choice of α in Eq. (45) not only minimizes the overall difference, but also the difference between

E [G] and G and E
[

G−1
]

and G
−1

become the same as

ε1
2 = ε2

2 =

(

1 −
√

n+ 1 + θ

θ

)2

(46)

This discussion implies that if G ∼Wn

(

n+ 1 + θ,G/
√

θ(n+ 1 + θ)
)

, then the resulting distribu-

tion becomes independent of whether G or G−1 is used for the derivation of the distribution. As
a result we have the following:

Theorem 5. If ν-th order inverse-moment of a system matrix G ≡ {M,C,K} exists and only the
mean of G is available, say G, then the unbiased distribution of G follows the Wishart distribution
with parameters p = (2ν + n+ 1) and Σ = G/

√

2ν(2ν + n+ 1), that is

G ∼Wn

(

2ν + n+ 1,G/
√

2ν(2ν + n+ 1)
)

.

To give a numerical illustration, again consider n = 100 and ν = 2, so that θ = 2ν = 4.
For the distribution in the previous section α = 2ν + n + 1 = 105. For the optimal distribution,
α =

√

θ(θ + n+ 1) = 2
√

105 = 20.49. Using these values we have E [G] = 105
2
√

105
G = 5.12G and

E
[

G−1
]

= 2
√

105
4 G

−1
= 5.12G

−1
. The overall normalized difference for the previous case is χ2 =

0 + (1 − 105/4)2 = 637.56. The same for the optimal distribution is χ2 = 2(1 −
√

105/2)2 = 34.01,
which is considerable smaller compared to the non-optimal distribution.

V. Numerical Examples

A. Example 1: A Two Degree-of-Freedom System

We consider a simple two-degrees-of-freedom system to illustrate the matrix variate distribution
derived in section III. The system considered is shown in figure 1 with the mean values of the
system parameters. The mean of the mass, damping and stiffness matrices are given by

M =

[

m1 0

0 m2

]

, C =

[

c1 + c2 −c2
−c2 c2

]

, and K =

[

k1 + k2 −k2

−k2 k2 + k3

]

(47)

For this system n = 2 and we assume that the second-order inverse moments of the system matrices
exist so that ν = 2. Using Theorem 2 it follows that G ∼ W2

(

7,G/7
)

. Suppose Z ∈ R
+
2 is a

symmetric positive definite matrix such that

Z =

[

z11 z12

z12 z22

]

(48)
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Figure 1. The mean model of a two-degree-of-freedom damped system.

The positive definite condition requires that |Z| > 0, that is the variables z11, z12 and z22 should
vary such that z11z22 − z2

12 > 0. Note that Z becomes a diagonal matrix for the distribution of the
mass matrix. Using the expression of the pdf of the Wishart matrix in Eq. (4) we have

pG (Z) =

{

27 Γ2

(

1

2
7

)

∣

∣G/7
∣

∣

1
2
7
}−1

|Z| 12 (4)etr

{

−1

2
(G/7)−1Z

}

= (7/2)7
4

15π

∣

∣G
∣

∣

−7/2
(z11z22 − z2

12)
2etr

{

−7

2
G

−1
Z

}
(49)

Using Eq. (49), the pdf of the mass matrix can be obtained as

pM(Z) =
823543

480π
|M|−7/2(z11z22)

2etr

{

−7

2
M

−1
Z

}

=
823543

480π

(z11z22)
2

(m1m2)3
√
m1m2

exp

{

−7

2

z11m2 + z22m1

m1m2

}

; z11z22 > 0

(50)

Equation (50) is the joint pdf of the two diagonal elements of the mass matrix. Similarly, the pdfs
of the damping and stiffness matrices can be expressed as

pC(Z) =
823543

480π

(z11z22 − z2
12)

2

(c1c2)3
√
c1c2

exp

{

−7

2

z11c2 + 2z12c2 + z22(c1 + c2)

c2c1

}

; z11z22 − z2
12 > 0 (51)

and

pK(Z) =
823543

480π

(z11z22 − z2
12)

2

(k1k2 + k1k3 + k2k3)
7/2

×

exp

{

−7

2

z11(k2 + k3) + 2z12k2 + z22(k1 + k2)

k1k2 + k1k3 + k2k3

}

; z11z22 − z2
12 > 0 (52)

This simple example is for illustrative purpose only. The non-parametric uncertainty modeling
method proposed here is ideally suitable for large complex systems undergoing mid and high fre-
quency vibration. Theorem 3 allows a simple method to generate the samples of the system
matrices. From these samples it is possible to propagate the uncertainty in complex systems using
Monte Carlo simulation as shown in the next example.

B. Example 2: Dynamic Response of a Clamped Plate With Random Properties

A cantilever plate with a slot is considered in this section. The diagram of the plate together with
the deterministic numerical values assumed for the system parameters are shown in figure 2. The
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Figure 2. A Cantilever plate with a slot: µ = 0.3, ρ = 8000 kg/m3, t = 5mm, Lx = 2.27m, Ly = 1.47m.

plate is excited by an unit harmonic force and the response is calculated at the points shown in
the diagram. The standard four-noded thin plate bending element (resulting 12 dof per element)
is used. The plate is divided into 13 elements in x-axis and 10 elements in the y-axis for the
numerical calculations. The resulting system has 429 degrees-of-freedom so that n = 429. The
first six deterministic mode shapes and natural frequencies of the plate are shown in figure 3.
The amplitude of the cross frequency response function (FRF) and the driving point FRF of the
deterministic plate is shown in figure 4. It is assumed that the modal damping factors are uniformly
distributed between 1% to 4% (with a mean of 2.5%).

Now we consider uncertainties in the plate structure. It is assumed that the plate is ‘loaded’ at
random points with 30 masses, each weighting 0.5% of the total mass of the plate. Therefore, the
total amount of the mass distributed over 30 randomly selected nodes is 0.15% of the total mass
of the plate. A 500-sample Monte Carlo simulation is performed to obtain the FRFs. Figure 5
shows the direct finite-element (FE) Monte Carlo simulation result for the cross-FRF. Realizations
of the amplitude of the FRF for each sample are shown together with the ensemble mean, 5% and
95% probability points. The ensemble mean follows the deterministic result very closely across the
range of the excitation frequency considered in this study. Figure 6 shows the direct finite-element
Monte Carlo simulation result for the driving-point-FRF. Realizations of the amplitude of the FRF
for each sample are shown together with the ensemble mean, 5% and 95% probability points. The
amount of ‘variation’ in this case is smaller compared to the cross-FRF. This is due to the fact that
randomly placed masses only have a significant effect on the driving point FRF if the masses are
close to the forcing point. While for the cross-FRF, all the masses located between (and around)
the two points can affect the FRF. Because the probability of occurrence of the later event is more
than the first one, we see a greater variability in the cross-FRF compared to the driving-point FRF.

Now we want to see if the results produced by the direct finite element MCS can be reproduced
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Figure 3. First six deterministic mode shapes and natural frequencies of the plate.

using the random matrix theory. The details of the parametric variations of the locations of
the randomly placed masses will not be used in the random matrix approach. This example is
aimed to depict a realistic situation when the detailed information regarding the uncertainty of a
complex engineering system may not be available to the analyst. From the simulated random mass
matrices we obtain δM = 2.0449, which is the only uncertainty related information to be used in
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Figure 4. The amplitude of the driving-point FRF and cross FRF of the deterministic plate (node
numbers correspond to the numbers before applying the boundary conditions).

Figure 5. Direct finite-element MCS of the amplitude of the cross-FRF of the plate with randomly
placed masses; 30 masses, each weighting 0.5% of the total mass of the plate are simulated.
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Figure 6. Direct finite-element MCS of the amplitude of the driving-point FRF of the plate with
randomly placed masses; 30 masses, each weighting 0.5% of the total mass of the plate are simulated.

the random matrix approach. Here δK = 0 and δC = 0 and n = 429. Using this data the samples
of the mass matrices are simulated using the optimal Wishart matrices derived in section IV. The
simulation procedure is based on the simulation of the Gaussian random matrices as described in
Theorem 3. Alternatively Matlab

r command wishrnd can be used to generate the samples of
Wishart matrices.

Figure 7 shows the Monte Carlo simulation result for the cross-FRF using the optimal Wishart
mass matrix. Realizations of the amplitude of the FRF of each sample are shown in the figure
along with the ensemble mean, 5% and 95% probability points. Figure 8 shows the Monte Carlo
simulation result for the driving-point-FRF using the optimal Wishart mass matrix. Realizations
of the amplitude of the FRF of each sample are shown in the figure along with the ensemble mean,
5% and 95% probability points. The amount of ‘variation’ in this case is smaller compared to the
cross-FRF, but not as small as the direct FE simulation results.

The predicted mean values using the direct FE simulation and the random matrix theory (RMT)
are compared in figure 9 and figure 10 for the cross-FRF and driving-point-FRF respectively. The
results obtained from the random matrix theory (RMT) goes through the results obtained using
FE simulation. The predicted 5% and 95% probability points using the direct FE simulation and
random matrix theory (RMT) are compared in figure 11 and figure 12. The results obtained for the
cross-FRF agree better than the driving-point-FRF. Considering the fact that the only uncertainty
related information used in the random matrix method is δM , these results are encouraging.

VI. Summary and Conclusions

A non-parametric method for uncertainty quantification in linear dynamic systems has been
proposed. The method is based on the maximum entropy principle and random matrix theory. It
is assumed that only the mean of the system matrices are known. The derived probability density
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Figure 7. MCS of the amplitude of the cross-FRF of the plate using optimal Wishart mass matrix,
n = 429, δM = 2.0449.

Figure 8. MCS of the amplitude of the driving-point-FRF of the plate using optimal Wishart mass
matrix, n = 429, δM = 2.0449.

function of the random system matrices are characterized by the dimension of the matrices, their
mean values and a scalar parameter defining their randomness. The main outcome of this study is
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Figure 9. Comparison of the mean values of the amplitude of the cross-FRF.
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Figure 10. Comparison of the mean values of the amplitude of the driving-point-FRF.

that if only the mean value of a system matrix is known then the matrix follows a Wishart distribu-
tion (with proper parameters). The optimal parameters of the Wishart matrices are obtained such
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Figure 11. Comparison of the 5% and 95% probability points of the amplitude of the cross-FRF.
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Figure 12. Comparison of the 5% and 95% probability points of the amplitude of the driving-point-
FRF.

that the mean of the matrix and its inverse produce minimum deviations from their deterministic
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values.
The discovery of the Wishart distribution in the context of structural dynamics is important.

This is not only because the Wishart matrices are fundamental to the random matrix theory, but
also due to the fact that analysis became simpler with this distribution. The moments and elements
of the covariance tensor of the matrix elements and its inverse are obtained exactly in closed-form.
The exact expression of the probability density function of the inverse of a random system matrix
is derived in closed-from. The applications of the derived matrix variate distribution are illustrated
by a two-degree-of-freedom system and a random plate problem with 429 degrees-of-freedom. It
is shown that it is possible to predict the variation of the dynamic response using the optimal
Wishart distribution. The random matrix based uncertainty quantification and propagation tool
developed here do not require explicit information regarding the detailed nature of the uncertainty
in the system.
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