
Abstract

Free and forced bending vibration of damped nonlocal beams are investigated in this

paper. Two types of nonlocal damping models, namely, strain-rate-dependent vis-

cous damping and velocity-dependent viscous damping are considered. A frequency

dependent dynamic finite element method is developed to obtain the forced vibration

response. Frequency-adaptive complex-valued shape functions are used for the deriva-

tion of the dynamic stiffness matrix. The stiffness and mass matrices of the nonlocal

beam are also obtained using the conventional finite element method. Results from the

dynamic finite element method and conventional finite element method are compared.

The frequency response function obtained using the proposed dynamic finite element

method shows high modal density in the higher frequency ranges.

Keywords: bending vibration, nonlocal mechanics, dynamic stiffness, asymptotic

analysis, frequency response.

1 Introduction

Nanoscale experiments demonstrate that the mechanical properties of nano dimen-

sional materials are much influenced by size effects or scale effects [1, 2]. Size ef-

fects are related to atoms and molecules that constitute the materials. Further, atom-

istic simulations have also reported size-effects on the magnitudes of resonance fre-

quency and buckling load of nanoscale objects such as nanotubes and graphene[3, 4].

The application of classical continuum approaches is thus questionable in the anal-

ysis of nanostructures such as nanobeams, nanobeams and nanoplates. Examples of

nanobeams and nanobeams include carbon and boron nanotubes, while nanoplates can

be graphene sheets and gold nanoplates.
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One widely promising size-dependant continuum theory is the nonlocal elastic-

ity theory pioneered by [5] which brings in the scale effects and underlying physics

within the formulation. Nonlocal elasticity theory contains information related to the

forces between atoms, and the internal length scale in structural, thermal and mechan-

ical analyses. In the nonlocal elasticity theory, the small-scale effects are captured

by assuming that the stress at a point is a function of the strains at all points in the

domain. Nonlocal theory considers long-range inter-atomic interaction and yields

results dependent on the size of a body [5]. Some drawbacks of the classical con-

tinuum theory could be efficiently avoided and the size-dependent phenomena can

be reasonably explained by nonlocal elasticity. Recent literature shows that the the-

ory of nonlocal elasticity is being increasingly used for reliable and fast analysis of

nanostructures. Studies include nonlocal analysis of nanostructures viz. nanobeams

[6, 7, 8], nanoplates [9], carbon nanotubes [10], graphenes [11], microtubules [12] and

nanorings [13].

bending vibration experiments can be used for the determination of Youngs mod-

ulus of CNTs. Generally, the flexural modes occur at low frequencies. However

vibrating nanobeams (CNTs) may also have longitudinal modes at relatively high

frequencies and can be of very practical significance in high operating frequencies.

Nanobeams when used as electromechanical resonators can be externally excited and

exhibit bending vibrations. Furthermore for a moving nanoparticle inside a single-

walled carbon nanotube (SWCNT), the SWCNT generally vibrates both in the trans-

verse and longitudinal directions. The longitudinal vibration is generated because of

the friction existing between the outer surface of the moving nanoparticle and the in-

ner surface of the SWCNT. It is also reported [14] that transport measurements on sus-

pended single-wall carbon nanotubes show signatures of phonon-assisted tunnelling,

influenced by longitudinal vibration (stretching) modes. Chowdhury et al. [15] have

reported sliding bending modes for multiwalled carbon nanotubes. Only limited work

on nonlocal elasticity has been devoted to the bending vibration of nanobeams. Ay-

dogdu [16] developed a nonlocal elastic beam model and applied it to investigate

the small scale effect on the bending vibration of clamped-clamped and clamped-free

nanobeams. Filiz and Aydogdu [17] applied the bending vibration of nonlocal beam

theory to carbon nanotube heterojunction systems. Narendra and Gopalkrishnan [18]

have studied the wave propagation of nonlocal nanobeams. Recently Murmu and Ad-

hikari [19] have studied the bending vibration analysis of a double-nanobeam-system.

In this paper, we will be refereeing nanobeam as nonlocal beam, so as to distinguish

it from local beam.

Several computational techniques have been used for solving the nonlocal govern-

ing differential equations. These techniques include Naviers Method [20], Differential

Quadrature Method (DQM) [21] and the Galerkin technique [22]. Recently attempts

have been made to develop a Finite Element Method (FEM) based on nonlocal elas-

ticity for solving the same. The upgraded finite element method in contrast to these

methods can effectively handle more complex geometry, material property, boundary

and/or loading conditions. Pisano et al. [23] reported a finite element procedure for

nonlocal integral elasticity. Recently some motivating work on a finite element ap-

2



proach based on nonlocal elasticity was reported [24]. The majority of the reported

works consider free vibration studies where the effect of non-locality on the eigen-

solutions has been studied. However, forced vibration response analysis of nonlocal

systems received very little attention.

Based on the above discussion, in this paper we develop the dynamic finite element

based on nonlocal elasticity with the aim of considering dynamic response analysis.

The dynamic finite element method belongs to the general class of spectral methods

for linear dynamical systems [25]. This approach, or approaches very similar to this,

is known by various names such as the dynamic stiffness method [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36], spectral finite element method [25, 37] and dynamic finite

element method [38, 39]. So far the dynamic finite element method has been applied

to classical local systems only. In this paper we generalise this approach to nonlocal

systems. One of the novel features of the analysis proposed here is the employment

of frequency-dependent complex nonlocal shape functions for damped systems. This

in turn enables us to obtain the element stiffness matrix using the usual weak form of

the finite element method.

Overview of the paper is as follows. In 2 we describe the equation of motion for

bending vibration of undamped and damped beams. The conventional and the dy-

namic finite element method are developed in 3. Closed form expressions are derived

for the mass and stiffness matrices. In 4 the proposed methodology is applied to an

armchair single walled carbon nanotube (SWCNT) for illustration. Theoretical re-

sults, including the asymptotic behaviours of the natural frequencies, are numerically

illustrated. Finally, in 5 some conclusions are drawn based on the results obtained in

the paper.

2 Bending vibration of undamped and damped nonlo-

cal beams

2.1 Undamped system

For the bending vibration of a nonlocal damped beam, the equation of motion can be

expressed by

EI
∂4V (x, t)

∂x4
+m

(
1− (e0a)

2
∂2

∂x2

){
∂2V (x, t)

∂t2

}

=

(
1− (e0a)

2
∂2

∂x2

)
{F (x, t)} (1)

In the above equation EI is the bending rigidity, m is mass per unit length, e0a is the

nonlocal parameter, V (x, t) is the transverse displacement and F (x, t) is the applied

force. Considering the free vibration, i.e., setting the force to zero, and assuming

harmonic motion with frequency ω

V (x, t) = v(x) exp [iωt] (2)
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from (1) we have

EI
d4v

dx4
−mω2

(
v − (e0a)

2
d2v

dx2

)
= 0 (3)

or
d4v

dx4
+ b4(e0a)

2
d2v

dx2
− b4v = 0 (4)

where

b4 =
mω2

EI
(5)

To obtain the characteristic equation, we assume

v(x) = exp [λx] (6)

Substituting this in Eq. (4) we obtain

λ4 + b4(e0a)
2λ2 − b4 = 0 (7)

or λ2 = b2
(
−b2(e0a)

2 ±
√

4 + b4(e0a)4
)
/2 (8)

Defining

γ = b2(e0a)
2 (9)

the two roots can be expressed as

λ2 = −α2, β2 (10)

where

α = b

√(√
4 + γ2 + γ

)
/2 (11)

and β = b

√(√
4 + γ2 − γ

)
/2 (12)

Therefore, the four roots of the characteristic equation can be expressed as

λ = iα,−iα, β,−β (13)

where i =
√
−1. The displacement function within the beam can be expressed by

linear superposition as

v(x) =

4∑

j=1

cj exp[λjx] (14)

Here the unknown constants cj need to be obtained from the boundary conditions.

Using Eq. (14), the natural frequency of the system can be obtained by imposing

the necessary boundary conditions [40]. For example, the bending moment and shear

force are given by:
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• Bending moment at x = 0 or x = L:

EI
d2v(x)

dx2
= 0 (15)

• Shear force at x = 0 or x = L:

EI
d3v(x)

dx3
+mω2(e0a)

2
dv(x)

dx
= 0 or

d3v(x)

dx3
+ b4(e0a)

2
dv(x)

dx
= 0 (16)

Boundary conditions involving displacements and rotations can be applied in the con-

ventional manner.

2.2 Damped system

The equation of motion of bending vibration for a damped nonlocal beam can be

expressed as

EI
∂4V (x, t)

∂x4
+m

(
1− (e0a)

2
∂2

∂x2

){
∂2V (x, t)

∂t2

}
+ĉ1

(
1− (e0a)

2

1

∂2

∂x2

)
∂5V (x, t)

∂x4∂t

+ ĉ2

(
1− (e0a)

2

2

∂2

∂x2

)
∂V (x, t)

∂t
=

(
1− (e0a)

2
∂2

∂x2

)
{F (x, t)} (17)

Here ĉ1 is the strain-rate-dependent viscous damping coefficient and ĉ2 is the velocity-

dependent viscous damping coefficient. The parameters (e0a)1 and (e0a)2 are nonlo-

cal parameters related to the two damping terms respectively. For simplicity we have

not taken into account any nonlocal effect related to the damping. Although this can be

mathematically incorporated in the analysis, the determination of these nonlocal pa-

rameters is beyond the scope of this work and therefore only local interaction for the

damping is adopted. Thus, in the following analysis we consider (e0a)1 = (e0a)2 = 0.

Assuming harmonic response as in (2) and considering free vibration, from Eq.

(17) we have

EI
d4v

dx4
−mω2

(
v − (e0a)

2
d2v

dx2

)
+ iωĉ1

d4v

dx4
+ iωĉ2v = 0 (18)

Following the damping convention in dynamic analysis [40], we consider stiffness and

mass proportional damping. Therefore, we express the damping constants as

ĉ1 = ζ1(EI) and ĉ2 = ζ2(m) (19)

where ζ1 and ζ2 are stiffness and mass proportional damping factors. Substituting

these, from Eq. (18) we have

EI (1 + iωζ1)
d4v

dx4
+mω2(e0a)

2
d2v

dx2
−mω2 (1− iζ2/ω) v = 0 (20)

or
d4v

dx4
+ b̄4(e0a)

2
d2v

dx2
− b̄4θv = 0 (21)
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where we define b̄ and introduce θ as

b̄4 =
mω2

EI (1 + iωζ1)
and θ = (1− iζ2/ω) (22)

Comparing this with the equivalent expression for the undamped case in Eq. (5) we

notice that b̄4 is a complex function of the frequency parameter ω as opposed to a

real function. In the special case when damping coefficients ζ1 and ζ1 go to zero,

b̄4 in Eq. (22) reduces to the expression of b4 in Eq. (5) and θ becomes 1. The

characteristics equation can be obtained in manned similar to the undamped system

with the expressions of α and β being

α = b̄

√(√
4θ + γ2 + γ

)
/2 (23)

and β = b̄

√(√
4θ + γ2 − γ

)
/2 (24)

where γ = b̄2(e0a)
2.

3 Dynamic finite element matrix

3.1 Classical finite element of nonlocal beams

We first consider standard finite element analysis of the nonlocal beam. Recently

Phadikar and Pradhan [24] proposed a variational-formulation-based finite element

approach for nanobeams and nanoplates. We consider an element of length ℓe with

bending stiffness EI and mass per unit length m. An element of the beam is shown in

1. This element has four degrees of freedom and there are four shape functions. The

1 2

l
e

Figure 1: A nonlocal element for the bending vibration of a beam. It has two nodes

and four degrees of freedom. The displacement field within the element is

expressed by cubic shape functions.

shape function matrix for the bending deformation [41] can be given by

N(x) = [N1(x), N2(x), N3(x), N4(x)]
T

(25)
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where
N1(x) = 1− 3x2

ℓ2
e

+ 2x3

ℓ3
e

, N2(x) = x− 2x2

ℓe
+ x3

ℓ2
e

,

N3(x) = 3x2

ℓ2
e

− 2x3

ℓ3
e

, N4(x) = −x2

ℓe
+ x3

ℓ2
e

(26)

Using this, the stiffness matrix can be obtained following the conventional varia-

tional formulation [42] as

Ke = EI

∫ ℓe

0

d2N(x)

dx2

d2NT (x)

dx2
dx =

EI

ℓ3e




12 6ℓe −12 6ℓe
6ℓe 4ℓ2e −6ℓe 2ℓ2e
−12 −6ℓe 12 −6ℓ2e
6ℓe 2ℓ2e −6ℓe 4ℓ2e


 (27)

The mass matrix for the nonlocal element can be obtained as

Me = m

∫ ℓe

0

N(x)NT (x)dx+m(e0a)
2

∫ ℓe

0

dN(x)

dx

dNT (x)

dx
dx

=
mℓe
420




156 22ℓe 54 −13ℓe
22ℓe 4ℓ2e 13ℓe −3ℓ2e
54 13ℓe 156 −22ℓe

−13ℓe −3ℓ2e −22ℓe 4ℓ2e




+

(
e0a

ℓe

)2
mℓe
30




36 3ℓe −36 3ℓe
3ℓe 4ℓ2e −3ℓe −ℓ2e
−36 −3ℓe 36 −3ℓe
3ℓe −ℓ2e −3ℓe 4ℓ2e




(28)

For the special case when the beam is local, the mass matrix derived above reduces to

the classical mass matrix [41, 42] as e0a = 0.

3.2 Dynamic finite element for damped nonlocal beam

The first step for the derivation of the dynamic element matrix is the generation of

dynamic shape functions. The dynamic shape functions are obtained such that the

equation of dynamic equilibrium is satisfied exactly at all points within the element.

Similarly to the classical finite element method, assume that the frequency-dependent

displacement within an element is interpolated from the nodal displacements as

ve(x, ω) = NT (x, ω)v̂e(ω) (29)

Here v̂e(ω) ∈ C
n is the nodal displacement vector N(x, ω) ∈ C

n is the vector of

frequency-dependent shape functions and n = 4 is the number of the nodal degrees-

of-freedom. Suppose the sj(x, ω) ∈ C, j = 1, · · · , 4 are the basis functions which

exactly satisfy Eq. (21). It can be shown that the shape function vector can be ex-

pressed as

N(x, ω) = Γ(ω)s(x, ω) (30)
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where the vector s(x, ω) = {sj(x, ω)}T , ∀ j = 1, · · · , 4 and the complex matrix

Γ(ω) ∈ C
4×4 depends on the boundary conditions. The elements of s(x, ω) constitutes

exp[λjx] where the values of λj are obtained from the solution of the characteristics

equation as given in Eq. (13). An element for the damped beam under bending vibra-

tion is shown in 1. The degrees-of-freedom for each nodal point include a vertical and

a rotational degrees-of-freedom.

In view of the solutions in Eq. (13), the displacement field with the element can

be expressed by linear combination of the basic functions e−iαx, eiαx, eβx and e−βx so

that in our notations s(x, ω) =
{
e−iαx, eiαx, eβx, e−βx

}T
. We can also express s(x, ω)

in terms of trigonometric functions. Considering e±iαx = cos(αx) ± i sin(αx) and

e±βx = cosh(βx)± i sinh(βx), the vector s(x, ω) can be alternatively expressed as

s(x, ω) =





sin(αx)
cos(αx)
sinh(βx)
cosh(βx)





∈ C
4 (31)

The displacement field within the element can be expressed as

v(x) = s(x, ω)Tve (32)

where ve ∈ C
4 is the vector of constants to be determined from the boundary condi-

tions.

The relationship between the shape functions and the boundary conditions can be

represented as in 1, where boundary conditions in each column give rise to the cor-

responding shape function. Writing Eq. (32) for the above four sets of boundary

N1(x, ω) N2(x, ω) N3(x, ω) N4(x, ω)
y(0) 1 0 0 0
dy

dx
(0) 0 1 0 0

y(L) 0 0 1 0
dy

dx
(L) 0 0 0 1

Table 1: The relationship between the boundary conditions and the shape functions

for the bending vibration of beams.

conditions, one obtains

[R]
[
y1

e, y2

e, y3

e, y4

e

]
= I (33)

where

R =




s1(0) s2(0) s3(0) s4(0)
ds1
dx

(0) ds2
dx

(0) ds3
dx

(0) ds4
dx

(0)
s1(L) s2(L) s3(L) s4(L)
ds1
dx

(L) ds2
dx

(L) ds3
dx

(L) ds4
dx

(L)


 (34)
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and yk
e is the vector of constants giving rise to the kth shape function. In view of

the boundary conditions represented in 1 and equation (33), the shape functions for

bending vibration can be shown to be given by Eq. (30) where

Γ(ω) =
[
y1

e, y2

e, y3

e, y4

e

]T
=

[
R

−1
]T

(35)

By obtaining the matrix Γ(ω) from the above equation, the shape function vector can

be obtained from Eq. (30).

The stiffness and mass matrices can be obtained similarly to the static finite element

case discussed before. Note that for this case all the matrices become complex and

frequency-dependent. It is more convenient to define the dynamic stiffness matrix as

De(ω) = Ke(ω)− ω2Me(ω) (36)

so that the equation of dynamic equilibrium is

De(ω)v̂e(ω) = f̂(ω) (37)

In Eq. (36), the frequency-dependent stiffness and mass matrices can be obtained as

Ke(ω) = EI

∫ L

0

d2N(x, ω)

dx2

d2NT (x, ω)

dx2
dx (38)

and Me(ω) = m

∫ L

0

N(x, ω)NT (x, ω)dx (39)

After some algebraic simplifications [34, 43] it can be shown that the dynamic stiffness

matrix is given by the following closed-form expression

De(ω) = EI∆×


−αβ (cSβ + Csα) β (cαC − α− sSβ) αβ (Sβ + sα) − (C − c)αβ
β (cαC − α− sSβ) −sCβ + cαS (C − c)αβ −αS + sβ

αβ (Sβ + sα) (C − c)αβ −αβ (cSβ + Csα) α (sαS − β + cCβ)
− (C − c)αβ −αS + sβ α (sαS − β + cCβ) −sCβ + cαS




(40)

where

∆ =
(α2 + β2)

sS(α2 − β2)− 2αβ(1− cC)
(41)

with

C = cosh(βL), c = cos(αL), S = sinh(βL) and s = sin(αL) (42)

These are frequency dependent complex quantities because α and β are functions of

ω and damping factors.

In general the dynamic stiffness matrix in (40) is a 4 × 4 matrix with complex

entries. The frequency response of the system at the nodal points can be obtained
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by simply solving Eq. (37) for all frequency values. The calculation only involves

inverting a 4 × 4 complex matrix and the results are exact with only one element for

any frequency value. This is a significant advantage of the proposed dynamic finite

element approach compared to the conventional finite element approach discussed in

the pervious subsection.

So far we did not explicitly consider any forces within the element. A distributed

body force can be considered following the usual finite element approach [41] and

replacing the static shape functions with the dynamic shape functions (30). Suppose

pe(x, ω), x ∈ [0, L] is the frequency depended distributed body force. The element

nodal forcing vector can be obtained as

fe(ω) =

∫ L

0

pe(x, ω)N(x, ω)dx (43)

As an example, if a point harmonic force of magnitude p is applied at length b < L
then, pe(x, ω) = pδ(x− b) where δ(•) is the Dirac delta function. The element nodal

force vector becomes

fe(ω) = p

∫ L

0

δ(x− b)N(x, ω)dx (44)

Next we illustrate the formulation derived in this section using an example.

4 Numerical results and discussions

A double-walled carbon nanotube (DWCNT) is considered to examine the bending

vibration characteristics. An armchair (5, 5), (8, 8) DWCNT with Young’s modulus

E = 1.0 TPa, L = 30 nm, density ρ = 2.3 × 103 kg/m3 and thickness t = 0.35

nm is considered as in [44]. The inner and the outer diameters of the DWCNT are

respectively 0.68nm and 1.1nm. The system considered here is shown in 2 . We con-

sider pinned-pinned boundary condition for the DWCNT. Undamped nonlocal natural

frequencies can be obtained [16] as

λj =

√
EI

m

β2

j√
1 + β2

j (e0a)
2

where βj = jπ/L, j = 1, 2, · · · (45)

EI is the bending rigidity and m is the mass per unit length of the DWCNT. For the

finite element analysis the DWCNT is divided into 100 elements. The dimension of

each of the system matrices become 200 × 200, that is n = 200. The global stiffness

and mass matrices are obtained by assembling the element stiffness and mass matrix

given by (27) and (28).

The natural frequencies obtained using the analytical expression (45) are compared

with direct finite element simulation in 3. The frequency values are normalised with

respect to the first local natural frequency. First 20 nonlocal natural frequencies are
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Figure 2: Bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nan-

otube (DWCNT) with pinned-pinned boundary condition.

shown for four distinct values of e0a, namely 0.5, 1.0, 1.5 and 2.0nm. Natural frequen-

cies corresponding to the underlying local system is shown in 3. Local frequencies are

qualitatively different from nonlocal frequencies as it increases quadratically with the

number of modes. Nonlocal frequencies on the other hand increases approximately

linearly with the number of modes.

In 4 the amplitude of the dynamic response function v(ω) at the right-end is shown

for the four representative values of the nonlocal parameter. We consider the mass and

stiffness proportional damping such that the damping factors ζ2 = 0.05 and ζ1 = 10−4.

In the x-axis, excitation frequency normalised with respect to the first local fre-

quency is considered. The frequency response is normalise by the static response dst
(this is the response when the excitation frequency is 0). The frequency response func-

tion of the underlying local model is also plotted to show the difference between the

local and nonlocal response. For the nonlocal system, the frequency response is ob-

tained by the direct finite element method and the dynamic stiffness method. For the

finite element analysis we used 100 elements. This in turn, results in global mass and

stiffness matrices of dimension 200 × 200. While for the dynamic stiffness method,

only the inversion of a 2 × 2 matrix is necessary. The results demonstrates the com-

putational efficiency and accuracy of the proposed dynamics stiffness method over the

conventional finite element method.

5 Conclusions

A novel dynamic finite element approach for bending vibration of damped nonlocal

beams is proposed. Strain rate dependent viscous damping and velocity dependent
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Figure 3: The variation of first 20 undamped natural frequencies for the bending vi-

bration of DWCNT. Four representative values of e0a (in nm) are consid-

ered.

viscous damping are considered. Damped and undamped dynamics are discussed.

Frequency dependent complex-valued shape functions are used to obtain the dynamic

stiffness matrix in closed-form. The dynamic response in the frequency domain can

be obtained by inverting the dynamic stiffness matrix. The stiffness and mass matrices

of the nonlocal beam was also obtained using the conventional finite element method.

In the special case when the nonlocal parameter becomes zero, the expression of the

mass matrix reduces to the classical case. The proposed method is numerically applied

to the bending vibration of an armchair (5, 5), (8, 8) double-walled carbon nanotube

with pinned-pinned boundary condition. The natural frequencies and the dynamic re-

sponse obtained using the conventional finite element approach were compared with

the results obtained using the dynamic finite method. Good agreement between con-

ventional finite element with 100 elements and proposed dynamic finite element with

only one element was found. This demonstrated the accuracy and computational effi-

ciency of the proposed dynamic stiffness method.
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(b) e0a = 1.0nm
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(c) e0a = 1.5nm
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Figure 4: Amplitude of the normalised frequency response of the DWCNT v(ω) at

theright-end for different values of e0a. Exact finite element results are com-

pared with the approximate analysis based on local eigensolutions.
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