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ABSTRACT

In spite of a large amount of research, the understanding of damping forces in vibrating structures is not well
developed. A major reason for this is that, by contrast with inertia and stiffness forces, the physics behind the
damping forces is in general not clear. As a consequence, modelling of damping from the first principle is difficult,
if not impossible, for real-life engineering structures. The common approach is to use the proportional damping
model where it is assumed that the damping matrix is proportional to mass and stiffness matrices. The main
limitation of the proportional damping approximation comes from the fact that the variation of damping factors with
respect to vibration frequency cannot be modelled accurately by using this approach. Experimental results however
suggest that damping factors can vary with frequency. In this paper a new generalized proportional damping model
is proposed in order to capture the frequency-variation of the damping factors accurately. A simple identification
method is proposed to obtain the damping matrix using the generalized proportional damping model. The proposed
method requires only the measurements of natural frequencies and modal damping factors. Examples are provided
to illustrate the proposed method.

NOMENCLATURE

α1, α2 proportional damping constants
C viscous damping matrix
I identity matrix
K stiffness matrix
M mass matrix
q(t) generalized coordinates
T a temporary matrix, T =

√
M−1K

X undamped modal matrix
ωj natural frequenciesbf(•) fitted modal damping function
ζj modal damping factors

1 INTRODUCTION

Modal analysis is the most popular and efficient method for solving engineering dynamic problems. The concept of modal
analysis, as introduced by Lord Rayleigh [1], was originated from the linear dynamics of undamped systems. The undamped
modes or classical normal modes satisfy an orthogonality relationship over the mass and stiffness matrices and uncouple the
equations of motion, i.e., if X is the modal matrix then XT MX and XT KX are both diagonal matrices. This significantly simplifies
the dynamic analysis because complex multiple degree-of-freedom (MDOF) systems can be effectively treated as a collection of
single degree-of-freedom oscillators.



Real-life systems are not undamped but possess some kind of energy dissipation mechanism or damping. In order to apply
modal analysis of undamped systems to damped systems, it is common to assume the proportional damping, a special type
of viscous damping. The proportional damping model expresses the damping matrix as a linear combination of the mass and
stiffness matrices, that is

C = α1M + α2K (1)

where α1, α2 are real scalars. This damping model is also known as ‘Rayleigh damping’ or ‘classical damping’. Modes of
classically damped systems preserve the simplicity of the real normal modes as in the undamped case. Caughey and O’Kelly [2]
have derived the condition which the system matrices must satisfy so that viscously damped linear systems possess classical
normal modes. They have also proposed a series expression for the damping matrix in terms of the mass and stiffness matrices
so that the system can be decoupled by the undamped modal matrix and have shown that the Rayleigh damping is a special
case of this general expression. In this paper a more general expression of the damping matrix is proposed so that the system
possess classical normal modes.

Complex engineering structures in general have non-proportional damping. For a non-proportionally damped system, the equa-
tions of motion in the modal coordinates are coupled through the off-diagonal terms of the modal damping matrix and conse-
quently the system possess complex modes instead of real normal modes. Practical experience in modal testing also shows
that most real-life structures possess complex modes. Complex modes can arise for various other reasons also [3], for example,
due to the gyroscopic effects, aerodynamic effects, nonlinearity and experimental noise. Adhikari and Woodhouse [4, 5] have
proposed few methods to identify damping from experimentally identified complex modes. In spite of a large amount of research,
understanding and identification of complex modes is not well developed as real normal modes. The main reasons are:

• By contrast with real normal modes, the ‘shapes’ of complex modes are not in general clear. It appears that unlike the
(real) scaling of real normal modes, the (complex) scaling or normalization of complex modes has a significant effect on
their geometric appearance. This makes it particularly difficult to experimentally identify complex modes in a consistent
manner [6].

• The imaginary parts of the complex modes are usually vary small compared to the real parts, especially when the damping
is small. This makes it very difficult to reliably extract complex modes using numerical optimization methods in conjunction
with experimentally obtained transfer function residues.

• The phase of complex modes are highly sensitive to experimental errors, ambient conditions and measurement noise and
often not repeatable in a satisfactory manner.

In order to bypass these difficulties in experimental modal analysis often real normal modes are used. Ibrahim [7], Chen et al [8]
and Balmès [9] have proposed methods to obtain the best real normal modes from identified complex modes. The damping
identification method proposed in this paper assumes that the system is effectively proportionally damped so that the complex
modes can be neglected. The outline of the paper is as follows. In section 2, a background of proportionally damped systems is
provided. The concept of generalized proportional damping in introduced in section 3. The damping identification based on the
generalized proportional damping is proposed in section 4. Numerical examples are provided to illustrate the proposed method.

2 BACKGROUND OF PROPORTIONALLY DAMPED SYSTEMS

The equations of motion of free vibration of a viscously damped system can be expressed by

Mq̈(t) + Cq̇(t) + Kq(t) = 0. (2)

Caughey and O’Kelly [2] have proved that a damped linear system of the form (2) can possess classical normal modes if and
only if the system matrices satisfy the relationship KM−1C = CM−1K. This is an important result on modal analysis of viscously
damped systems and is now well known. However, this result does not immediately generalize to systems with singular mass
matrices [10]. This apparent restriction in Caughey and O’Kelly’s result may be removed by considering the fact that all the three
system matrices can be treated on equal basis and therefore can be interchanged. In view of this, when the system matrices are
non-negative definite we have the following theorem:

Theorem 1 A viscously damped linear system can possess classical normal modes if and only if at least one of the following
conditions is satisfied:
(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c) MC−1K = KC−1M.



This can be easily proved by following Caughey and O’Kelly’s approach and interchanging M, K and C successively. If a system
is (•)-singular then the condition(s) involving (•)−1 have to be disregarded and remaining condition(s) have to be used. Thus, for
a positive definite system, along with Caughey and O’Kelly’s result (condition (a) of the theorem), there exist two other equivalent
criterion to judge whether a damped system can possess classical normal modes. It is important to note that these three
conditions are equivalent and simultaneously valid but in general not the same.
Example 1
Assume that a system’s mass, stiffness and damping matrices are given by

M =

241.0 1.0 1.0
1.0 2.0 2.0
1.0 2.0 3.0

35 , K =

24 2 −1 0.5
−1 1.2 0.4
0.5 0.4 1.8

35 and C =

2415.25 −9.8 3.4
−9.8 6.48 −1.84
3.4 −1.84 2.22

35 . (3)

It may be verified that all the system matrices are positive definite. The mass-normalized undamped modal matrix is obtained as

X =

24 0.4027 −0.5221 −1.2511
0.5845 −0.4888 1.1914
−0.1127 0.9036 −0.4134

35 . (4)

Since Caughey and O’Kelly’s condition

KM
−1

C = CM
−1

K =

24125.45 −80.92 28.61
−80.92 52.272 −18.176
28.61 −18.176 7.908

35
is satisfied, the system possess classical normal modes and that X given in equation (4) is the modal matrix. Because the
system is positive definite the other two conditions,

MK
−1

C = CK
−1

M =

24 2.0 −1.0 0.5
−1.0 1.2 0.4
0.5 0.4 1.8

35
and

MC
−1

K = KC
−1

M =

244.1 6.2 5.6
6.2 9.73 9.2
5.6 9.2 9.6

35
are also satisfied. Thus all three conditions described in Theorem 1 are simultaneously valid although none of them are the
same. So, if any one of the three conditions proposed in Theorem 1 is satisfied, a viscously damped positive definite system
possesses classical normal modes.
Example 2
Suppose for a system

M =

�
7.0584 1.3139
1.3139 0.2446

�
, K =

�
3.0 −1.0
−1.0 4.0

�
and C =

�
1.0 −1.0
−1.0 3.0

�
. (5)

It may be verified that the mass matrix is singular for this system. For this reason, Caughey and O’Kelly’s criteria is not applicable.
But, as the other two conditions in Theorem 1,

MK
−1

C = CK
−1

M =

�
1.6861 0.3139
0.3139 0.0584

�
and

MC
−1

K = KC
−1

M =

�
29.5475 5.5

5.5 1.0238

�
are satisfied, all three matrices can be diagonalized by a congruence transformation using the undamped modal matrix

X =

�
0.9372 −0.1830
0.3489 0.9831

�
.



3 GENERALIZED PROPORTIONAL DAMPING

Obtaining a damping matrix from the ‘first principles’ like the mass and stiffness matrices is not possible for most systems.
For this reason, assuming M and K are known, we often want to express C in terms of M and K such that the system still
possesses classical normal modes. Of course, the earliest work along this line is the proportional damping shown in equation
(1) by Rayleigh [1]. It may be verified that expressing C in such a way will always satisfy the conditions given by Theorem 1.
Caughey [11] proposed that a sufficient condition for the existence of classical normal modes is: if M−1C can be expressed in a
series involving powers of M−1K. His result generalized Rayleigh’s result, which turns out to be the first two terms of the series.
Later, Caughey and O’Kelly [2] proved that the series representation of damping

C = M

N−1X
j=0

αj

�
M

−1
K
�j

(6)

is the necessary and sufficient condition for existence of classical normal modes for systems without any repeated roots. This
series is now known as the ‘Caughey series’ and is possibly the most general form of damping under which the system will still
possess classical normal modes.

Here, a further generalized and useful form of proportional damping will be proposed. We assume that the system is positive
definite. Consider the conditions (a) and (b) of Theorem 1; premultiplying (a) by M−1 and (b) by K−1 one has�

M
−1

K
� �

M
−1

C
�

=
�
M

−1
C
� �

M
−1

K
�

or AB = BA�
K

−1
M
� �

K
−1

C
�

=
�
K

−1
C
� �

K
−1

M
�

or A
−1

D = DA
−1

(7)

where A = M−1K, B = M−1C and D = K−1C. Notice that we did not consider the condition (c) of Theorem 1. Premultiplying
(c) by C−1, one would obtain a similar commutative condition but it would involve C terms in both the matrices, from which
any meaningful expression of C in terms of M and K cannot be deduced. For this reason only the above two commutative
relationships will be considered. It is well known that for any two matrices A and B, if A commutes with B, f(A) also commutes
with B where f(z) is any analytic function of the variable z. Thus, in view of the commutative relationships represented by
equation (7), one can use almost all well known functions to represent M−1C in terms of M−1K and also K−1C in terms of
K−1M, that is, representations like C = Mf(M−1K) and C = Kf(K−1M) are valid for any analytic f(z). Adding these two
quantities and also taking A and A−1 in the argument of the function as (trivially) A and A−1 always commute we can express
the damping matrix in the form of

C = Mf1

�
M

−1
K,K

−1
M
�

+ Kf2

�
M

−1
K,K

−1
M
�

(8)

such that the system possesses classical normal modes. Further, postmultiplying condition (a) of Theorem 1 by M−1 and (b) by
K−1 one has �

KM
−1
� �

CM
−1
�

=
�
CM

−1
� �

KM
−1
��

MK
−1
� �

CK
−1
�

=
�
CK

−1
� �

MK
−1
�
.

(9)

Following a similar procedure we can express the damping matrix in the form

C = f3

�
KM

−1
,MK

−1
�
M + f4

�
KM

−1
,MK

−1
�
K (10)

for which system (2) possesses classical normal modes. The functions fi, i = 1, · · · , 4 can have very general forms− they
may consist of an arbitrary number of multiplications, divisions, summations, subtractions or powers of any other functions or
can even be functional compositions. Thus, any conceivable form of analytic functions that are valid for scalars can be used in
equations (8) and (10). In a natural way, common restrictions applicable to scalar functions are also valid, for example logarithm
of a negative number is not permitted. Although the functions fi, i = 1, · · · , 4 are general, the expression of C in (8) or (10) gets
restricted because of the special nature of the arguments in the functions. As a consequence, C represented in (8) or (10) does
not cover the whole R

N×N , which is well known that many damped systems do not possess classical normal modes.

Rayleigh’s result (1) can be obtained directly from equation (8) or (10) as a very special − one could almost say trivial − case
by choosing each matrix function fi as real scalar times an identity matrix. The damping matrix expressed in equation (8) or
(10) provides a new way of interpreting the ‘Rayleigh damping’ or ‘proportional damping’ where the identity matrices (always)
associated in the right or left side of M and K are replaced by arbitrary matrix functions fi with proper arguments. This kind of
damping model will be called generalized proportional damping. We call the representation in equation (8) right-functional form
and that in equation (10) left-functional form. Caughey series (6) is an example of right functional form. Note that if M or K is
singular then the argument involving its corresponding inverse has to be removed from the functions.



All analytic functions have a power series form via Taylor expansion. It is also known that for any A ∈ R
N×N , all Ak, for integer

k > N , can be expressed as a linear combination of Aj , j ≤ (N − 1) by a recursive relationship using the Cayley-Hamilton
theorem [12]. For this reason the expression of C in (8) or (10) can in turn be expressed in the form of Caughey series (6).
However, since all fi can have very general forms, such a representation may not be always straight forward. For example, if
C = M(M−1K)e the system possesses normal modes, but it is neither a direct member of the Caughey series (6) nor is it a
member of the series involving rational fractional powers given by Caughey [11] as e is an irrational number. However, we know
that e = 1 + 1

1!
+ · · ·+ 1

r!
+ · · ·∞, from which we can write C = M(M−1K)(M−1K)

1

1! · · · (M−1K)
1

r! · · ·∞, which can in principle
be represented by the Caughey series. It is easy to verify that, from a practical point of view, this representation is not simple
and requires truncation of the series up to some finite number of terms. Hence, C expressed in the form of equation (8) or (10)
is a more convenient representation of the Caughey series and we say that viscously damped positive definite systems possess
classical normal modes if and only if C can be represented by equation (8) or (10).

Example 3
It will be shown that the linear dynamic system satisfying the following equation of free vibration

Mq̈+

�
Me

−

�
M−1K

�
2

/2
sinh(K−1

M ln(M−1
K)2/3)

+ K cos2(K−1
M)

4
p

K−1M tan−1

√
M−1K

π

#
q̇ + Kq = 0

(11)

possesses classical normal modes and can be analyzed using modal analysis. Here M and K are the same as example 1.

Direct calculation shows

C = −

24 67.9188 104.8208 95.9566
104.8208 161.1897 147.7378
95.9566 147.7378 135.2643

35 . (12)

Using the modal matrix calculated before in equation (4), we obtain

X
T
CX =

24−88.9682 0.0 0.0
0.0 0.0748 0.0
0.0 0.0 0.5293

35 ,

a diagonal matrix. Analytically the modal damping factors can be obtained as

2ξjωj = e
−ω4

j /2 sinh

�
1

ω2
j

ln
4

3
ωj

�
+ ω

2

j cos2
�

1

ω2
j

�
1

√
ωj

tan−1 ωj

π
. (13)

This example shows that using the generalized proportional damping it is possible to model any variation of the damping factors
with respect to the frequency. This is the basis of the damping identification method to be proposed here. Using Rayleigh’s
proportional damping in equation (1), the modal damping factors have a special form

ζj =
1

2

�
α1

ωj
+ α2ωj

�
(14)

Clearly, not all form of variations of ζj with respect to ωj can be captured using equation (14). The damping identification method
proposed in the next section removes this restriction.

4 DAMPING IDENTIFICATION METHOD

The damping identification method relies on the expression of proportional damping given by equations (8) and (10). We
consider only the left functional form in (8), but the right functional form can also be used in a similar way if required. To simplify
the identification procedure, express the damping matrix by

C = Mf
�
M

−1
K
�

(15)

The modal damping factors can be obtained as

2ζjωj = f
�
ω

2

j

�
(16)

or ζj =
1

2ωj
f
�
ω

2

j

�
= bf(ωj) (say) (17)



The function bf(•) can be obtained by fitting a continuous function representing the variation of the measured modal damping
factors with respect to the frequency. From equations (15) and (16) note that in the argument of f(•), the term ωj can be replaced
by

√
M−1K when obtaining the damping matrix. With the fitted function bf(•), the damping matrix can be identified using equation

(17) as

2ζjωj = 2ωj
bf(ωj) (18)

or bC = 2M
p

M−1K bf �pM−1K
�

(19)

The following example will clarify the identification procedure.

Example 4
Suppose figure 1 shows modal damping factors as a function of frequency obtained by conducting simple vibration testing on
a structure. The damping factors are such that, within the frequency range considered, they show very low values in the low
frequency region, high values in the mid frequency region and again low values in the high frequency region. We want to identify
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Figure 1: Curve of modal damping factors.

a damping model which shows this kind of behavior. The first step is to identify the function which produces this curve. Here this
(continuous) curve was simulated using the equationbf(ω) =

1

15

�
e
−2.0ω − e

−3.5ω� �1 + 1.25 sin
ω

7π

� �
1 + 0.75ω

3
�
. (20)

From the above equation, the modal damping factors in terms of the discrete natural frequencies, can be obtained by

2ξjωj =
2ωj

15

�
e
−2.0ωj − e

−3.5ωj
� �

1 + 1.25 sin
ωj

7π

� �
1 + 0.75ω

3

j

�
. (21)

To obtain the damping matrix, consider equation (21) as a function of ω2
j and replace ω2

j by M−1K and any constant terms by
that constant times I. Therefore, from equation (21) we have

C =
2

15
M
p

M−1K

�
e
−2.0

√
M−1K − e

−3.5

√
M−1K

�
×
�
I + 1.25 sin

�
1

7π

p
M−1K

��h
I + 0.75(M−1

K)3/2

i (22)



as the identified damping matrix. Using the numerical values of M and K from example 1 we obtain

C =

242.3323 0.9597 1.4255
0.9597 3.5926 3.7624
1.4255 3.7624 7.8394

35× 10−2
. (23)

If we recalculate the damping factors from the above constructed damping matrix, it will produce three points corresponding to
the three natural frequencies which will exactly match with our initial curve as shown in figure 1.

The method outlined here can produce accurate estimate of the damping matrix if the modal damping factors are known. All
polynomial fitting methods can be employed to approximate bf(ω) and corresponding to the fitted function one can construct a
damping matrix by the procedure outlined here. As an example, if 2ξjωj can be represented in a Fourier series as

2ξjωj =
a0

2
+

∞X
r=1

�
ar cos

�
2πrωj

Ω

�
+ br sin

�
2πrωj

Ω

��
(24)

then the damping matrix can be expanded as

C = M

 
a0

2
I +

∞X
r=1

h
ar cos

�
2πrΩ−1

p
M−1K

�
+ br sin

�
2πrΩ−1

p
M−1K

�i!
(25)

in a Fourier series. The damping identification procedure itself does not introduce significant errors as long as the modes are
not significantly complex. From equation (19) it is obvious that the accuracy of the fitted damping matrix depends only on the
accuracy the mass and stiffness matrix models. In summary, this identification procedure can be described by the following
steps:

1. Measure a suitable transfer function Hij(ω) by conducting a vibration testing.

2. Obtain the undamped natural frequencies as ωj and modal damping factors ζj , for example, using the circle-fitting method.

3. Fit a function ζ = bf(ω) which represents the variation of ζj with respect to ωj for the range of frequency considered in the
study.

4. Calculate the matrix T =
√

M−1K

5. Obtain the damping matrix using bC = 2 M T bf (T)

Most of the currently available finite element based modal analysis packages only offer Rayleigh’s proportional damping model.
The proposed damping identification technique can be easily incorporated within the existing tools to enhance their damping
modelling capabilities without using significant additional resources.

5 CONCLUSIONS

A method for identification of damping matrix using experimental modal analysis has been proposed. The method is based on
generalized proportional damping. The generalized proportional damping expresses the damping matrix in terms of any non-
linear function involving specially arranged mass and stiffness matrices so that the system still posses classical normal modes.
This enables one to model practically any type of variations in the modal damping factors with respect to the frequency. Once
a scalar function is fitted to model such variations, the damping matrix can be identified very easily using the proposed method.
This implies that the problem of damping identification is effectively reduced to the problem of a scalar function fitting. The method
is very simple and requires the measurement of damping factors and natural frequencies only (that is, the measurements of the
mode shapes are not necessary). The proposed method is applicable to any linear structures as long as one have validated
mass and stiffness matrix models which predict the natural frequencies accurately and modes are not significantly complex. In
the case when a system is heavily damped and has significantly complex modes, the proposed identified damping matrix can be
a good starting point for more sophisticated analyses.
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