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Abstract. This article provides the theoretical development and simulation results of a novel
Galerkin subspace projection scheme for damped dynamic systems with stochastic coefficients.
The fundamental idea involved here is to solve the stochastic dynamic system in the frequency
domain by projecting the solution into a reduced finite dimensional spatio-random vector ba-
sis to approximate the response. A Nueumann expansion type of approach is used to generate
the complex stochastic basis functions. The proposed method is applicable to linear dynamic
systems with Gaussian and non-Gaussian random fields. Galerkin weighting coefficients have
been employed to minimize the error induced due to the reduced basis and finite order spec-
tral functions and hence to explicitly evaluate the stochastic system response. The statistical
moments of the solution have been evaluated at all frequencies to illustrate and compare the
stochastic system response with the deterministic case. The results have been compared to direct
Monte-Carlo simulation for different correlation lengths and variability of randomness.
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1 INTRODUCTION

Due to the significant development in computational hardware it is now possible to solve
very high resolution models in various computational physics problems, ranging from fluid
mechanics to nano-bio mechanics. However, the spatial resolution is not enough to determine
the credibility of the numerical model, the physical model as well its parameters are also crucial.
Since neither of these may not be exactly known, there has been increasing research activities
over the past three decades to model the governing partial differential equations within the
framework of stochastic equations. We refer to few recent review papers [1–3]. Consider a
bounded domain D ∈ Rd with piecewise Lipschitz boundary ∂D, where d ≤ 3 is the spatial
dimension and t ∈ R+ is the time. Further, consider that (Θ,F, P ) is a probability space
where θ ∈ Θ is a sample point from the sampling space Θ, F is the complete σ-algebra over the
subsets of Θ and P is the probability measure. We consider a linear stochastic partial differential
equation (PDE) of the form

ρ(r, θ)
∂2U(r, t, θ)

∂t2
+ Lα

∂U(r, t, θ)
∂t

+ LβU(r, t, θ) = p(r, t); r ∈ D, t ∈ [0, T ] (1)

with the associated Dirichlet condition

U(r, t, θ) = 0; r on ∂D. (2)

In the above equation ρ(r, θ) is the random mass distribution of the system, p(r, t) is the dis-
tributed time-varying forcing function, Lβ is the spatial self-adjoint stochastic stiffness oper-
ator, Lα is the spatial self-adjoint stochastic damping operator and U(r, t, θ) in the stochastic
response quantity to be obtained. Note that Lα(•) and Lβ(•) involve linear stochastic differen-
tial operators with coefficients α(r, θ) and β(r, θ) as the second order random fields such that
α, β : Rd × Θ → R. We assume the random fields to be stationary and square integrable.
The purpose of this paper is to investigate a new solution approach for Eqn. (1) after the dis-
cretization of the spatio-random fields using the well established techniques of stochastic finite
element method (SFEM) as can be found in references [4–6].

The random fields in Eqn. (1) can be discretized to represent them as spectral functions
using a finite number of random variables using one of the established techniques available in
literatures [4, 7]. Hence the stochastic PDE along with the boundary conditions would result in
an equation of the form

M(θ)ü(θ, t) + C(θ)u̇(θ, t) + K(θ)u(θ, t) = f0(t) (3)

where u(θ, t) is the discretized response vector, M(θ) = M0 +
∑p

i=1 µi(θi)Mi ∈ Rn×n is the
random mass matrix, K(θ) = K0 +

∑p
i=1 νi(θi)Ki ∈ Rn×n is the random stiffness matrix along

with C(θ) ∈ Rn×n as the random damping matrix. Here the mass and stiffness matrices have
been expressed in terms of their deterministic components (M0 and K0) and the corresponding
random contributions (Mi and Ki) obtained from discretizing the stochastic field with a finite
number of random variables (µi(θi) and νi(θi)) and their corresponding spatial basis functions.
This has been elaborated in subsection 2.1. In the present work proportional damping is con-
sidered for which C(θ) = ζ1M(θ) + ζ2K(θ), where ζ1 and ζ2 are deterministic scalars. For
the harmonic analysis of the structural system considered in Eqn. (3), it is represented in the
frequency domain as [

−ω2M(θ) + iωC(θ) + K(θ)
]
ũ(θ, ω) = f̃0(ω) (4)
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where ũ(θ, ω) is the complex frequency domain system response amplitude, f̃0(ω) is the ampli-
tude of the harmonic force.

Now we group the random variables associated with the mass and damping matrices of
Eqn. (3) as

ξi(θ) = µi(θ) and ξi+p(θ) = νi(θ) for i = 1, 2, . . . , p

following which the expression for the linear structural system in Eqn. (4) can be expressed as(
A0(ω) +

2p∑
i=1

ξi(θi)Ai(ω)

)
ũ(ω, θ) = f̃0(ω) (5)

where A0 and Ai ∈ Cn×n represent the complex deterministic and stochastic parts respectively
of the mass, the stiffness and the damping matrices ensemble. For the case of proportional
damping the matrices A0 and Ai can be written as

A0(ω) =
[
−ω2 + iωζ1

]
M0 + [iωζ2 + 1]K0 (6)

Ai(ω) =
[
−ω2 + iωζ1

]
Mi for i = 1, 2, . . . , p (7)

and Aj(ω) = [iωζ2 + 1]Kj for j = p+ 1, p+ 2, . . . , 2p .

The paper has been arranged as follows. In section 2 a brief overview of spectral stochastic
finite element method is presented. The projection theory in the vector space is developed in
section 3. In section 4 an error minimization approach in the Hilbert space is proposed. The
idea of the reduced orthonormal vector basis is introduced in subsection section 5. The post
processing of the results to obtain the response moments are discussed in section 6. Based on
the theoretical results, a simple computational approach is shown in section 7 where the pro-
posed method of reduced orthonormal basis is applied to the stochastic mechanics of an Euler-
Bernoulli beam. From the theoretical developments and numerical results, some conclusions
are drawn in section 8.

2 Overview of the spectral stochastic finite element method

2.1 Discretization of the stochastic PDE

First consider a(r, θ) is a Gaussian random field with a covariance function Ca : Rd ×Rd →
R defined in the domain D. Since the covariance function is square bounded, symmetric and
positive definite, it can be represented by a spectral decomposition in an infinite dimensional
Hilbert space. Using this spectral decomposition, the random process a(r, θ) can be expressed
[see for example, [4, 8]] in a generalized Fourier type of series known as the Karhunen-Loève
(KL) expansion

a(r, θ) = a0(r) +
∞∑
i=1

√
νiξ̃i(θ)φi(r) (8)

Here a0(r) is the mean function, ξ̃i(θ) are uncorrelated standard Gaussian random variables, νi
and φi(r) are eigenvalues and eigenfunctions satisfying the integral equation∫

D

Ca(r1, r2)φj(r1)dr1 = νjφj(r2), ∀ j = 1, 2, · · · (9)
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The Gaussian random field model is not applicable for strictly positive quantities arising in
many practical problems. Eqn. (8) could also represent the Karhunen-Loève expansion of a
non-Gaussian random field, which is also well defined. Alternatively, when a(r, θ) is a general
non-Gaussian random field, it can be expressed in a mean-square convergent series in random
variables and spatial functions using the polynomial chaos expansion. For example Ghanem [9]
expanded log-normal random fields in a polynomial chaos expansion. In general, non Gaussian
random fields can be expressed in a series like

a(r, θ) = a0(r) +
∞∑
i=1

ξi(θ)ai(r) (10)

using Wiener-Askey chaos expansion [10–12]. Here ξi(θ) are in general non-Gaussian and
correlated random variables and ai(r) are deterministic functions. In this paper we use this
general form of the decomposition of the random field.

Truncating the series in Eqn. (10) upto the M -th term and using the same approach for the
governing PDE (1) with boundary conditions, the discretized system equation in the frequency
domain (3) can be represented by Eqn. (5), with M = 2p as[

A0 +
M∑
i=1

ξi(θ)Ai

]
u(θ, ω) = f0(ω). (11)

The ‘tilde’ sign has been omitted from the notations of the frequency domain quantities of
u(θ, ω) and f0(ω) for the sake of notational convenience and this shall be followed henceforth.
The necessary technical details to obtain the discrete stochastic algebraic equations from the
stochastic partial differential equation (1) have become standard in the literature. Excellent
references, for example [4, 13–15] are available on this topic. In Eqn. (11), A0 is a complex
symmetric positive definite matrix, Ai ∈ Cn×n; i = 1, 2, . . . ,M are complex symmetric matri-
ces, u(θ, ω) ∈ Cn is the solution vector and f0(ω) ∈ Cn is the input vector. For most practical
applications, uncertainties are small compared to the deterministic values. Therefore, we nor-
mally have

∥A0∥ ≥

∥∥∥∥∥
M∑
i=1

ξi(θ)Ai

∥∥∥∥∥ ; ∀ θ ∈ Θ (12)

Here by ∥•∥ we imply the Frobenius matrix norm [16], defined as ∥A∥ = Trace
(
AAT

)
for any

A ∈ Rn×n. The number of terms M in Eqn. (11) can be selected based on the accuracy desired
for the representation of the underlying random field. One of the main aim of a stochastic
dynamic analysis is to obtain u(θ, ω) for θ ∈ Θ and for all frequency value ω from Eqn. (11)
in an efficient manner and is the main topic of this paper. We propose a solution technique for
Eqn. (11) when ξi(θ) are in general non-Gaussian and correlated random variables.

2.2 Brief review of the solution techniques

The solution of the set of stochastic linear algebraic equations (11) is a key step in the
stochastic finite element analysis. As a result, several methods have been proposed. These
methods include, first- and second-order perturbation methods [5, 17], Neumann expansion
method [18, 19], Galerkin approach [20], linear algebra based methods [21–23] and simula-
tion methods [24]. More recently efficient collocation methods have been proposed [25, 26].
Another class of methods which have been used widely in the literature is known as the spec-
tral methods (see [1] for a recent review). These methods include the polynomial chaos (PC)
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expansion [4], stochastic reduced basis method [27–29] and Wiener−Askey chaos expansion
[10–12]. According to the polynomial chaos expansion, second-order random variables uj(θ)
can be represented by the mean-square convergent expansion

uj(θ) = ui0h0 +
∞∑

i1=1

ui1h1(ξi1(θ))

+
∞∑

i1=1

i1∑
i2=1

ui1,i2h2(ξi1(θ), ξi2(θ)) +
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3h3(ξi1(θ), ξi2(θ), ξi3(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1i2i3i4 h4(ξi1(θ), ξi2(θ), ξi3(θ), ξi4(θ)) + . . . ,

(13)

where ui1,...,ir are deterministic constants to be determined and hr( ξi1(θ), . . . , ξir(θ) ) is the
rth order homogeneous Chaos. When ξi(θ) are Gaussian random variables, the functions
hr(ξi1(θ), . . . , ξir(θ) ) are the rth order Hermite polynomial so that it becomes orthonormal
with respect to the Gaussian probability density function. The same idea can be extended to
non-Gaussian random variables, provided more generalized functional basis are used [10–12]
so that the orthonormality with respect to the probability density functions can be retained.
When we have a random vector, as in the case of the solution of Eqn. (11), then it is natural
to replace the constants ui1,...ir by vectors ui1,...ir ∈ Rn. Suppose the series is truncated after P
number of terms. The value of P depends on the number of basic random variables M and the
order of the PC expansion r as

P =
r∑

j=0

(M + j − 1)!

j!(M − 1)!
=

(
M + r

r

)
(14)

After the truncation, there are P number of unknown vectors of dimension n. Then a mean-
square error minimization approach can be applied and the unknown vectors can be solved
using the Galerkin approach [4]. Since P increases very rapidly with the order of the chaos r
and the number of random variables M , the final number of unknown constants Pn becomes
very large. As a result several methods have been developed (see for example [27–31]) to reduce
the computational cost. In the polynomial chaos based solution approach, the only information
used to construct the basis is the probability density function of the random variables. In the
context of the discretized Eqn. (11), more information such as the matrices Ai, i = 0, 1, 2 . . .M
are available. It may be possible to construct alternative basis using these matrices. Here we
investigate such an approach, where instead of projecting the solution in the space of orthonor-
mal polynomials, the solution is projected in an orthonormal vector basis generated from the
coefficient matrices.

3 Spectral decomposition in the vector space

3.1 Derivation of the spectral functions

Following the spectral stochastic finite element method, or otherwise, an approximation to
the solution of Eqn. (11) can be expressed as a linear combination of functions of random
variables and deterministic vectors. Recently Nouy [32, 33] discussed the possibility of an
optimal spectral decomposition. The aim is to use small number of terms to reduce the compu-
tation without loosing the accuracy. Here an orthonormal vector basis is considered. Fixing a
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value of θ, say θ = θ1, the solution of Eqn. (11) u(θ1) can be expanded in a complete basis as
u(θ1) = α

(1)
1 ϕ1+α

(1)
2 ϕ2+. . . α

(1)
n ϕn. Repeating this for θ1, θ2, . . . eventually the whole sample-

space can be covered and it would be possible to expand u(θ),∀θ ∈ Θ as a linear combination
of ϕ1,ϕ2, . . . ,ϕn.

We use the eigenvectors ϕk ∈ Rn of the generalized eigenvalue problem

K0ϕk = λkM0ϕk; k = 1, 2, . . . n (15)

Since the matrices K0 and M0 are symmetric and generally non-negative definite, the eigen-
vectors ϕk for k = 1, 2, . . . n form a complete basis. Note that in principle any complete basis
can be used. This choice is selected due to the analytical simplicity as will be seen later. For
notational convenience, define the matrix of eigenvalues and eigenvectors

λ0 = diag [λ1, λ2, . . . , λn] ∈ Rn×n and Φ = [ϕ1,ϕ2, . . . ,ϕn] ∈ Rn×n (16)

Eigenvalues are ordered in the ascending order so that λ1 < λ2 < . . . < λn. We use the
orthogonality property of the modal matrix Φ as

ΦTK0Φ = λ0, and ΦTM0Φ = I (17)

Using these we have

ΦTA0Φ = ΦT
(
[−ω2 + iωζ1]M0 + [iωζ2 + 1]K0

)
Φ

=
(
−ω2 + iωζ1

)
I + (iωζ2 + 1)λ0 (18)

which gives, ΦTA0Φ = Λ0 and A0 = Φ−TΛ0Φ
−1 (19)

where Λ0 = (−ω2 + iωζ1) I + (iωζ2 + 1)λ0 and I is the identity matrix. Hence, Λ0 can also
be written as

Λ0 = diag [λ01 , λ02 , . . . , λ0n ] ∈ Cn×n (20)

where λ0j = (−ω2 + iωζ1)+(iωζ2 + 1)λj and λj is as defined in Eqn. (16). We also introduce
the transformations

Ãi = ΦTAiΦ ∈ Cn×n; i = 0, 1, 2, . . . ,M. (21)

Note that Ã0 = Λ0 is a diagonal matrix and

Ai = Φ−T ÃiΦ
−1 ∈ Cn×n; i = 1, 2, . . . ,M. (22)

Suppose the solution of Eqn. (11) is given by

û(ω, θ) =

[
A0(ω) +

M∑
i=1

ξi(θ)Ai(ω)

]−1

f0(ω) (23)

Using Eqs. (16)–(22) and the orthonormality of Φ one has

û(ω, θ) =

[
Φ−TΛ0(ω)Φ

−1 +
M∑
i=1

ξi(θ)Φ
−T ÃiΦ

−1

]−1

f0(ω) = ΦΨ (ω, ξ(θ))ΦT f0(ω) (24)

where

Ψ (ω, ξ(θ)) =

[
Λ0(ω) +

M∑
i=1

ξi(θ)Ãi(ω)

]−1

(25)
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and the M -dimensional random vector

ξ(θ) = {ξ1(θ), ξ2(θ), . . . , ξM(θ)}T (26)

Now we separate the diagonal and off-diagonal terms of the Ãi matrices as

Ãi = Λi +∆i, i = 1, 2, . . . ,M (27)

Here the diagonal matrix

Λi = diag
[
Ãi

]
= diag [λi1 , λi2 , . . . , λin ] ∈ Cn×n (28)

and the matrix containing only the off-diagonal elements ∆i = Ãi−Λi is such that Trace (∆i) =
0. Using these, from Eqn. (25) one has

Ψ (ω, ξ(θ)) =

Λ0(ω) +
M∑
i=1

ξi(θ)Λi(ω)︸ ︷︷ ︸
Λ(ω,ξ(θ))

+
M∑
i=1

ξi(θ)∆i(ω)︸ ︷︷ ︸
∆(ω,ξ(θ))


−1

(29)

where Λ (ω, ξ(θ)) ∈ Cn×n is a diagonal matrix and ∆ (ω, ξ(θ)) is an off-diagonal only matrix.
In the subsequent expressions we choose to omit the inclusion of frequency dependence of the
individual matrices for the sake of notational simplicity, so that Ψ (ω, ξ(θ)) ≡ Ψ (ξ(θ)) and so
on. Hence, we rewrite Eqn. (29) as

Ψ (ξ(θ)) =
[
Λ (ξ(θ))

[
In +Λ−1 (ξ(θ))∆ (ξ(θ))

]]−1 (30)

The above expression can be represented using a Neumann type of matrix series [18] as

Ψ (ξ(θ)) =
∞∑
s=0

(−1)s
[
Λ−1 (ξ(θ))∆ (ξ(θ))

]s
Λ−1 (ξ(θ)) (31)

Taking an arbitrary r-th element of û(θ), Eqn. (24) can be rearranged to have

ûr(θ) =
n∑

k=1

Φrk

(
n∑

j=1

Ψkj (ξ(θ))
(
ϕT

j f0
))

(32)

Defining

Γk (ξ(θ)) =
n∑

j=1

Ψkj (ξ(θ))
(
ϕT

j f0
)

(33)

and collecting all the elements in Eqn. (32) for r = 1, 2, . . . , n one has

û(θ) =
n∑

k=1

Γk (ξ(θ))ϕk (34)

This shows that the solution vector û(θ) can be projected in the space spanned by ϕk.
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Now assume the series in Eqn. (31) is truncated after m-th term. We define the truncated
function

Ψ(m) (ξ(θ)) =
m∑
s=0

(−1)s
[
Λ−1 (ξ(θ))∆ (ξ(θ))

]s
Λ−1 (ξ(θ)) (35)

From this one can obtain a sequence for different m

û(m)(θ) =
n∑

k=1

Γ
(m)
k (ξ(θ))ϕk; m = 1, 2, 3, . . . (36)

Since θ ∈ Θ is arbitrary, comparing (11) and (23) we observe that û(m)(θ) is the solution of
Eqn. (11) for every θ when m → ∞. This implies that

Prob
{
θ ∈ Θ : lim

m→∞
û(m)(θ) = û(θ)

}
= 1 (37)

Therefore, û(θ) is the solution of Eqn. (11) in probability. In this derivation, the probability
density function of the random variables has not been used. Therefore, the random variables
can be general as long as the solution exists.

Remark 1. The matrix power series in (31) is different from the classical Neumann series [18].
The classical Neumann series is a power series in A−1

0 [∆A (ξ(θ))], where the first term is
deterministic and the second term is random. The elements of this matrix series are polynomials
in ξi(θ). In contrast, the series in (31) is in terms of [Λ−1 (ξ(θ))][∆ (ξ(θ))], where both terms
are random. The elements of this matrix series are not simple polynomials in ξi(θ), but are in
terms of a ratio of polynomials as seen in Eqn. (39). The convergence of this series depends of
the spectral radius of

R = Λ−1 (ξ(θ))∆ (ξ(θ)) (38)

A generic term of this matrix can be obtained as

Rrs =
∆rs

Λrr

=

∑M
i=1 ξi(θ)∆irs

λ0r +
∑M

i=1 ξi(θ)λir

=

∑M
i=1 ξi(θ)Ãirs

λ0r +
∑M

i=1 ξi(θ)Ãirr

; r ̸= s (39)

Since A0 is positive definite, λ0r > 0 for all r. It can be seen from Eqn. (39) that the spectral
radius of R is also controlled by the diagonal dominance of the Ãi matrices. If the diagonal
terms are relatively larger than the off-diagonal terms, the series will converge faster even if the
relative magnitude of λ0r is not large.

The series in (36) approaches to the exact solution of the governing Eqn. (11) for every θ ∈ Θ
for m → ∞. For this reason it converges in probability 1. The convergence in probability 1
is a stronger convergence than, for example, the mean-square convergence often used in the
stochastic finite element analysis. Since the convergence in probability 1 automatically implies
the mean-square convergence, the series in Eqn. (34) is also a mean-square convergent series.

Definition 1. The functions Γk (ξ(θ)) , k = 1, 2, . . . n are called the spectral functions as they
are expressed in terms of the spectral properties of the coefficient matrix K0 and M0 arising in
the discretized equation.

For certain class of problems the series in Eqn. (34) can give useful physical insights into the
uncertainty propagation. For structural mechanics problems, the eigenvectors ϕk are vibrational
modes [34]. Eqn. (34) says that the response of a stochastic system is a linear combination of
fundamental vibrational modes weighted by the random variables Γk.
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3.2 Properties of the spectral functions

In this section we discuss some important properties of these functions. From the series
expansion in Eqn. (31) we have

Ψ (ξ(θ)) = Λ−1 (ξ(θ))−Λ−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ))

+Λ−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ)) + . . . (40)

Since Λ (ξ(θ)) is a diagonal matrix, its inverse is simply a diagonal matrix containing the in-
verse of each of the diagonal elements. Also recall that the diagonal of ∆ (ξ(θ)) contains only
zeros. Different terms of the series in (40) can be obtained using a simple recursive relationship
[18]. The numerical computation of the series is therefore computationally very efficient. For
further analytical results, truncating the series upto different terms, we define spectral functions
of different order.

Definition 2. The first-order spectral functions Γ(1)
k (ξ(θ)), k = 1, 2, . . . , n are obtained by re-

taining one term in the series (40).

Retaining one term in (40) we have

Ψ(1) (ξ(θ)) = Λ−1 (ξ(θ)) or Ψ
(1)
kj (ξ(θ)) =

δkj

λ0k +
∑M

i=1 ξi(θ)λik

(41)

Using the definition of the spectral function in Eqn. (33), the first-order spectral functions can
be explicitly obtained as

Γ
(1)
k (ξ(θ)) =

n∑
j=1

Ψ
(1)
kj (ξ(θ))

(
ϕT

j f0
)
=

ϕT
k f0

λ0k +
∑M

i=1 ξi(θ)λik

(42)

From this expression it is clear that Γ(1)
k (ξ(θ)) are correlated non-Gaussian random variables.

Since we assumed that all eigenvalues λ0k are distinct, every Γ
(1)
k (ξ(θ)) in Eqn. (42) are differ-

ent for different values of k.

Definition 3. The second-order spectral functions Γ
(2)
k (ξ(θ)), k = 1, 2, . . . , n are obtained by

retaining two terms in the series (40).

Retaining two terms in (40) we have

Ψ(2) (ξ(θ)) = Λ−1 (ξ(θ))−Λ−1 (ξ(θ))∆ (ξ(θ))Λ−1 (ξ(θ)) (43)

or Ψ
(2)
kj (ξ(θ)) =

δkj

λ0k +
∑M

i=1 ξi(θ)λik

−
∑M

i=1 ξi(θ)∆ikj(
λ0k +

∑M
i=1 ξi(θ)λik

)(
λ0j +

∑M
i=1 ξi(θ)λij

)
(44)

Using the definition of the spectral function in Eqn. (33), the second-order spectral functions
can be obtained in closed-form as

Γ
(2)
k (ξ(θ)) =

ϕT
k f0

λ0k +
∑M

i=1 ξi(θ)λik

−
n∑

j=1

j ̸=k

(
ϕT

j f0
)∑M

i=1 ξi(θ)∆ikj(
λ0k +

∑M
i=1 ξi(θ)λik

)(
λ0j +

∑M
i=1 ξi(θ)λij

)
(45)

The second-order function can be viewed as adding corrections to the first-order expression
derived in Eqn. (42).
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Definition 4. The vector of spectral functions of order s can be obtained by retaining s terms
in the series (40) and can be expressed as

Γ(s)(ξ(θ)) =
[
In − R(ξ(θ)) + R(ξ(θ))2 − R(ξ(θ))3 . . . sth term]Γ(1)(ξ(θ)) (46)

where In is the n-dimensional identity matrix and R is defined in Eqn. (38) as R(ξ(θ)) =
[Λ−1 (ξ(θ))][∆ (ξ(θ))]. Different terms of this series can be obtained recursively from the
previous term [18].

4 Error minimization using the Galerkin approach

In subsection 3.1 we derived the spectral functions such that a projection in an orthonormal
basis converges to the exact solution in probability 1. The spectral functions are expressed in
terms of a convergent infinite series. First, second and higher order spectral functions obtained
by truncating the infinite series have been derived. We have also showed that they have the same
functional form as the exact solution of Eqn. (11). This motivates us to use these functions as
‘trial functions’ to construct the solution. The idea is to minimize the error arising due to the
truncation. A Galerkin approach is proposed where the error is made orthogonal to the spectral
functions.

We express the solution vector by the series representation

û(θ) =
n∑

k=1

ckΓ̂k(ξ(θ))ϕk (47)

Here the functions Γ̂k : CM → C are the spectral functions and the constants ck ∈ C need
to be obtained using the Galerkin approach. The functions Γ̂k(ξ(θ)) can be the first-order
(42), second-order (45) or any higher-order spectral functions (46) and ϕk are the eigenvectors
introduced earlier in Eqn. (15). Substituting the expansion of û(θ) in the governing equation
(11), the error vector can be obtained as

ε(θ) =

(
M∑
i=0

Aiξi(θ)

)(
n∑

k=1

ckΓ̂k(ξ(θ))ϕk

)
− f0 ∈ Cn (48)

where ξ0 = 1 is used to simplify the first summation expression. The expression (47) is viewed
as a projection where

{
Γ̂k(ξ(θ))ϕk

}
∈ Cn are the basis functions and ck are the unknown

constants to be determined. We wish to obtain the coefficients ck using the Galerkin approach
so that the error is made orthogonal to the basis functions, that is, mathematically

ε(θ)⊥
(
Γ̂j(ξ(θ))ϕj

)
or

⟨
Γ̂j(ξ(θ))ϕj, ε(θ)

⟩
= 0 ∀ j = 1, 2, . . . , n (49)

Here ⟨u(θ), v(θ)⟩ =
∫
Θ
P (dθ)u(θ)v(θ) defines the inner product norm. Imposing this condition

and using the expression of ε(θ) from Eqn. (48) one has

E

[(
Γ̂j(ξ(θ))ϕj

)T ( M∑
i=0

Aiξi(θ)

)(
n∑

k=1

ckΓ̂k(ξ(θ))ϕk

)
−
(
Γ̂j(ξ(θ))ϕj

)T
f0

]
= 0 ∀ j

(50)
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Interchanging the E [•] and summation operations, this can be simplified to

n∑
k=1

(
M∑
i=0

(
ϕT

j Aiϕk

)
E
[
ξi(θ)Γ̂

T
j (ξ(θ))Γ̂k(ξ(θ))

])
ck = E

[
Γ̂T
j (ξ(θ))

] (
ϕT

j f0
)

(51)

or
n∑

k=1

(
M∑
i=0

ÃijkDijk

)
ck = bj (52)

Defining the vector c = {c1, c2, . . . , cn}T , these equations can be expressed in a matrix form as

S c = b (53)

with

Sjk =
M∑
i=0

ÃijkDijk; ∀ j, k = 1, 2, . . . , n (54)

where

Ãijk = ϕT
j Aiϕk, (55)

Dijk = E
[
ξi(θ)Γ̂

T
j (ξ(θ))Γ̂k(ξ(θ))

]
(56)

and bj = E
[
Γ̂T
j (ξ(θ))

] (
ϕT

j f0
)
. (57)

Higher order spectral functions can be used to improve the accuracy and convergence of the
series (47). This will be demonstrated in the numerical examples later in the paper.

Remark 2. (Comparison with the classical spectral SFEM) We compare this Galerkin approach
with the classical spectral stochastic finite element approach for further insight. The number of
equations to be solved for the unknown coefficients in Eqn. (53) is n, the same dimension as
the original governing equation (11). There are only n unknown constants, as opposed to nP
unknown constants arising in the polynomial chaos expansion. The coefficient matrix S and the
vector b in Eqn. (53) should be obtained numerically using the Monte Carlo simulation or other
numerical integration technique. In the classical PC expansion, however, the coefficient matrix
and the associated vector are obtained exactly in closed-form. In addition, the coefficient matrix
is a sparse matrix whereas the matrix S in Eqn. (53) is in general a fully populated matrix.

It can be observed that the matrix S in Eqn. (53) is symmetric. Therefore, one need to
determine n(n+1)/2 number of coefficients by numerical methods. Any numerical integration
method, such as the Gaussian quadrature method, can be used to obtain the elements of Dijk

and bj in Eqn. (55). In this paper Monte Carlo simulation is used. The samples of the spectral
functions Γ̂k(ξ(θ)) can be simulated from Eqn. (42), (45) or (46) depending on the order. These
can be used to compute Dijk and bj from Eqn. (55). The simulated spectral functions can
also be ‘recycled’ to obtain the statistics and probability density function (pdf) of the solution.
In summary, compared to the classical spectral stochastic finite element method, the proposed
Galerkin approach results in a smaller size matrix but requires numerical integration techniques
to obtain its entries. The numerical method proposed here therefore can be considered as a
hybrid analytical-simulation approach.

11
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5 Model reduction using a reduced number of basis

The Galerkin approach proposed in the previous section requires the solution of n× n alge-
braic equations. Although in general this is smaller compared to the polynomial chaos approach,
the computational cost can still be high for large n as the coefficient matrix is in general a dense
matrix. The aim of this section is to reduce it further so that, in addition to large number of
random variables, problems with large degrees of freedom can also be solved efficiently.

Suppose the eigenvalues of A0 are arranged in an increasing order such that

λ01 < λ02 < . . . < λ0n (58)

From the expression of the spectral functions observe that the eigenvalues appear in the denom-
inator:

Γ
(1)
k (ξ(θ)) =

ϕT
k f0

λ0k +
∑M

i=1 ξi(θ)λik

(59)

The numerator (ϕT
k f0) is the projection of the force on the deformation mode. Since the eigen-

values are arranged in an increasing order, the denominator of |Γ(1)
k+r (ξ(θ)) | is larger than the

denominator of |Γ(1)
k (ξ(θ)) | according a suitable measure. The numerator (ϕT

k f0) depends on
the nature of forcing and the eigenvectors. Although this quantity is deterministic, in general an
ordering cannot be easily established for different values of k. Because all the eigenvectors are
normalized to unity, it is reasonable to consider that (ϕT

k f0) does not vary significantly for dif-
ferent values of k. Using the ordering of the eigenvalues, one can select a small number ϵ such
that λ1/λq < ϵ for some value of q, where λj is the eigenvalue of the generalized eigenvalue
problem defined in Eqn. (15). Based on this, we can approximate the solution using a truncated
series as

û(θ) ≈
q∑

k=1

ckΓ̂k(ξ(θ))ϕk (60)

where ck, Γ̂k(ξ(θ)) and ϕk are obtained following the procedure described in the previous
section by letting the indices j, k only upto q in Eqs. (54) and (55). The accuracy of the series
(60) can be improved in two ways, namely, (a) by increasing the number of terms q, or (b) by
increasing the order of the spectral functions Γ̂k(ξ(θ)).

Model reduction techniques have been widely used within the scope of proper orthogonal
decomposition (POD) method [35–37]. Here the eigenvalues of a symmetric positive definite
matrix (the covariance matrix of a snapshot the system response) are used for model reduction.
In spite of this similarity, the reduction method proposed here is different from a POD since it
only considers the operator and not the solution itself. Reduction based on eigen-solution is of
classical nature in various areas of applied mathematics, engineering and physics and extensive
studies exist on this topic. It should be noted that the truncation in series (60) introduces errors.
A rigorous mathematical quantification of error arising due to this truncation is beyond the scope
of this article. The ratio of the eigenvalues λ1/λq gives a good indication, but the projection
of the force on the eigenvector (ϕT

k f0) is also of importance. Since this quantity is problem
dependent, care should be taken while applying this reduction method.

6 Post processing: Moments of the solution

For the practical application of the method developed here, the efficient computation of the
response moments and pdf is of crucial importance. A simulation based algorithm is proposed

12
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in this section. The coefficients ck in Eqn. (51) can be calculated from a reduced set of equations
given by (53). The reduced equations can be obtained by letting the indices j, k upto q < n in
Eqns. (54) and (55). After obtaining the coefficient vector c ∈ Cq, the statistical moments of
the solution can be obtained from Eqns. (61) and (62) using the Monte Carlo simulation. The
spectral functions used to obtain the vector c itself, can be reused to obtain the statistics and pdf
of the solution. The mean vector can be obtained as

ū = E [|û(θ)|] =
q∑

k=1

|ck|E
[∣∣∣Γ̂k(ξ(θ))

∣∣∣]ϕk (61)

where |•| is the absolute value of the complex quantities. The covariance of the solution vector
can be expressed as

Σu = E [(|û(θ)| − ū) (|û(θ)| − ū)] =

q∑
k=1

q∑
j=1

|ckcj|ΣΓkj
ϕkϕj (62)

where the elements of the covariance matrix of the spectral functions are given by

ΣΓkj
= E

[(∣∣∣Γ̂k(ξ(θ))
∣∣∣− E

[∣∣∣Γ̂k(ξ(θ))
∣∣∣]) (∣∣∣Γ̂k(ξ(θ))

∣∣∣− E
[∣∣∣Γ̂k(ξ(θ))

∣∣∣])] (63)

Based on the results derived in the paper, a hybrid reduced simulation-analytical approach can
thus be realized in practice. The method is applicable to general structural dynamics problems
with general non-Gaussian random fields. In the following section this approach has been
applied to a physical problem.

7 Illustrative application: The stochastic dynamics of an Euler-Bernoulli beam

In this section we apply the computational method to a cantilever beam with stochastic bend-
ing modulus. Fig. (1) shows the configuration of the cantilever beam with a harmonic point load
at its free end. We assume that the bending modulus is a homogeneous stationary Gaussian ran-

Figure 1: Schematic diagram of the Euler-Bernoulli beam with a point load at the free end.

dom field of the form
EI(x, θ) = EI0(1 + a(x, θ)) (64)

where x is the coordinate along the length of the beam, EI0 is the estimate of the mean bending
modulus, a(x, θ) is a zero mean stationary Gaussian random field. The autocorrelation function
of this random field is assumed to be

Ca(x1, x2) = σ2
ae

−(|x1−x2|)/µa (65)
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where µa is the correlation length and σa is the standard deviation. We use the base-line pa-
rameters as the length L = 1m, cross-section (b × h) 39 × 5.93mm2 and Young’s modulus
E = 2×1011 Pa. In study we consider deflection of the tip of the beam under harmonic loads of
amplitude f̃0 = 1.0N . The correlation length considered in this numerical study is µa = L/2.
The number of terms retained (M ) in the Karhunen-Loève expansion (8) is selected such that
νM/ν1 = 0.01 in order to retain 90% of the variability. For this correlation length the num-
ber of terms M comes to 18. For the finite element discretization, the beam is divided into 40
elements. Standard four degrees of freedom Euler-Bernoulli beam model is used [38]. After
applying the fixed boundary condition at one edge, we obtain the number of degrees of freedom
of the model to be n = 80.

7.1 Results

The proposed method has been compared with a direct Monte Carlo Simulation (MCS),
where both have been performed with 10, 000 samples. For the direct MCS, Eqn. (23) is solved
for each sample and the mean and standard deviation is derived by assembling the responses.
The calculations have been performed for all the four values of σa to simulate increasing un-
certainty. This is done to check the accuracy of the proposed method against the direct MCS
results for varying degrees of uncertainty.

Fig. 2(a) presents the ratio of the eigenvalues of the generalized eigenvalue problem (15) for
which the ratio of the eigenvalues is taken with the first eigenvalue. We choose the reduced
basis of the problem based on λ1/λq < ϵ, where ϵ = 0.01, and they are highlighted in Fig.
2(b) shows the frequency domain response of the deterministic system for both damped and
undamped conditions. We have applied a constant modal damping matrix with 1% damping
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(a) Ratio of eigenvalues of the generalized eigenvalue
problem.
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der point load for the undamped and damped conditions
(constant modal damping)

Figure 2: The eigenvalues of the generalized eigenvalue problem involving the mass and stiffness matrices given
in Eqn. 15. For ϵ = 0.01, the number of reduced eigenvectors q = 7 such that λ1/λj < ϵ.

factor for all the modes. Here the mass and damping matrices are assumed to be deterministic
in nature. However, the proposed theoretical approach is general and equally applicable for
random mass, stiffness and damping matrices. The frequency range of interest for the present
study is 0 − 600 Hz with an interval of 2 Hz. In Fig. 2(b), the tip deflection is shown on a log
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scale for a unit amplitude harmonic force input. The resonance peak amplitudes of the response
of the undamped system definitely depends on the frequency resolution of the plot.

The frequency response of the mean deflection of the tip of the beam is shown in Fig. 3
for the cases for cases of σa = {0.05, 0.10, 0.15, 0.20}. The figures show a comparison of the
direct MCS simulation results with different orders of the solution following Eqn. (31), where
the orders s = 2, 3, 4. A very good agreement between the MCS simulation and the proposed
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(a) Beam deflection for σa = 0.05.
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(b) Beam deflection for σa = 0.1.
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(c) Beam deflection for σa = 0.15.

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

D
ef

le
ct

io
n 

(m
)

 

 

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin
deterministic

(d) Beam deflection for σa = 0.2.

Figure 3: The frequency domain response of the deflection of the tip of the Euler-Bernoulli beam under unit
amplitude harmonic point load at the free end. The response is obtained with 10, 000 sample MCS and for σa =
{0.05, 0.10, 0.15, 0.20}. The proposed Galerkin approach needs solution of a 7 × 7 linear system of equations
only.

spectral approach can be observed in the figures. All the results have been compared with the
response of the deterministic system which shows that the uncertainty has an added damping
effect at the resonance peaks. This can be explained by the fact that the parametric variation
of the beam, results in its peak response for the different samples to get distributed around the
resonance frequency zones instead of being concentrated at a particular frequency, and when the
subsequent averaging is applied, it smooths out the response peaks to a fair degree. The same
explanation holds for the anti-resonance frequencies. It can also be observed that increased
variability of the parametric uncertainties (as is represented by the increasing value of σa) results
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in an increase of this added damping effect which is consistent with the previous explanation.
The standard deviation of the frequency domain response of the tip deflection for different

spectral order of solution of the reduced basis approach is compared with the direct MCS and
is shown in Fig. 4, for different values of σa. We find that the standard deviation is maximum
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(a) Standard deviation of the response for σa = 0.05.
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(b) Standard deviation of the response for σa = 0.1.
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(c) Standard deviation of the response for σa = 0.15.
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(d) Standard deviation of the response for σa = 0.2.

Figure 4: The standard deviation of the tip deflection of the Euler-Bernoulli beam under unit amplitude
harmonic point load at the free end. The response is obtained with 10, 000 sample MCS and for σa =
{0.05, 0.10, 0.15, 0.20}.

at the resonance frequencies which is expected due to the differences in the resonance peak of
each sample. It is again observed that the direct MCS solution and the reduced order approach
give almost identical results, which demonstrate the effectiveness of the proposed approach.

Fig. 5 shows the relative standard deviation of the response of the beam at two frequencies
154 Hz and 412 Hz, which correspond to the anti-resonance and resonance frequencies of the
cantilever beam respectively. The relative standard deviation values have been obtained for a set
of 4 values of σa, which represents the different degrees of variability of the system uncertainty.
The results obtained with the Galerkin approach for the different order of spectral functions
have been compared to the direct MCS, and a good agreement between the two results have
been obtained. It is interesting to point out here that the standard deviation decreases with the
values of σa for the anti-resonance frequency while it increases for the resonance frequencies.
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(a) Relative standard deviation at 154 Hz.
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(b) Relative standard deviation at 412 Hz.

Figure 5: The relative standard deviation of the deflection of the tip (which has been obtained by normalizing the
value of the standard deviation with the deterministic system response at the same frequency) versus the standard
deviation (σa) of the random field of the Euler-Bernoulli beam under unit amplitude harmonic point load at the
free end. The two frequencies, namely 154Hz and 412Hz are considered. They correspond to off-resonance and
resonance frequencies respectively. The plots are shown for 4 different values of σa = {0.05, 0.10, 0.15, 0.20}
and calculated with 10, 000 random samples.

This is consistent with the results shown in Fig. 4 which shows that an increased value of the
variance of the random field has the effect of an increasing added damping on the system,
when an averaging is done over the sample space. Thus the resonance response is expected to
reduce with the increased variability of the random field while the anti-resonance response will
increase.

The probability density function of the deflection of the tip of the cantilever beam for dif-
ferent degrees of variability of the random field is shown in Fig. 6. The probability density
functions have been calculated at the frequency of 412 Hz, which is a resonance frequency of
the beam. The results indicate that with the increase in the degree of uncertainty (variance) of
the system, the lower values of deflection has a higher probability which is absolutely consistent
with the standard deviation curve shown in Fig. 5(a) and the comparison of the mean deflection
of the stochastic system with the deterministic response in Fig. 3. This shows that the increase
in the variability of the stochastic system has a damping effect on the response.

The results establish the applicability of this spectral reduced basis method with Galerkin
error minimization technique as a satisfactory working model for providing solution of the
stochastic structural systems. The method is found to be consistent with the direct MCS ap-
proach, while being much more computationally efficient than the latter.

8 Conclusions

We have considered the discretized stochastic partial differential equation for structural dy-
namic systems with generally non-Gaussian random fields. In the classical spectral stochastic
finite element approach, the solution is projected into an infinite dimensional orthonormal ba-
sis functions and the associated constant vectors are obtained using the Galerkin type of error
minimization approach. Here an alternative approach in the frequency domain is proposed. The
solution is projected into a finite dimensional reduced vector basis and the associated complex
coefficient functions are obtained. The coefficient functions, called as the spectral functions, are
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(a) PDF of the response at 210Hz for σa = 0.05.
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(b) PDF of the response at 210Hz for σa = 0.1.
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(c) PDF of the response at 210Hz for σa = 0.15.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
−5

0

1

2

3

4

5

6

7

8

9
x 10

5

Deflection (m)

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

 

 

MCS
2nd order Galerkin
3rd order Galerkin
4th order Galerkin

(d) PDF of the response at 210Hz for σa = 0.2.

Figure 6: The probability density function (PDF) of the tip deflection of the Euler-Bernoulli beam at 210 Hz
under unit amplitude harmonic point load at the free end. The response is obtained with 10, 000 samples and for
σa = {0.05, 0.10, 0.15, 0.20}.

expressed in terms of the spectral properties of the mass and stiffness matrices appearing in the
discretized governing equation. It is shown that then the resulting series converges to the exact
solution in probability 1. This is a stronger convergence compared to the classical polynomial
chaos which converges in the mean-square sense in the Hilbert space.

Using the spectral functions, a Galerkin error minimization approach in the complex domain
has been developed in a reduced vector basis. It is shown that the number of unknown constants
can be obtained by solving a system of linear equations which have a dimension much smaller
than the dimension of the original discretized equation. A simple numerical approach to obtain
the reduced dimension has been suggested based on the ratio of the eigenvalues of the stiffness
matrix corresponding to the baseline model. A numerical approach using a general-order spec-
tral function has been developed. Based on these, a hybrid analytical-simulation approach is
proposed to obtain the statistical properties of the solution.

The computational efficiency of the proposed reduced spectral approach has been demon-
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strated for large linear systems with non-Gaussian random variables. It may be possible to
extend the underlying idea to the class of non-linear problems. For example, the proposed spec-
tral approach can be used for every linearisation step or every time step. Further research is
necessary in this direction.
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