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Abstract. The analysis of structures is affected by uncertainty in the structure’s material prop-
erties, geometric parameters, boundary conditions and applied loads. In the stochastic finite
element method, the random quantities are represented by stochastic models. Amongst the var-
ious problems affected by uncertainty, the random eigenvalue problem is specially important
when analyzing the dynamic behavior of a structure. The methods that stand out in research
dealing with the random eigenvalue problem are the perturbation method and methods based
on Monte Carlo Simulation. In the past few years, methods based on Polynomial Chaos (PC)
have been developed for this problem, where each eigenvalue and eigenvector are represented
by a PC expansion. In this paper two new methods hybridizing perturbation approach and
Polynomial Chaos approach are proposed and compared. The methods use Rayleigh quotient,
the power method and the inverse power method. Polynomial Chaos expansions of eigenvalues
and eigenvectors are obtained with the proposed methods. The new methods are applied to the
problems of a Bernouilli beam and a thin plate with stochastic properties.

1



Blanca Pascual and Sondipon Adhikari

1 Introduction

The algebraic eigenvalue problem arises in a variety of fields, for example, in buckling of
columns and shells [1], vibration of elastic bodies, etc. Accurate methods to calculate the eigen-
solution of a deterministic matrix have been available for long (see, for example, [2]), but such
is not the case when the matrix considered is random. When random matrices are considered,
the joint pdf of eigenvalues is only available for some special random matrix distributions, as the
Gaussian Orthogonal Ensemble [3] and Wishart matrices [4]. Randomness can be introduced
in the system by random parameters (e.g. Young’s modulus, mass density) and consequently
propagated to the system matrices such as the mass and stiffness matrices. Using the stochastic
finite element method [5], these matrices in turn can be represented by a linear combination of
deterministic matrices, where the coefficients are random variables [6, 7].

Several methods have been developed to solve the algebraic random eigenvalue problem.
Methods dealing with large amounts of uncertainty are based on Monte Carlo Simulation (MCS),
where different initialization strategies for the power method have been developed. These strate-
gies are based on ordering the samples depending on the distance between them. This ordering
can be based on algorithms from the traveling salesman problem and space reduction [8] or
component mode synthesis [9], or can be done in a tree-type data structure [10]. The start-
vector used is the result from the iteration process of the previous sample. The initialization
strategies and size reduction methods reduce the computational time of MCS, but for smaller
uncertainties, more efficient methods are available.

Methods that can be applied to small uncertainties are based on the perturbation method [11].
First applications date from the late sixties [12, 13], and a series of modified methods have been
developed. A comparison of several of these methods is given by Chen et al. [14]. Other
perturbation-based methods use iterations or linear combination of deterministic and perturbed
eigenvectors to deal with larger uncertainties or to allow reanalysis of structures [15–18]. Other
methods available are based on crossing theory [19], kronecker product [20], the dimensional
decomposition method [21, 22], use of Laplace’s method to obtain moments of eigenvalues
[23], collocation methods [24], use of interpolations and meta-models [25, 26], the use of an
auxiliary function where the derivative of the eigenvector equals the eigenvalue multiplied by
the eigenvector [27] and possibilistic approaches [28].

More recently, Polynomial Chaos (PC) [5] has been applied to the random algebraic eigen-
value problem. A PC expansion of eigenvalues and eigenvectors was obtained by Ghosh et
al. [29] using MCS. Verhoosel et al.[30] developed an iterative procedure based on the inverse
power method and Rayleigh quotient to obtain PC expansions of the eigensolutions. Ghanem
and Ghosh [31] substituted eigenvalues and eigenvectors by their PC expansion in the eigen-
value problem. Coefficients were obtained from the nonlinear problem with the help of a norm
equation for the eigenvectors. A modification of the previous method using enrichment func-
tions was derived by Ghosh and Ghanem [32].

It can be observed that even if research has been carried out both on the perturbation and
PC methods for the random eigenvalue problem, no method hybridizing both approaches is
yet available. Efficient methods hybridizing PC and other methods have been proposed for the
elliptic problem [33, 34], where a reduction of the size of the linear system to be solved was
achieved. The aim of the present paper is to gain efficiency on the PC algorithms for random
eigenvalue problems through the use of results from the perturbation method. The outline of
the paper is as follows. The basic theories of the perturbation method and Polynomial Chaos
are discussed respectively in subsection 2.1 and subsection 2.2. PC expansion of eigenvalues
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is obtained in subsection 3.1 using the Rayleigh quotient where eigenvectors are obtained from
the perturbation method. Two new methods, namely reduced spectral power method (RSPM)
and reduced spectral inverse power method (RSIPM), are proposed to update the eigenvectors
in section 4. Both methods allow us to obtain an updated PC expansion of the eigenvectors and
eigenvalues using Rayleigh quotient. A summary of the proposed methods is given in section 5.
A comparison of the two methods is performed for the problems of a beam and a thin plate with
stochastic properties in section 6.

2 Stochastic Finite Element method for the random eigenvalue problem

The deterministic eigenvalue problem is given by the equation

Au(j) = λ(j)u(j) (1)

where A ∈ Rn×n is the system matrix, u(j) is the j-th eigenvector and λ(j) is the corresponding
eigenvalue. The system matrix is obtained from the generalized eigenvalue problem Ky(j) =
λ(j)My(j) so that A = M−1/2KM−1/2 and u(j) = M−1/2y(j) [35]. In a dynamic problem,
matrix K is the stiffness matrix and M is the mass matrix [36]. Randomness in the matrix A
can be introduced by a parameter (e.g. Young’s modulus) represented by a random field. The
random field can be approximated with a finite set of random variables using a discretization
procedure (see, e.g. [6, 37]). Here, the random field is discretized using the Karhunen-Loéve
(KL) expansion [38, 39] and truncated after M terms. In this paper it is assumed that the
stiffness matrix is random and the mass matrix is deterministic. As a result, the system matrix
A can be approximated by the following expansion

A = A0 +
M∑
i=1

ξiAi (2)

Here A0 is the mean of the system matrix and Ai are the matrices appearing from the propa-
gation of the Karhunen-Loéve expansion into the system matrix. In the next subsections, the
perturbation method and the Polynomial Chaos method are used to approximate the eigenvalues
and eigenvectors of the stochastic system matrix.

2.1 Perturbation method for the random eigenvalue problem

Among the various methods developed to solve the random eigenvalue problem, the pertur-
bation method is widely used due to its efficiency. The different perturbation methods available
to analyze the random eigenvalue problem are based on keeping different number of terms in the
Taylor series expansions. These perturbation methods are mainly applied to eigenvectors, while
the eigenvalues can then be obtained using the Rayleigh quotient. This approximation of eigen-
values is more accurate than the one obtained by directly applying the perturbation method via
the Taylor series expansions [14]. If λ(j)

0 and uj0 are the j-th deterministic eigenvalue and the
corresponding eigenvector, a first-order expression for the perturbed eigenvector can be given
by [13]

u(j) = uj0 +
M∑
i=1

ξi
∂u(j)

∂ξi
(3)

The deterministic eigenvectors satisfy the following properties

uT
j0uj0 = 1 and uT

j0

∂u(j)

∂ξi
= 0 (4)
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Different methods have been developed to calculate the derivatives of the eigenvectors. One of
these methods expands the derivative of eigenvectors as a linear combination of deterministic
eigenvectors [12, 40], so that

uji =
∂u(j)

∂ξi
=

N∑
m=1,m ̸=j

αjimum0 where αjim =
1

λ
(j)
0 − λ

(m)
0

uT
m0(Ai)uj0 (5)

This equation is used when all deterministic eigenvectors are calculated. If only a limited num-
ber of eigenvectors were calculated, other methods described by Nelson [41] could be applied.
The case of close or repeated eigenvalues is not dealt with here. The perturbation method for
such cases is derived, for example, in [42–44].

2.2 Polynomial Chaos approach for the random eigenvalue problem

In our system, uncertainty is represented by a finite set of random variables {ξ1, . . . , ξM}
defined on the probability space (Ξ,BΞ, Pξ). Any random quantity of interest of the system
considered is then defined on this probability space, in particular, eigenvalues and eigenvectors.
The eigensolution is assumed to have finite second-order moments, and can be represented
in the space of square integrable functions L2(Ξ, dPξ) [6, 45], and a basis of functions Γk

in L2(Ξ, dPξ) can be defined. The representations of λ(j) and u(j) on the basis functions Γk

truncated after P terms can be given by

λ(j)(ξ1, . . . ξM) =
P∑

k=1

λjkΓk(ξ1, . . . ξM) (6)

u(j)(ξ1, . . . ξM) =
P∑

k=1

u(j)
k Γk(ξ1, . . . ξM) (7)

where λjk and u(j)
k are unknowns and the basis functions considered here are Polynomial Chaos

[5]. The basis functions Γk are obtained from the terms of the tensor product of several univari-
ate Hermite polynomials up to a fixed total-order specification, this approach is referred to as
“total-order expansion” [46]. The univariate Hermite polynomials can be calculated from the
equation Hn(ξ) = (−1)n exp(ξ2/2)∂n exp(−ξ2/2)/∂nξ, where each polynomial depends on a
Gaussian random variable ξi.

Polynomial Chaos has already been used in the context of the algebraic random eigenvalue
problem by Ghanem and Ghosh [31]. In [31], eigenvalues and eigenvectors were substituted by
their expansions, i.e., λ(j) and u(j) are replaced in Equation (1) by their expansions from Equa-
tions (6) and (7). The resulting equation is projected on the basis in L2(Ξ,BΞ, Pξ) through the
Galerkin method, that is, the equation is multiplied by each basis function Γp and subsequently
the mean is taken. The resulting system of equations of size P × n relating the unknowns λjk

and u(j)
k can be given by

(
c0 ⊗ A0 +

M∑
i=1

c1i ⊗ Ai

)u(j)
1
...

u(j)
P

 =
P∑
l=1

λjle0l ⊗ I

u(j)
1
...

u(j)
P

 (8)

Here the elements in the k-th row and p-th column of P × P matrices c0, c1i and e0l are re-
spectively c0kp = E [ΓkΓp], c1ikp = E [ξiΓkΓp], with i = 1, . . .M and e0lkp = E [ΓkΓpΓl] with
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l = 1, . . . P . If the norm of the eigenvectors is also prescribed, the nonlinear system of equa-
tions can be solved with iterative techniques. A good initial approximation is often needed to
obtain fast convergence.

An iterative procedure to obtain PC expansions of eigenvalues and eigenvectors has been
proposed by Verhoosel et al. [30] based on the inverse power method. The algorithm of the
iteration can be concisely described by the following steps:

1. λ
(j)
(q+1) =

(
u(j)
(q)

)T
(A0 +

∑M
i=1 Ai)u

(j)
(q).

2. u(j)
(q+1) =

(
λ
(j)
(q+1) − λ

(j)
0

) [
A0 +

∑M
i=1 Ai − λ

(j)
0 I
]−1

u(j)
(q).

3. u(j)
(q+1) →

u(j)
(q+1)

||u(j)
(q+1)

||
L2
S

where ||u(j)
(q+1)||L2

S
=

√∑P
k=1 E [Γ2

k]
(

u(j)
k(q+1)

)T
u(j)
k(q+1).

4. Define errors ϵ1q+1 = ||[A0 +
∑M

i=1 Ai − λ
(j)
(q+1)I]||L2

S
and ϵ2(q+1)

=
|V

λ
(j)
(q+1)

−V
λ
(j)
(q)

|

|V
λ
(j)
(q)

| with

V
λ
(j)
(q)

=

√∑P
k=1 λ

2
jk(q)

E[Γ2
k]

λj1(q)
, the coefficient of variation of the eigenvalue.

For all the steps of the iterative procedure where it is needed, the coefficients of the PC expan-
sions are obtained using the Galerkin method. The subscripts (q) and (q+1) denote the number
of the iteration. That is, λ(j)

(q) is the PC expansion of the j-th eigenvalue at iteration q, while

λjk(q) denotes the k-th coefficient of the expansion, so that λ(j)
(q) =

∑P
k=1 λjk(q)Γk. Similarly,

u(j)
(q) is the PC expansion of the j-th eigenvector at iteration q, so that u(j)

(q) =
∑P

k=1 u(j)
k(q)Γk.

The two methods discussed here can be used to obtain the eigenvalues and eigenvectors coef-
ficients λjk and u(j)

k of the Polynomial Chaos expansions given by Equations (6) and (7). From
these PC expansions, the pdf of eigenvalues and eigenvectors can be obtained if a Monte Carlo
simulation is performed. This is done by sampling the set of independent Gaussian random
variables ξ1, . . . , ξM . The corresponding values of the basis functions Γk are calculated and
subsequently introduced in the Polynomial Chaos expansions of eigenvalues and eigenvectors
given by Equations (6) and (7). A numerical approximation to the pdf of eigenvalues from the
samples of eigenvalues can then be obtained. Moments of eigenvalues and eigenvectors can
also be derived from Equations (6) and (7). The first and second moments of eigenvalues are
given by

E
[
λ(j)
]

=
P∑

k=1

λjkE [Γk] = λj1 (9)

E
[(
λ(j)
)2]

=
P∑

k,l=1

λjkλjlE [ΓkΓl] =
P∑

k=1

λ2
jkE

[
Γ2
k

]
(10)

Similarly, first and second moments of elements of eigenvectors could be calculated. Expres-
sions are not derived here as our interest lays in the moments of eigenvalues.
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3 Rayleigh quotient method for the Polynomial Chaos expansion of eigenvalues

The Rayleigh quotient can be used to obtain an approximation to the eigenvalue λ(j) if an
approximation to eigenvector u(j) is available

λ(j) =

(
u(j)
)T Au(j)

(u(j))
T u(j)

(11)

This method to obtain eigenvalues is similar to step 1 of the algorithm by Verhoosel et al. [30],
but here, the eigenvectors do not need to be normalized. The eigenvalues of the random alge-
braic eigenvalue problem can be expanded with a PC expansion such that the j-th eigenvalue is
given by Equation (6). Substituting this expansion in the expression of the Rayleigh quotient in
Equation (11) can lead to(

P∑
k=0

λjkΓk

)(
u(j)
)T u(j) =

(
u(j)
)T (A0 +

M∑
i=1

ξiAi

)
u(j) (12)

In the following subsections, the eigenvectors u(j) will be substituted by different approxima-
tions, allowing to obtain λjk coefficients from a linear system of equations.

3.1 Perturbation of the eigenvectors

Using the first-order perturbation of the j-th eigenvector, the corresponding eigenvalue can
be approximated using Rayleigh quotient by substituting u(j) from Equations (3) and (5) into
Equation (12). The Galerkin method is applied to the resulting equation (i.e. the equation is
multiplied by the p-th Polynomial Chaos basis function Γp and mean of the equation is taken)
and the resulting equation is simplified using properties given by Equation (4). Then, coeffi-
cients λjk of the PC expansion of λ(j) can be obtained from the equations

P∑
k=1

λjk

(
c0kp +

M∑
i,g=1

uT
jiujgc2igkp

)
= λ

(j)
0 d0p +

M∑
i=1

uT
j0Aiuj0d1ip +

M∑
i,g=1

(
2uT

j0Aiujg+

uT
jgA0uji

)
d2igp +

M∑
i,g,h=1

uT
jgAiujhd3ighp

(13)

where p = 1, . . . , P . Matrix c0 has already been defined as a diagonal matrix with element in
the k-th row and p-th column given by c0kp = E [ΓkΓp]. Similarly, the P × P matrix c2ig has
elements c2igkp = E [ΓkΓpξiξg] and column vectors of length P d0, d1i, d2ig and d3igh have their
p-th term given by d0p = E [Γp], d1ip = E [Γpξi], d2igp = E [Γpξiξg] and d3ighp = E [Γpξiξgξh]
respectively. This notation for matrices c and d is such that for each matrix the mean of the
product of, respectively, one and two polynomials Γk is calculated. The numerical subindex
(e.g. 1, 2) indicate the number of random variables multiplying those polynomials inside the
mean operator. Equation (13) can be represented by the linear system of equations(

c0 +
M∑

i,g=1

uT
jiujgc2ig

)λj1
...

λjP

 =λ
(j)
0 d0 +

M∑
i=1

uT
j0Aiuj0d1i +

M∑
i,g=1

(
2uT

j0Aiujg+

uT
jgA0uji

)
d2ig +

M∑
i,g,h=1

uT
jgAiujhd3igh

(14)
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and the coefficients λjk of the eigenvalue expansion can be obtained by solving the P ×P linear
system given by Equation (14).

3.2 Reduced Polynomial Chaos eigenvectors

The PC expansion of an eigenvector is given by Equation (7). A possible approach to reduce
the size of the system is to assume the vectors u(j)

k can be expressed as a linear combination of
the vectors uj0 and uji, such that

u(j)
k = a

(j)
0k uj0 +

M∑
i=1

a
(j)
ik uji (15)

The idea of expanding the random eigenvectors into a basis formed by the deterministic eigen-
vector and its first derivative has already been used by Nair and Keane [18], and an accurate
approximation to eigenvectors was obtained. This Equation (15) is introduced in Equation (7),
so that the eigenvector can be expanded as

u(j) =

(
P∑

k=1

a
(j)
0k Γk

)
uj0 +

M∑
i=1

(
P∑

k=1

a
(j)
ik Γk

)
uji (16)

This expansion will be used in the next section, where coefficients a
(j)
0k , a

(j)
ik will be obtained

through the reduced spectral power method and the reduced spectral inverse power method.
After obtaining the set of coefficients a

(j)
0k , a

(j)
ik , the PC expansion of the j-th eigenvalue is

obtained using the Rayleigh quotient. That is, the new eigenvectors from Equation (16) are now
introduced in Equation (12) and as formerly, the equation is multiplied by Γp and mean is taken
to obtain

P∑
k=1

λjk

P∑
l,m=1

glmpk

(
a
(j)
0l a

(j)
0m +

M∑
i,g=1

a
(j)
ik a

(j)
gl uT

jiujg

)
=

P∑
l,m=1

a
(j)
0l a

(j)
0m

(
λ0je0lmp +

M∑
i=1

uT
j0Aiuj0e1ilmp

)
+

P∑
l,m=1

a
(j)
0l

M∑
i,g=1

a
(j)
im2uT

j0Agujie1glmp+

P∑
l,m=1

M∑
i,g

a
(j)
ik a

(j)
gl

(
uT
jiA0ujge0lmp +

M∑
h=1

uT
jiAhujge1hlmp

)
(17)

Here p = 1, . . . , P , e0lmp = E [ΓlΓmΓp], e1glmp = E [ΓmΓlΓpξg], gklmp = E [ΓkΓlΓmΓp]. As
formerly, the set of coefficients λjk can be found solving a linear equation similar to the one
obtained in Equation (14). The set of coefficients a(j)0k , a

(j)
ik have yet not been defined. Their role

is to improve the approximation of the eigenvectors. They are calculated in the next section,
following two approaches.

4 Updating of the eigenvectors

When considering a deterministic eigenvalue problem, several iterative methods are available
to approximate each eigenvector with a desired accuracy [2]. The power method is based on the
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fact that a symmetric matrix M with eigenvalues χi and eigenvectors xi multiplied s times by
itself can be expressed in terms of the s-th power of its eigenvalues through Ms =

∑n
i=1 χ

s
ixixT

i .
If the eigenvalues have distinct values, the expression is dominated by

∑r
i=1 χ

s
ixixT

i where χi

are the r larger or dominant eigenvalues. Therefore, the power method is an iterative method
that allows to obtain the eigenvector corresponding to the largest eigenvalue though Msv, where
v is the start-vector of the iteration algorithm, and s is the step of the iteration. A shift of origin
(i.e. (M − pI), where p ∈ R) allow convergence of (M − pI)sv to different eigenvectors. When
the inverse of M is considered, it is observed that M−s is dominated by

∑r
i=1 (1/χ

s
i ) xixT

i where
χi are the r smallest eigenvalues. If the power method is applied to the matrix (M − pI)−1, the
inverse power method is obtained, and the product (M − pI)−sv converges to the eigenvector
corresponding to the eigenvalue closest to p [2]. In a deterministic system, these two methods
allow to update a given approximation to an eigenvector. In the following subsections, the power
and inverse power methods are extended to the stochastic case for updating the PC expansions
of the eigenvectors.

4.1 Reduced spectral power method

The power method has been used in the context of spectral stochastic finite element method
(SSFEM) by Lee and Singh [20] to obtain the mean and covariance of the eigenvectors. Only
one iteration was performed, so that the random eigenvectors were obtained by multiplying
the deterministic eigenvectors by the system stochastic matrix from Equation (2). Here, the
equation used to derive the reduced spectral power method (RSPM) is based on the deterministic
power method equation

λ(j)u(j)
(q+1) = Au(j)

(q) (18)

where the subscripts (q) and (q + 1) indicate the number of the iteration. Substituting the KL
expansion of eigenvalues from Equation (6) into Equation (18) leads to(

P∑
k=1

λjkΓk

)
u(j)
(q+1) = Au(j)

(q) where u(j)
(0) = uj0 +

M∑
i=1

ξiuji (19)

The q-th iteration u(j)
(q+1) to approximate the j-th eigenvector can be expressed as the eigenvec-

tor from Equation (16). In the iterative case, eigenvector and constants u(j), a(j)0k and a
(j)
ik are

obtained from an iteration and, therefore, are expressed respectively as u(j)
(q), a

(j)
0k,(q) and a

(j)
ik,(q).

An expression for u(j)
(1) is calculated, which corresponds to one iteration. The iterative algorithm

could be derived easily, but an accurate solution is expected from one iteration as the perturbed
eigenvectors are close to the exact solution. Furthermore, accuracy might be compromised if a
large number of iterations are performed. This is so because the deterministic power method
converges to the eigenvector corresponding to the largest eigenvalue when a considerable num-
ber of iterations are performed. A rectangular matrix U is formed with the columns of the
deterministic eigenvector and its derivatives with respect to each random variable

Uj =
[
uj0 uj1 . . . ujM

]
∈ Rn×(M+1) (20)

Equation (18) is multiplied by each basis function Γp and mean of the equation is taken. Then,
the reduced spectral power method is represented by the linear system(

P∑
l=1

(λ
(j)
l UT

j Uj ⊗ e0l)

)
a = f (21)

8
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with a = [a
(j)
01(1) . . . a

(j)
0M(1) a

(j)
11(1) . . . a

(j)
ip(1) . . . a

(j)
MP (1)]

T the vector of unknown coefficients, the
P × P matrices e0l are such that their k-th row and p-th element is e0lkp and

f =


λ
(j)
0 d0 +

∑M
i=1 uT

j0Aiuj0d1i +
∑M

i,k=1 uT
j0Aiujkd2ik∑M

i=1

(
uT
j1A0uji + uT

j1Aiu0j

)
d1i +

∑M
i,k=1 uT

j1Aiujkd2ik

...∑M
i=1

(
uT
jMA0uji + uT

jMAiu0j

)
d1i +

∑M
i,k=1 uT

jMAiujkd2ik

 (22)

The deterministic power method can update the eigenvectors if the initial approximation is
close to the solution, but as the number of iterations increases, the method converges to the
eigenvector corresponding to the largest eigenvalue. The reduced spectral power method is
likely to suffer from the same drawback. The reduced spectral inverse power method is derived
in the next subsection to try to overcome this difficulty.

4.2 Reduced spectral inverse power method

The reduced spectral inverse power method (RSIPM) developed here is based on the deter-
ministic inverse power method equation

(A − λ
(j)
0 I)u(j)

(q+1) =
(
λ(j) − λ

(j)
0 I
)

u(j)
(q) (23)

where the subscripts (q) and (q+1) indicate the number of the iteration. Substitution of the KL
expansion of eigenvalues from Equation (6) into Equation (23) leads to

(A − λ
(j)
0 I)u(j)

(q+1) =

(
P∑

k=1

λjkΓk − λ
(j)
0 I

)
u(j)
(q) where u(j)

(0) = uj0 +
M∑
i=1

ξiuji (24)

As in the previous subsection, u(j)
(q+1) can be expressed as the eigenvector from Equation (16)

where subscripts (q+1) are added to u(j), a(j)0k and a
(j)
ik . For the first iteration, the approximation

to the j-th eigenvalue
∑P

k=1 λjkΓk can be obtained from Equation (14), that is, after applying
the Rayleigh quotient using perturbed eigenvectors. Substituting the eigenvalue Polynomial
Chaos expansion resulting from Equation (14) into Equation (24) and using the perturbation
eigenvectors as the first approximation leads to(

A0 +
M∑
i=0

ξiAi − λ
(j)
0 I

)((
P∑

k=1

a0kΓk

)
uj0 +

M∑
i=1

(
P∑

k=1

aikΓk

)
uji

)
=(

P∑
k=1

λ
(j)
k − λ

(j)
0 I

)(
uj0 +

M∑
i=1

ξiuji

) (25)

The unknown coefficients a0k and aik can be found by multiplying Equation (25) by uT
j0Γp and

(uji)
TΓp for p = 1, . . . , P and then taking the mean of the resulting equation. Then, a linear

system of equation of size (M + 1)× P can be obtained with the matrix

S =

(
M∑
i=1

(UT
j AiUj)⊗ c1i + (UT

j (A0 − λ
(j)
0 I)Uj)⊗ c0

)
(26)
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such that

S



a01
...

a0M
a11

...
aip
...

aMP


=



λj1E [Γ2
1]− λ

(j)
0 E [Γ1]

...
λjPE [Γ2

P ]− λ
(j)
0 E [ΓP ]∑M

g=1(∂uj/∂ξ1)
T (∂uj/∂ξg)(

∑P
k=1 λjkc1gk1 − λ

(j)
0 d1g1)

...∑M
g=1(∂uj/∂ξi)

T (∂uj/∂ξg)(
∑P

k=1 λjkc1gkp − λ
(j)
0 d1gp)

...∑M
g=1(∂uj/∂ξM)T (∂uj/∂ξg)(

∑P
k=1 λjkc1gkP − λ

(j)
0 d1gP )


(27)

In the next section, the proposed methods are summarized.

5 Summary of the proposed method

Two hybrid perturbation-Polynomial Chaos approximations are proposed for the solution of
the algebraic random eigenvalue problem arising in structural dynamics. The random eigen-
values are firstly approximated with a Polynomial Chaos (PC) expansion using the perturbed
eigenvectors in the Rayleigh quotient, (

∑P
k=0 λjkΓk)uTu = uTAu. These results can be fur-

ther improved if the eigenvectors are updated using the reduced spectral power method or the
reduced spectral inverse power method (RSPM and RSIPM) respectively. These methods allow
us to obtain PC expansions of the eigenvectors. These expansions are then used in the Rayleigh
quotient to obtain an improved PC expansion of each eigenvalue. The proposed methods can be
implemented by the following steps:

1. Calculate the system KL expansion matrices Ai ∀i = 1, . . . ,M and A0.

2. Obtain the deterministic eigenvalues and eigenvectors λ(j)
0 , u0j .

3. Use Equation (5) to obtain the perturbed eigenvectors uj = u0j +
∑M

i=1 ξi∂uj/∂ξi.

4. Calculate the PC expansion of eigenvalues using the Rayleigh quotient from Equation
(14), where eigenvectors are given by the perturbed eigenvectors and the stiffness matrix
by its truncated Karhunen-Loève expansion.

5. Calculate a new approximation to eigenvectors using one of the two proposed methods

• The coefficients of the Polynomial Chaos expansions involved in each eigenvector
approximation are obtained with the reduced spectral power method (RSPM) from
Equation (21).

• The coefficients of the Polynomial Chaos expansions involved in each eigenvec-
tor approximation are obtained with the reduced spectral inverse power method
(RSIPM) from Equation (27).

6. Calculate the PC expansion of eigenvalues using Rayleigh quotient as in step 4.

7. Calculate the first and second moments of the eigenvalues using Equation (9) and (10).

10
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6 Numerical examples

6.1 Euler-Bernouilli beam with stochastic properties

A clamped-free beam of length L = 1 m is considered. The system is discretized with
the finite element method, using n = 20 elements. Details of the method can be found, for
example, in the book by Dawe [47]. Uncertainty is introduced in the system by a Gaussian ran-
dom field representing the bending rigidity, that is, w(θ, x) = EIz with mean E [w(θ, x)] = 1.
The discretization of w(θ, x) is done by the KL expansion of the exponential autocorrelation
function C(x1, x2) = e−5|x1−x2|/L, that is w(x, y, θ) =

∑∞
i=1 λifiξi where the eigenvalues

and eigenfunctions of the correlation function λ, f(x1) are obtained after solving the equation∫ L/2

−L/2
C(x1, x2)f(x2)dx2 = λf(x1) and ξi is a set of Gaussian independent random variable.

The KL expansion is truncated at M = 2, so that the corresponding KL expansion of the stiff-
ness matrix is A = A0 +

∑2
i=1 Aiξi. The standard deviation of the random field is equal to

20% of the mean value and is included in the Ai matrices. More details on the KL expansion
of the autocorrelation function used can be found in [5]. The maximum order of the Hermite
polynomial used is 4, so that P = 15 polynomials are used as basis functions. Results obtained
with the proposed methods are compared against results from MCS with 5000 samples. Figures
1 and 2 show the mean, standard deviation obtained with the proposed methods and the error
of the corresponding quantities with respect to MCS results of the first 10 eigenvalues. It is
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(a) Mean of the eigenvalues.
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(b) Percentage error in the mean.

Figure 1: Mean and corresponding percentage error of the first ten eigenvalues of the beam obtained with Monte
Carlo Simulation (MCS) using 5000 samples, the proposed reduced spectral power method (RSPM) and reduced
spectral inverse power method (RSIPM). The standard deviation of the discretized random field is 20% of the mean
value.

observed that the spectral power method results are more accurate than the ones obtained with
the spectral inverse power method.

6.2 Thin plate with stochastic properties

The case of a thin plate clamped on one side is considered. The equation of motion is dis-
cretized using the FE method, as in the book by Dawe [47]. The plate has a length L = 1.0 m
divided into 10 elements, and a width W = 0.6 m divided into 6 elements. All elements are rect-
angular. Uncertainty is introduced by the flexural rigidity of the plate D = Eh3/(12(1− ν2)),
modelled as a Gaussian random field w(x, y, θ) with autocorrelation function C(x1, x2, y1y2) =

11
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(a) Standard deviation of the eigenvalues.
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(b) Percentage error in the standard deviation.

Figure 2: Standard deviation and corresponding percentage error of the first ten eigenvalues of the beam obtained
with Monte Carlo Simulation (MCS) using 5000 samples, the proposed reduced spectral power method (RSPM)
and reduced spectral inverse power method (RSIPM). The standard deviation of the discretized random field is
20% of the mean value.

e−|x1−x2|/bx−|y1−y2|/by . The mean of the random field is obtained from values E = 200 GPa,
h = 3 mm and ν = 0.3. The correlation length in each direction is assumed to be 1/5-th of
the length of that direction, that is, bx = 0.2, by = 0.12. The Karhunen-Loève expansion of the
random field is given by w(x, y, θ) =

∑∞
i=1 λifiξi with ξi a set of Gaussian independent ran-

dom variables. The eigenvalues and eigenfunctions of the correlation function λ, f(x1, y1) are
obtained after solving the equation

∫ L/2

−L/2

∫W/2

−W/2
C(x1, x2, y1y2)f(x2, y2)dy2dx2 = λf(x1, y1).

The number of terms kept in the KL expansion in each direction (x and y) is two, so that The
corresponding KL expansion of the stiffness matrix is A = A0+

∑4
i=1 Aiξi, where the standard

deviation of the random field (here, σ = 0.2E [D]) is included in the Ai matrices. As formerly,
the maximum order of the Hermite polynomial used is 4, and now P = 70 polynomials are
used as basis functions. Results obtained with the proposed method are compared against re-
sults from MCS using 5000 samples. Figures 3 and 4 show the mean, standard deviation and
error with respect to MCS results of the first 10 eigenvalues. It is observed that the spectral
power method results are more accurate than the ones obtained with the spectral inverse power
method.

7 Conclusions

Two new methods, namely the reduced spectral power method and the reduced spectral in-
verse power method, have been proposed to improve the accuracy of the approximate solution
of the random eigenvalue problem for symmetric matrices. Each method is based on approaches
used in the context of the deterministic eigenvalue problem to obtain eigenvectors, namely, the
power method and the inverse power method. Eigenvalues are obtained using the Rayleigh
quotient. The deterministic methods are adapted to the stochastic case by projecting the power
method, the inverse power method and the Rayleigh quotient in the basis functions Γp of the
Hilbert space L2(Ξ, dPξ). These basis functions are considered to be the multivariate Her-
mite polynomials used in the Polynomial Chaos method. Furthermore, a size reduction of the
equations is achieved by assuming that, in the Polynomial Chaos expansion of eigenvectors, the
coefficient vectors belong to the subspace spanned by the deterministic vector and its derivatives

12
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Figure 3: Mean and corresponding percentage error of the first ten eigenvalues of the plate obtained with Monte
Carlo Simulation (MCS) using 5000 samples, the proposed reduced spectral power method (RSPM) and reduced
spectral inverse power method (RSIPM). The standard deviation of the discretized random field is 20% of the mean
value.
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(a) Standard deviation of the eigenvalues.
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(b) Percentage error of the standard deviation.

Figure 4: Standard deviation and corresponding percentage error of the first ten eigenvalues of the plate obtained
with Monte Carlo Simulation (MCS) using 5000 samples, the proposed reduced spectral power method (RSPM)
and reduced spectral inverse power method (RSIPM). The standard deviation of the discretized random field is
20% of the mean value.

with respect to the random variables. Numerical results on beam and plate problems indicate
that the reduced spectral power method leads to a better approximation. Further studies will
address the case of uncertainty in the mass matrix.
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