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Abstract

In the reliability analysis of a complex engineering structure a very large number of the system parameters can
be considered to be random variables. The difficulty in computing the failure probability using the First and
Second-Order Reliability Methods (FORM and SORM) increases rapidly with the number of variables or ‘di-
mension’. There are mainly two reasons behind this. The first is the increase in computational time with the
increase in the number of random variables. In principle this problem can be handled with superior computa-
tional tools [se&chulleret all (2003]. The second, which is perhaps more fundamental, is that there are some
conceptual difficulties associated typically with high dimensions. This means that even one manages to carry out
the necessary computations, the application of existing FORM and SORM may still lead to incorrect results in
high dimensions. This issue has received little attention in the literature and this paper is aimed at addressing
it. An asymptotic approximatiofor the case when the number of random variables: oo is provided. The

new asymptotic SORM is based on parabolic approximation of the failure surface in the transformed standard
Gaussian space. A simple closed-form asymptotic expression is derived. The proposed asymptotic approxima-
tion for n — oo case is compared with existing approximations and Monte-Carlo simulations using numerical
examples.

Introduction

In reliability based structural analysis and design it is required to calculate the probability of failure (or survival)
of a structure, either to assess the risk associated with an existing structural facility or to determine if a structural
design has met the prescribed reliability criteria. Suppose the random variables describing the uncertainties in
the structural properties and loading are considered to form a vectoR". The statistical properties of the
system are fully described by the joint probability density funcpigx) : R™ — R. For a given set of variables

x the structure will either fail under the applied (random) loading or will be safe. The condition of the structure
for everyx can be described by a safety margiix) : R™ — R such the structure has faileddgfx) < 0 and is

safe ifg(x) > 0. Thus, the probability of failure is given by

Py = / R 1)

The functiong(x) is also known as the failure surface or the limit-state function. The central theme of a reliability
analysis is to evaluate the multidimensional integtil The exact evaluation of this integral, either analytically
or numerically, is not possible for most practical problems because i@jarge, (b)p(x) is non-gaussian, and

() g(x) is a highly nonlinear function of. Even direct Monte Carlo simulation is quite expensive becat}se
usually small.

Over the past three decades there has been extensive research (see for example, theThadkEbyistensen

and Baker1982, IMadsenet al, 11986 [Ditlevsen and Mads¢i1996 [Melchers1999) to develop approximate
numerical methods for the efficient calculation of the reliability integral. The approximate reliability methods
can be broadly grouped into (a) first-order reliability method (FORM), and (b) second-order reliability method
(SORM). In FORM and SORM it is assumed that all the basic random variables are transformed and scaled so
that they are uncorrelated Gaussian random variables, each with zero mean and unit standard deviation. In the
transformed spaddasofer and Lind1974 defined the reliability index

B=(x"x)"2 where x*:min{(x"x)"/} subjectto g(x) =0 )

Herex*, the ‘design point’ or the ‘checking point’. Once the reliability index and the design point is known, the
probability of failure can be obtained using FORM or SORM. In FORM the failure surface is approximated by
a hyperplane which is tangent to the failure surface at the design point. In SORM, the actual failure surface is
approximated by a quadratic hypersurface in the neighborhood of the design point.
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SORM Approximations

After suitable transformations and keeping only second-order tMadseret al! (198€) have approximated the
failure surface by a parabolic surface as

§ ~ —Yn + ﬁ + yTAy7 Where y ~ anl(onfla |n71> andyn ~ N1(07 1) (3)

The matrixA can be diagonalized by a further orthogonal transformation using the eigenvectars Te
parabolic surface iri3) has been used by a number of authors, for exarifaenbichler and Rackwitd1988),
Koyluoglu and Nielser(1994), [Cai and Elishakof{1994), Zhao and Onq1999¢b), Polidori et al! (1999 and
Hong (1999). Der-Kiureghiaret al! (1987) andDer-Kiureghian and Stefan@997) have also used this parabolic
surface as the basis for point fitted SORM. With this approximation the failure probability is given by

P; ~ Prob LV9| < 0} ~ Prob [yn >0+ yTAy] (4)
g
Denoting
U:R" ' —R=yTAy, (5)
as a central quadratic form in standard Gaussian random variables, the failure probability can be rewritten as
Py~ provl, = 040 = [ { [ et poooda =B 105 - 0) ©)
B+u

Using quadratic approximation of the failure surface together with asymptotic arBhgtang (1984 proved

that

(=p)
[15=) \/1+28a;
Herea;, the eigenvalues oA, can be related to the principal curvatures of the surfgcasa; = «;/2. This

result is important because it gives the asymptotic behavjounder general conditions. Latdiohenbichler
and Rackwit#198¢) proposed an improved formula, whefg is given by

Py —

when 3 — oo (7)

—1/2

©(B)
(—3)

This equation was also rederived Kyyltodlu and Nielser(1994), Polidori et al! (1999 andAdhikari (2004
using different approaches. Using probability density function of the quadratic tyAdhikari (2004 has
derived some new closed-form approximationg’gf In this paper an asymptotic approximation is presented for
the case when the number of random variables become very large.

Py =E[®(~B—U)] ~ ®(~B) ||l,_1 +2

(8)

"

Failure Probability Using Asymptotic Distribution

We consider the case when the number of random variables is very large, that is, when asymptoticalty
From equations3) and @) the probability of failure can be rewritten as

g
Py ~Prob | =— < 0| =Prob[z > [ 9)
f w5 < 24
where
2=y, —y Ay ER (10)

From the central limit theorem it is expected that when— oo the random variable: will asymptotically
approach a Gaussian random variable. Discussions on asymptotic distribution of quadratic forms may be found
inMathai and Provog{1992, Section 4.6b). Here one of the simplest forms of asymptotic distributionvei|

be used to obtair.

We start with the moment generating functionzof

M,(s) =E[e**] = E [esyn*SVTAy} 11)
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Becausey,, andy” Ay are independent random variables this equation reduces to

M.(s) = E[e*¥"] E [e—syTAy} 12)
Considering the eigenvalues Afwe have
n—1
M.(s) = e T] (1 + 2sa2) ™7 (13)
k=1

Now construct a sequence new random variablesz/\/n. The moment generating function of

n—1
M,(s) = M,(s//n) = 632/2"1_[ (1+ 2$ak/\/ﬁ)_1/2 (14)
k=1

From this

n—1

In (M,(s)) = s*/2n — % Zln (1+ 2sax/v/n)

(15)
n—1
=5%/2n — % Z?sak/\/ﬁ— s (Qak/\/ﬁ)z/Q + &° (Zak/\/ﬁ)‘g/?, — .
k=1
provided
[2sax| <1, for k=1,2,--- ,n—1 (16)

Consider a case when, andn are such that the higher-order termssofanish as: — oo, i.e., we assume: is
large such that the following conditions hold

n—1

Z(?ak/\/ﬁ)Q/Q < oo or gTrace (A%) < (17)
n

k=1

n—1

2" -
and (2ar/v/n)"Jr — 0 or — 5 Trace(A") =0, V r=>3 (18)

nr’er

k=1

Under these assumptions, the series in equéfiBnoan be truncated after the quadratic term

n—1

In (M,(s)) ~ s?/2n — % Z s (2a/v/n) — s* (2ak/\/ﬁ)2 /2

k=1
= —Trace (A) s/v/n + (1 + 2 Trace (AQ)) s2/2n

19)

Therefore, the moment generating functiorzef ¢/n can be approximated by

MZ(S) ~ efTrace(A)s+(1+2 Trace(AQ))SZ/Z (20)

From the uniqueness of the Laplace Transform pair it follows that when the conditigr$1(8) are satisfied;
asymptotically approaches a Gaussian random variable with (r€Brace (A)) and variancél+2Trace (A?)),

that is
2~ Ny (—Trace (A),1/1+4 2 Trace (A2)> when n — oo (21)

Using this pdf of z, the asymptotic probability of failure can be obtained from equa®pag

B + Trace (A)
1 + 2 Trace (A2)

Py — @ when n — oo (22)

Like [Breitunds result in equation’), this is another asymptotic result. Here the asymptotic behavior when

n — oo, instead of — oo, is considered. If the failure surface is linear or close to linear thewe (A) =

Trace (AQ) — 0, and itis easy to see that equati@2)reduces to the classical FORM formufa ~ ®(—3). In

many real-life problems the number of random variables is expected to be large. In such situations this asymptotic
result may turn out to be useful.
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Minimum Number of Random Variables Required for the Accuracy of the Asymptotic Approach
The error in neglecting higher order terms in seriEs (s of the form

n—1 1 0 ”
kZ:l(Qsak/\/ﬁ)r/r = (\/ﬁ> Trace (A"), for r>3 (23)

Values of s define the domain over which the moment generating function is used. Fordaitgerns out that
a good choice of is s = (. Using this, here we aim to derive a simple expression for the minimum valae of
which issufficientfor the application of the asymptotic distribution method. From condiidd@), @ssume there
exist a small real number(the error) such that

1(28) (28)" 4p°

- Trace (A") < e orn™? > L Trace (A") orn> —
r nr/2 e /22

( / Trace (A’”))2 (24)

SinceA is a positive definite matrix, the critical value ofis obtained for = 3:

432 2
Nmin = —— | 1/ Trace A3 ) 25
V9e2 ( (A7) (23)

From equationZ5), the following points may be observed: (a) minimum number of random variables required
would be more ife (error) is considered to be small (as expected)ang o 521/3' and (b) if 3 is large, more
random variables are needed to achieve a desired accuraay,anc 32.

Geometric Interpretation of the Asymptotic Expression
Yn The asymptotic expression of the failure probability given in equat®2) ¢an be

A obtained using geometrical approach. From equatidjrend 5), the failure domain
(B+m)fA canbe expressed as
Using asymptotic approach it was shown that wher oo
Failure
domain U ~Ni(m,0), withm = Trace(A) ando? = 2Trace (A*) (27)
y* Using the standardizing transformatidh = (U — m/)o, equation [26) can be
g rewritten as
oY oy (28)
v< B/0 g+m  B4+m =~
/(g+m)je 1o o
This equation (a straight line) is shownigure 1. Considering the triangle AOB,
Figure 1. Geometricin- ,,,9 — OA _ _(B+m) _ _ Thereforesinf — —tané _ — __o __ Now
terpretation OB = (B+m)/o V1+tanZ0 o Tto2 ”

considering the triangle OB and noticing that @* L AB, sin) = 5 = (CETE
From this, the modified reliability index

:ﬁ+m o . B+m . B + Trace (A) (29)

ind = -
o Vit+o2 V1+o? \/1+2Trace(A2)

,BI

B+m .
=—"5
g

Therefore, asymptotic failure probabilifyy = ®(—3’), which has been derived in equati@®). If n is small

m ando will be very small. This would shift point B towardsoo in Y-axis and point A towardg level in in
yn-axis. That is, whemn, o — 0, line AB will rotate clockwise and eventually will be parallel to Y-axis with a
shift of +/4. In this situation3’ — (3 as expected.

Numerical Example

We consider a problem for which the failure surfacexsctlyparabolic in the normalized space, as given by
equation'8). The purpose of this hypothetical example is to understand how the proposed approximation work
after making a parabolic failure surface assumption. Therefore, the effect of errors due to parabolic failure surface
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assumption itself cannot and will not be investigated here. Probability of failure obtained using the asymptotic
distribution is compared with bolBreitungs asymptotic result and the formul8)(derived byHohenbichler and
Rackwitz(1988. [Figure Za) shows asymptotic probability of failure (normalized by dividing with-3)) for

values ofg ranging from0 to 6. It is assumed that — 1 = 100 andTrace (A) = 2.0. The eigenvalues oA

are spaced in a quadratic manner. For this problem, the minimum number of random variables required for the
applicability of the asymptotic distribution formula can be obtained fr@f).(Considerings = 0.01, it can be

shown from equation26) thatn,,,;,, = 220. Although this condition is not satisfied here, the results obtained
from this approach are quite acceptable, especially for lower valugs Résults obtained from the asymptotic

S - = Asymptotic:} - o (Breitung) ~ - - Asymptotic: - o (Breitung)

S . == Hohenbichler & Rackwitz s ~ == Hohenbichler & Rackwitz
10 S < So — Asymptotic: N o 1071_\ S So — Asymptotic: n— o
EETRENY o Exact (MCS) RS o _Exact (MCS)

3
B

3
B
(@n — 1 =100, Trace (A) = 2.0 (b) n — 1 = 300, Trace (A) = 2.0

Figure 2:Failure probability using asymptotic distribution

analysis improve when the number of random variables becomes Fgyge Zb) shows asymptotic probability
of failure forn—1 = 300 andTrace (A) = 2.0. As expected, with more random variables, asymptotic probability
of failure match very well with the Monte Carlo simulation result.

Conclusions

An asymptotic approximation for the probability of failure when the number of random variablescc is

provided. It is assumed that the basic random variables are Gaussian and the the failure surface is approximated
by a parabolic hypersurface in the neighborhood of the design point. The new asymptotic SORM is based on
the asymptotic distribution of a central quadratic form in Gaussian random variables. The main outcome of the
asymptotic analysis is that the conventional reliability indeseeds to be modified when — oco. A geomet-

ric interpretation of the modified reliability index is given. A closed-form expression for minimum number of
random variables needed to apply the asymptotic formula is derived. Once a value otleisare{ected, this
expression can be used to check whether the proposed asymptotic approximation can be used for the problem.
The proposed asymptotic approximation is compared with some existing approximations and Monte-Carlo sim-
ulations using numerical examples. If the number of random variables is small then the proposed approach do
not provide accurate result. However, when the number of random variables is large, then the asymptotic approx-
imation produces excellent accuracy. In many real-life problems the number of random variables is expected to
be large. In such situations the asymptotic result derived here will be useful.
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Nomenclature
z random variable used for asymptotic distribution

i) Hasofer and Lingeliability index
[ unit matrix of orderk
X basic random variables
x* design point
y n — 1 dimensional uncorrelated Gaussian random vector
€ small real number ) . .
Kj jth principal curvature of the failure surface at the design point
D(e standard Gaussian cumulative distribution function
(e standard Gaussian probability density function
a; th eigenvalue oA _ _
g(x) ailure surface in the space of basic variables
n number of basic random variables
p(X) probability density function ok
Py probability of failure
pu(u) probability density function ofu
q a scaled random variable used for asymptotic distribution
U quadratic formy” Ay in standard Gaussian random variables
u a real scalar variable for the values of the random variéble
n standard Gaussian random variablestir coordinate
%)T matrix transpose
»(m, %) n dimensional Gaussian random vector with meag R™ and covariance matrix € R"*"
R space of real numbers
E[o] ex?ectation operator
€ belongs to
— maps into
|'e determinant of a matrix
x proportional to
— approaches to
~ distributed as
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