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Abstract
In the reliability analysis of a complex engineering structure a very large number of the system parameters can
be considered to be random variables. The difficulty in computing the failure probability using the First and
Second-Order Reliability Methods (FORM and SORM) increases rapidly with the number of variables or ‘di-
mension’. There are mainly two reasons behind this. The first is the increase in computational time with the
increase in the number of random variables. In principle this problem can be handled with superior computa-
tional tools [seeSchulleret al. (2003)]. The second, which is perhaps more fundamental, is that there are some
conceptual difficulties associated typically with high dimensions. This means that even one manages to carry out
the necessary computations, the application of existing FORM and SORM may still lead to incorrect results in
high dimensions. This issue has received little attention in the literature and this paper is aimed at addressing
it. An asymptotic approximationfor the case when the number of random variablesn → ∞ is provided. The
new asymptotic SORM is based on parabolic approximation of the failure surface in the transformed standard
Gaussian space. A simple closed-form asymptotic expression is derived. The proposed asymptotic approxima-
tion for n → ∞ case is compared with existing approximations and Monte-Carlo simulations using numerical
examples.

Introduction
In reliability based structural analysis and design it is required to calculate the probability of failure (or survival)
of a structure, either to assess the risk associated with an existing structural facility or to determine if a structural
design has met the prescribed reliability criteria. Suppose the random variables describing the uncertainties in
the structural properties and loading are considered to form a vectorx ∈ Rn. The statistical properties of the
system are fully described by the joint probability density functionp(x) : Rn 7→ R. For a given set of variables
x the structure will either fail under the applied (random) loading or will be safe. The condition of the structure
for everyx can be described by a safety marging(x) : Rn 7→ R such the structure has failed ifg(x) ≤ 0 and is
safe ifg(x) > 0. Thus, the probability of failure is given by

Pf =
∫

g(x)≤0

p(x)dx (1)

The functiong(x) is also known as the failure surface or the limit-state function. The central theme of a reliability
analysis is to evaluate the multidimensional integral (1). The exact evaluation of this integral, either analytically
or numerically, is not possible for most practical problems because (a)n is large, (b)p(x) is non-gaussian, and
(c) g(x) is a highly nonlinear function ofx. Even direct Monte Carlo simulation is quite expensive becausePf is
usually small.

Over the past three decades there has been extensive research (see for example, the books byThoft-Christensen
and Baker, 1982, Madsenet al., 1986, Ditlevsen and Madsen, 1996, Melchers, 1999) to develop approximate
numerical methods for the efficient calculation of the reliability integral. The approximate reliability methods
can be broadly grouped into (a) first-order reliability method (FORM), and (b) second-order reliability method
(SORM). In FORM and SORM it is assumed that all the basic random variables are transformed and scaled so
that they are uncorrelated Gaussian random variables, each with zero mean and unit standard deviation. In the
transformed spaceHasofer and Lind(1974) defined the reliability index

β = (x∗
T

x∗)1/2 where x∗ : min{(xT x)1/2} subject to g(x) = 0 (2)

Herex∗, the ‘design point’ or the ‘checking point’. Once the reliability index and the design point is known, the
probability of failure can be obtained using FORM or SORM. In FORM the failure surface is approximated by
a hyperplane which is tangent to the failure surface at the design point. In SORM, the actual failure surface is
approximated by a quadratic hypersurface in the neighborhood of the design point.
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SORM Approximations
After suitable transformations and keeping only second-order terms,Madsenet al.(1986) have approximated the
failure surface by a parabolic surface as

g̃ ≈ −yn + β + yT Ay, where y ∼ Nn−1(0n−1, In−1) andyn ∼ N1(0, 1) (3)

The matrixA can be diagonalized by a further orthogonal transformation using the eigenvectors ofA. The
parabolic surface in (3) has been used by a number of authors, for example,Hohenbichler and Rackwitz(1988),
Köylüoǧlu and Nielsen(1994), Cai and Elishakoff(1994), Zhao and Ono(1999a,b), Polidori et al. (1999) and
Hong(1999). Der-Kiureghianet al.(1987) andDer-Kiureghian and Stefano(1991) have also used this parabolic
surface as the basis for point fitted SORM. With this approximation the failure probability is given by

Pf ≈ Prob
[

g̃

|∇g| ≤ 0
]
≈ Prob

[
yn ≥ β + yT Ay

]
(4)

Denoting
U : Rn−1 7→ R = yT Ay, (5)

as a central quadratic form in standard Gaussian random variables, the failure probability can be rewritten as

Pf ≈ Prob [yn ≥ β + U ] =
∫

R

{∫ ∞

β+u

ϕ(yn)dyn

}
pU (u)du = E [Φ(−β − U)] (6)

Using quadratic approximation of the failure surface together with asymptotic analysisBreitung(1984) proved
that

Pf → Φ(−β)∏n−1
j=1

√
1 + 2βaj

when β →∞ (7)

Hereaj , the eigenvalues ofA, can be related to the principal curvatures of the surfaceκj asaj = κj/2. This
result is important because it gives the asymptotic behaviorPf under general conditions. Later,Hohenbichler
and Rackwitz(1988) proposed an improved formula, wherePf is given by

Pf = E [Φ(−β − U)] ≈ Φ(−β)
∥∥∥∥In−1 + 2

ϕ(β)
Φ(−β)

A

∥∥∥∥
−1/2

(8)

This equation was also rederived byKöylüoǧlu and Nielsen(1994), Polidori et al. (1999) andAdhikari (2004)
using different approaches. Using probability density function of the quadratic formU , Adhikari (2004) has
derived some new closed-form approximations ofPf . In this paper an asymptotic approximation is presented for
the case when the number of random variables become very large.

Failure Probability Using Asymptotic Distribution
We consider the case when the number of random variables is very large, that is, when asymptoticallyn → ∞.
From equations (3) and (4) the probability of failure can be rewritten as

Pf ≈ Prob
[

g̃

|∇g| ≤ 0
]

= Prob [z ≥ β] (9)

where
z = yn − yT Ay ∈ R (10)

From the central limit theorem it is expected that whenn → ∞ the random variablez will asymptotically
approach a Gaussian random variable. Discussions on asymptotic distribution of quadratic forms may be found
in Mathai and Provost(1992, Section 4.6b). Here one of the simplest forms of asymptotic distribution ofz will
be used to obtainPf .

We start with the moment generating function ofz

Mz(s) = E [esz] = E
[
esyn−syT Ay

]
(11)
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Becauseyn andyT Ay are independent random variables this equation reduces to

Mz(s) = E [esyn ] E
[
e−syT Ay

]
(12)

Considering the eigenvalues ofA we have

Mz(s) = es2/2
n−1∏

k=1

(1 + 2sak)−1/2 (13)

Now construct a sequence new random variablesq = z/
√

n. The moment generating function ofq:

Mq(s) = Mz(s/
√

n) = es2/2n
n−1∏

k=1

(
1 + 2sak/

√
n
)−1/2

(14)

From this

ln (Mq(s)) = s2/2n− 1
2

n−1∑

k=1

ln
(
1 + 2sak/

√
n
)

= s2/2n− 1
2

n−1∑

k=1

2sak/
√

n− s2
(
2ak/

√
n
)2

/2 + s3
(
2ak/

√
n
)3

/3− · · ·
(15)

provided
|2sak| < 1, for k = 1, 2, · · · , n− 1 (16)

Consider a case whenak andn are such that the higher-order terms ofs vanish asn → ∞, i.e., we assumen is
large such that the following conditions hold

n−1∑

k=1

(2ak/
√

n)2/2 < ∞ or
2
n

Trace
(
A2

)
< ∞ (17)

and
n−1∑

k=1

(2ak/
√

n)r/r → 0 or
2r

nr/2 r
Trace (Ar) → 0, ∀ r ≥ 3 (18)

Under these assumptions, the series in equation (15) can be truncated after the quadratic term

ln (Mq(s)) ≈ s2/2n− 1
2

n−1∑

k=1

s
(
2ak/

√
n
)− s2

(
2ak/

√
n
)2

/2

= −Trace (A) s/
√

n +
(
1 + 2 Trace

(
A2

))
s2/2n

(19)

Therefore, the moment generating function ofz = q
√

n can be approximated by

Mz(s) ≈ e
−Trace(A)s+

(
1+2 Trace

(
A2

))
s2/2 (20)

From the uniqueness of the Laplace Transform pair it follows that when the conditions (16)–(18) are satisfied,z
asymptotically approaches a Gaussian random variable with mean(−Trace (A)) and variance(1+2Trace

(
A2

)
),

that is

z ' N1

(
−Trace (A) ,

√
1 + 2 Trace

(
A2

))
when n →∞ (21)

Using this pdf ofz, the asymptotic probability of failure can be obtained from equation (9) as

Pf → Φ


− β + Trace (A)√

1 + 2 Trace
(
A2

)


 when n →∞ (22)

Like Breitung’s result in equation (7), this is another asymptotic result. Here the asymptotic behavior when
n → ∞, instead ofβ → ∞, is considered. If the failure surface is linear or close to linear thenTrace (A) =
Trace

(
A2

) → 0, and it is easy to see that equation (22) reduces to the classical FORM formulaPf ≈ Φ(−β). In
many real-life problems the number of random variables is expected to be large. In such situations this asymptotic
result may turn out to be useful.
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Minimum Number of Random Variables Required for the Accuracy of the Asymptotic Approach

The error in neglecting higher order terms in series (15) is of the form

n−1∑

k=1

(2sak/
√

n)r/r =
1
r

(
2s√
n

)r

Trace (Ar) , for r ≥ 3 (23)

Values of s define the domain over which the moment generating function is used. For largeβ, it turns out that
a good choice ofs is s = β. Using this, here we aim to derive a simple expression for the minimum value ofn
which issufficientfor the application of the asymptotic distribution method. From condition (18), assume there
exist a small real numberε (the error) such that

1
r

(2β)r

nr/2
Trace (Ar) < ε or nr/2 >

(2β)r

rε
Trace (Ar) or n >

4β2

r
√

r2ε2

(
r
√

Trace (Ar)
)2

(24)

SinceA is a positive definite matrix, the critical value ofn is obtained forr = 3:

nmin =
4β2

3
√

9ε2

(
3

√
Trace

(
A3

))2

(25)

From equation (25), the following points may be observed: (a) minimum number of random variables required
would be more ifε (error) is considered to be small (as expected) andnmin ∝ 1

ε2/3 , and (b) ifβ is large, more
random variables are needed to achieve a desired accuracy andnmin ∝ β2.

Geometric Interpretation of the Asymptotic Expression
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Figure 1: Geometric in-
terpretation

The asymptotic expression of the failure probability given in equation (22) can be
obtained using geometrical approach. From equations (4) and (5), the failure domain
can be expressed as

yn − U ≥ β (26)

Using asymptotic approach it was shown that whenn →∞

U ' N1 (m,σ) , with m = Trace (A) andσ2 = 2Trace
(
A2

)
(27)

Using the standardizing transformationY = (U − m/)σ, equation (26) can be
rewritten as

yn

β + m
+

Y

−β + m

σ

≥ 1 (28)

This equation (a straight line) is shown inFigure 1. Considering the triangle AOB,
tan θ = OA

OB = (β+m)
(β+m)/σ = σ. Therefore,sin θ = tan θ√

1+tan2 θ
= σ√

1+σ2 . Now,

considering the triangle OBy∗ and noticing that Oy∗⊥AB, sin θ = Oy∗

OB = β′

(β+m)/σ .
From this, the modified reliability index

β′ =
β + m

σ
sin θ =

β + m

σ

σ√
1 + σ2

=
β + m√
1 + σ2

=
β + Trace (A)√
1 + 2 Trace

(
A2

) (29)

Therefore, asymptotic failure probabilityPf = Φ(−β′), which has been derived in equation (22). If n is small
m andσ will be very small. This would shift point B towards−∞ in Y-axis and point A towardsβ level in in
yn-axis. That is, whenm,σ → 0, line AB will rotate clockwise and eventually will be parallel to Y-axis with a
shift of +β. In this situationβ′ → β as expected.

Numerical Example
We consider a problem for which the failure surface isexactlyparabolic in the normalized space, as given by
equation (3). The purpose of this hypothetical example is to understand how the proposed approximation work
after making a parabolic failure surface assumption. Therefore, the effect of errors due to parabolic failure surface

Adhikari 4



REFERENCES REFERENCES

assumption itself cannot and will not be investigated here. Probability of failure obtained using the asymptotic
distribution is compared with bothBreitung’s asymptotic result and the formula (8) derived byHohenbichler and
Rackwitz(1988). Figure 2(a) shows asymptotic probability of failure (normalized by dividing withΦ(−β)) for
values ofβ ranging from0 to 6. It is assumed thatn − 1 = 100 andTrace (A) = 2.0. The eigenvalues ofA
are spaced in a quadratic manner. For this problem, the minimum number of random variables required for the
applicability of the asymptotic distribution formula can be obtained from (25). Consideringε = 0.01, it can be
shown from equation (25) thatnmin = 220. Although this condition is not satisfied here, the results obtained
from this approach are quite acceptable, especially for lower values ofβ. Results obtained from the asymptotic
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(b) n− 1 = 300, Trace (A) = 2.0

Figure 2:Failure probability using asymptotic distribution

analysis improve when the number of random variables becomes large.Figure 2(b) shows asymptotic probability
of failure forn−1 = 300 andTrace (A) = 2.0. As expected, with more random variables, asymptotic probability
of failure match very well with the Monte Carlo simulation result.

Conclusions
An asymptotic approximation for the probability of failure when the number of random variablesn → ∞ is
provided. It is assumed that the basic random variables are Gaussian and the the failure surface is approximated
by a parabolic hypersurface in the neighborhood of the design point. The new asymptotic SORM is based on
the asymptotic distribution of a central quadratic form in Gaussian random variables. The main outcome of the
asymptotic analysis is that the conventional reliability indexβ needs to be modified whenn → ∞. A geomet-
ric interpretation of the modified reliability index is given. A closed-form expression for minimum number of
random variables needed to apply the asymptotic formula is derived. Once a value of error (ε) is selected, this
expression can be used to check whether the proposed asymptotic approximation can be used for the problem.
The proposed asymptotic approximation is compared with some existing approximations and Monte-Carlo sim-
ulations using numerical examples. If the number of random variables is small then the proposed approach do
not provide accurate result. However, when the number of random variables is large, then the asymptotic approx-
imation produces excellent accuracy. In many real-life problems the number of random variables is expected to
be large. In such situations the asymptotic result derived here will be useful.
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Nomenclature
z random variable used for asymptotic distribution
β Hasofer and Lindreliability index
Ik unit matrix of orderk
x basic random variables
x∗ design point
y n− 1 dimensional uncorrelated Gaussian random vector
ε small real number
κj jth principal curvature of the failure surface at the design point
Φ(•) standard Gaussian cumulative distribution function
ϕ(•) standard Gaussian probability density function
aj jth eigenvalue ofA
g(x) failure surface in the space of basic variables
n number of basic random variables
p(x) probability density function ofx
Pf probability of failure
pU (u) probability density function ofu
q a scaled random variable used for asymptotic distribution
U quadratic formyT Ay in standard Gaussian random variables
u a real scalar variable for the values of the random variableU
yn standard Gaussian random variable fornth coordinate
(•)T matrix transpose
Nn(m,Σ) n dimensional Gaussian random vector with meanm ∈ Rn and covariance matrixΣ ∈ Rn×n

R space of real numbers
E [•] expectation operator
∈ belongs to
7→ maps into
‖ • ‖ determinant of a matrix
∝ proportional to
→ approaches to
∼ distributed as
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