Bayesian evidence for finite element model updating
Mthembu, L., Marwala, T., Friswell, M. I. and Adhikari, S.,
Proceedings of the 27th International Modal Analysis Conference (IMAC-XXVII),
February 2009, Orlando, Florida, USA.
This paper considers the problem of model selection within the context of finite element model updating. Given that a number of FEM updating models, with different updating parameters, can be designed, this paper proposes using the Bayesian evidence statistic to assess the probability of each updating model. This makes it possible then to evaluate the need for alternative updating parameters in the updating of the initial FE model. The model evidences are compared using the Bayes factor, which is the ratio of evidences. The Jeffrey's scale is used to determine the differences in the models. The Bayesian evidence is calculated by integrating the likelihood of the data given the model and its parameters over the a priori model parameter space using the new nested sampling algorithm. The nested algorithm samples this likelihood distribution by using a hard likelihood-value constraint on the sampling region while providing the posterior samples of the updating model parameters as a by-product. This method is used to calculate the evidence of a number of plausible finite element models.
BiBTeX Entry
@INPROCEEDINGS{cp76,
AUTHOR={L. Mthembu and T. Marwala and M. I. Friswell and S. Adhikari},
TITLE={Bayesian evidence for finite element model updating},
BOOKTITLE={Proceedings of the 27th International Modal Analysis Conference (IMAC - XXVII)},
YEAR={2009},
Address={Orlando, Florida, USA},
Month={February},
Note={accepted for publication}
}
by Sondipon Adhikari