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Abstract

Wind and marine turbine structures are long slender columns with a rotor and blade
assembly placed on the top. These slender structures vibrate due to dynamic environmental
forces and its own dynamics. Analysis of the dynamic behavior of wind and marine turbines
is fundamental to the stability, performance, operation and safety of these systems. In this
note a simplified approach is outlined for linear dynamic analysis of these long, slender struc-
tures. The method is based on an Euler Bernoulli beam-column with elastic end supports.
The elastic end-supports are considered to model the flexible nature of the interaction of
these systems with soil. Within these assumptions, a general approach is taken to obtain
the natural frequency of the system. Theoretical developments are explained by practical
examples. Design issues of wind and marine turbine structures are discussed based on the
numerical results. Suitable Mapler and Matlabr are also given to support this study.
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Nomenclature
α mass ratio, α = M

mL

β nondimensional rotary inertia, β = J
mL3

ηr nondimensional rotational end stiffness, ηr = krL
EI

ηt nondimensional translational end stiffness, ηt = ktL3

EI

γk stiffness correction factor, γk = ke
kCL

γm mass correction factor
µ nondimensional radius of gyration, µ = r

L

ν nondimensional axial force, ν = PL2

EI

Ω nondimensional frequency parameter, Ω2 = ω2 mL4

EI

ω angular frequency (rad/s)
$ passing frequency of the blades
ξ non-dimensional length parameter, ξ = x/L

EI bending stiffness of the beam
f(x, t) applied time depended load on the beam

f0 natural frequency scaling parameter (s−1), f0 =
√

EI
mL4

fi natural frequency (Hz)
J rotary inertia of the rotor system
ke equivalent end stiffness of the beam
kr rotational end stiffness of the elastic support
kr translational (linear) end stiffness of the elastic support

kCL normalizing stiffness value, kCL = 3EI
L3

L length of the beam
M mass of the rotor system
m mass per unit length of the beam, m = ρA

Mb mass of the beam, Mb = mL

Me equivalent mass of the SDOF system
P constant axial force in the beam
pL normalized forcing amplitude at the top end pL = εML4

EI $2

t time
W (ξ) transverse deflection of the beam
w(x, t) time depended transverse deflection of the beam
x spatial coordinate along the length of the beam
(•′) derivative with respect to the spatial coordinate

(•)T matrix transposition
˙(•) derivative with respect to time
|•| determinant of a matrix
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1 Introduction
Wind and marine turbine structures are long slender columns with a rotor and blade assembly

placed on the top. These slender structures vibrate due to dynamic environmental forces and its
own dynamics. Analysis of the dynamic behavior of wind and marine turbines is fundamental to
the stability, performance, operation and safety of these systems. For the design and analysis of
real-life systems, detailed finite-element models are often used. A multi-physics model of a mod-
ern wind or marine turbine with (non-linear) structural dynamics, fluid-structure interaction,
soil-structure interaction and rotor dynamics can easily lead to computational model consisting
several million degrees-of-freedom. While such a detailed analysis can give incredible resolution
of the dynamic behavior of the system, the understanding of basic physical principles which
govern the overall design may be somewhat difficult to deduce from such a complex analysis.
For this reason, in this note we will focus on a simplified analysis with the aim of understanding
fundamental physics which underpins the overall dynamic behavior of the system. Our approach
involves the following key steps:

• Idealisation of the complex system and related assumptions

• Derivation of the equation of motion

• Derivation of the boundary conditions

• Analytical solution of the eigenvalue problem to obtain natural frequencies of the system

2 Equation of Motion and Boundary Conditions
We consider a typical wind turbine structure as shown in Figure 1. This system is idealized

by an Euler Bernoulli beam. The bending stiffness of the beam is EI(x) and it is ‘standing’ on
soil. Here x is the spatial coordinate along the height of the structure. The interaction of the
structure with the surrounding soil is modeled using two springs. The rotational spring with
spring stiffness kr and the translational spring with spring stiffness kt constrains the system at
the bottom (x = 0). The beam has a top mass with rotary inertia J and mass M . This top
mass is used to idealise the rotor and blade system. The mass per unit length of the beam is
m(x), r(x) is the radius of gyration and the beam is subjected to a constant compressive axial
load P . For the static case the value of P will be equal to Mg. But for dynamic case the value
of the true force P coming into the beam can change. Therefore, for generality we will use the
notation P in this note. If necessary, a specific value of P can always be used.

The equation of motion of the beam is given by (see the book by Géradin and Rixen [10] for
the derivation of this equation):

∂2

∂x2

(
EI(x)

∂2w(x, t)
∂x2

)
+

∂

∂x

(
P (x)

∂w(x, t)
∂x

)
− ∂

∂x

(
mr2(x)

∂ẅ(x, t)
∂x

)

+ m ẅ(x, t) = f(x, t). (1)

Here w(x, t) is the transverse deflection of the beam, t is time, ˙(•) denotes derivative with respect
to time and f(x, t) is the applied time depended load on the beam. The height of the structure
is considered to be L. Equation (1) is a fourth-order partial differential equation [19] and has
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Figure 1: Idealisation of a wind turbine (the first picture is taken from http://www.segen.co.uk) using
Euler Bernoulli beam with a top mass. Flexible springs are assumed to model the soil-structure interac-
tion. The weight of the rotor-hub and blades are assumed to be P . The forcing due to the rotation of
the blades is assumed to be harmonic in nature with frequency $.

been used extensively in literature for various problems (see for example, references [1–3, 5–
9, 11–18, 20, 23–25, 27–29]). Our central aim is to obtain the natural frequency of the system.
The book by Blevins [4] lists several expressions of the natural frequencies of similar systems
but this particular case has not been covered. For this reason we need to develop a new analysis
method for this problem. Here we develop an approach based on the non-dimensionalisation of
the equation of motion (1).

The forcing due to the rotation of the blades is assumed to be harmonic in nature with
frequency $. This implies that the system is subjected to a forcing

F ($) exp[i$t] (2)

at x = L. We can assume that there is a slight imbalance between the rotor and the column. Such
an imbalance in unavoidable due to construction defects of such complex systems. Assuming
the amount of imbalance is ε, we have F ($) = (M$2ε) due to the centrifugal force. Therefore,
the dynamic loading on the system at x = L can be idealized as

f(x, t) = (M$2ε) exp[i$t]δ(x− L) (3)

where δ(•) is the Dirac delta function. This equation shows that the magnitude of the force
acting on the system is proportional to the square of the blade passing frequency.
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Equation (1) is a quite general equation. It is possible to consider any variation in the
bending stiffness EI(x) and mass density m(x) of the structure with height (such as a tapered
column). Consideration of such variation normally leads to the case where closed-form solutions
are impossible to obtain due to the complex nature of the resulting equations. For simplicity,
we therefore assume a special case where all properties are constant along the height of the
structure. This assumption will definitely affect the numerical results, but unlikely to change
the physical understandings, which are the primary aims of this lecture. In summary, the main
assumptions of the proposed analysis are:

• The inertial and the elastic properties of the structure are constant along the height of the
structure.

• The effect of soil stiffness is elastic and linear and can be captured by a translational and
a rotational spring at the point of contact. In effect, the soil-structure interaction can be
completely captured by the boundary condition at the bottom of the structure.

• The end-mass is rigidly attached to the structure.

• The axial force in the structure is constant and remains axial during vibration.

• Deflections due to shear force are negligible and a plain section in the structure remains
plane during the bending vibration (standard assumptions in the Euler-Bernoulli beam
theory).

• The flexible dynamics of the rotor and the blades above the top point is assumed to be
uncoupled with the dynamics of the column.

• Forcing to the system is harmonic and arising to due to the imbalance in the rotor-beam
system.

• None of the properties are changing with time. In other words, the system is time invariant.

Equation (1) can be applied to marine turbines also as the equation of motion for free vibra-
tion does not change even when the system is submerged in water. The main change for the
marine turbine would be the addition of viscous damping forces arising due to the surrounding
water. Since the effect of damping on the natural frequencies is very small, the mathematical
formulations proposed here are equally applicable to marine turbines also.

Noting that the properties are not changing with x, equation (1) can be simplified as

EI
∂4w(x, t)

∂x4
+ P

∂2w(x, t)
∂x2

−mr2 ∂2ẅ(x, t)
∂x2

+ m ẅ(x, t) = (M$2ε) exp[i$t]δ(x− L). (4)

The four boundary conditions associated with this equation can be expressed as

• Bending moment at x = 0:

EI
∂2w(x, t)

∂x2
− kr

∂w(x, t)
∂x

= 0
∣∣∣∣
x=0

or EIw′′(0, t)− krw
′(0, t) = 0. (5)
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• Shear force at x = 0:

EI
∂3w(x, t)

∂x3
+ P

∂w(x, t)
∂x

+ ktw(x, t)−mr2 ∂ẅ(x, t)
∂x

= 0
∣∣∣∣
x=0

or EIw′′′(0, t) + Pw′(0, t) + ktw(0, t)−mr2 ∂ẅ(0, t)
∂x

= 0.

(6)

• Bending moment at x = L:

EI
∂2w(x, t)

∂x2
+ J

∂ẅ(x, t)
∂x

= 0
∣∣∣∣
x=L

or EIw′′(L, t) + J
∂ẅ(L, t)

∂x
= 0. (7)

• Shear force at x = L:

EI
∂3w(x, t)

∂x3
+ P

∂w(x, t)
∂x

−Mẅ(x, t)−mr2 ∂ẅ(x, t)
∂x

= 0
∣∣∣∣
x=L

or EIw′′′(L, t) + Pw′(L, t)−Mẅ(L, t)−mr2 ∂ẅ(L, t)
∂x

= 0.

(8)

Assuming harmonic solution (the separation of variable) we have

w(x, t) = W (ξ)exp {iωt} , ξ = x/L. (9)

Substituting this in the equation of motion and the boundary conditions, Eqs. (4) – (8), results

EI

L4

∂4W (ξ)
∂ξ4

+
P

L2

∂2W (ξ)
∂ξ2

−mω2W (ξ) +
mr2ω2

L2

∂2W (ξ)
∂ξ2

= (M$2ε) exp[i$t]δ(ξL− L) (10)

EI

L2
W ′′(0)− kr

L
W ′(0) = 0 (11)

EI

L3
W ′′′(0) +

P

L
W ′(0) + ktW (0) +

mr2ω2

L
W ′(0) = 0 (12)

EI

L2
W ′′(1)− ω2J

L
W ′(1) = 0 (13)

EI

L3
W ′′′(1) +

P

L
W ′(1) + ω2M W (1) +

mr2ω2

L
W ′(1) = 0. (14)

It is convenient to express these equations in terms of non-dimensional parameters by elementary
rearrangements as

∂4W (ξ)
∂ξ4

+ ν̃
∂2W (ξ)

∂ξ2
− Ω2W (ξ) = pL exp[i$t]δ(ξL− L) (15)

W ′′(0)− ηrW
′(0) = 0 (16)

W ′′′(0) + ν̃W ′(0) + ηtW (0) = 0 (17)

W ′′(1)− βΩ2W ′(1) = 0 (18)

W ′′′(1) + ν̃W ′(1) + αΩ2W (1) = 0 (19)

where
ν̃ = ν + µ2Ω2 (20)
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and

ν =
PL2

EI
(nondimensional axial force) (21)

ηr =
krL

EI
(nondimensional rotational end stiffness) (22)

ηt =
ktL

3

EI
(nondimensional translational end stiffness) (23)

Ω2 = ω2 mL4

EI
(nondimensional frequency parameter) (24)

α =
M

mL
(mass ratio) (25)

β =
J

mL3
(nondimensional rotary inertia) (26)

µ =
r

L
(nondimensional radius of gyration) (27)

pL = ε
ML4

EI
$2 (normalized forcing amplitude at the top end). (28)

For most columns µ = r/L ¿ 1 so that µ2 ≈ 0. As a result for low frequency vibration one
expects ν̃ ≈ ν. For notational convenience we define the natural frequency scaling parameter

f0 =

√
EI

mL4
. (29)

Using this, from equation (24) the natural frequencies of the system can be obtained as

ωj = Ωjf0; j = 1, 2, 3, · · · (30)

3 Equation of the Natural Frequencies
3.1 General Derivation

Natural frequencies of the system can be obtained from the ‘free vibration problem’ by
considering no force on the system. Therefore, we consider pL = 0 in the subsequent analysis.
Assuming a solution of the form

W (ξ) = exp {λξ} (31)

and substituting in the equation of motion (15) results

λ4 + ν̃λ2 − Ω2 = 0. (32)

This equation is often know as the dispersion relationship. This is the equation governing the
natural frequencies of the beam. Solving this equation for λ2 we have

λ2 = − ν̃

2
±

√(
ν̃

2

)2

+ Ω2

= −



√(
ν̃

2

)2

+ Ω2 +
ν̃

2


 ,




√(
ν̃

2

)2

+ Ω2 − ν̃

2


 .

(33)
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Because ν̃2 and Ω2 are always positive quantities, both roots are real with one negative and one
positive root. Therefore, the four roots can be expressed as

λ = ±iλ1, ±λ2 (34)

where

λ1 =




√(
ν̃

2

)2

+ Ω2 +
ν̃

2




1/2

(35)

and λ2 =




√(
ν̃

2

)2

+ Ω2 − ν̃

2




1/2

. (36)

From Eqs. (35) and (36) also note that

λ2
1 − λ2

2 = ν̃. (37)

In view of the roots in equation (34) the solution W (ξ) can be expressed as

W (ξ) = a1 sinλ1ξ + a2 cosλ1ξ + a3 sinhλ2ξ + a4 coshλ2ξ

or W (ξ) = sT (ξ)a
(38)

where the vectors

s(ξ) = {sinλ1ξ, cosλ1ξ, sinhλ2ξ, coshλ2ξ}T (39)

and a = {a1, a2, a3, a4}T . (40)

Applying the boundary conditions in Eqs. (16) – (19) on the expression of W (ξ) in (38) we
have

Ra = 0 (41)

where the matrix

R =




s′′1(0)− ηrs
′
1(0) s′′2(0)− ηrs

′
2(0)

s′′′1 (0) + ν̃s′1(0) + ηts1(0) s′′′2 (0) + ν̃s′2(0) + ηts2(0)
s′′1(1)− βΩ2s′1(1) s′′2(1)− βΩ2s′2(1)

s′′′1 (1) + ν̃s′1(1) + αΩ2s1(1) s′′′2 (1) + ν̃s′2(1) + αΩ2s2(1)

s′′3(0)− ηrs
′
3(0) s′′4(0)− ηrs

′
4(0)

s′′′3 (0) + ν̃s′3(0) + ηts3(0) s′′′4 (0) + ν̃s′4(0) + ηts4(0)
s′′3(1)− βΩ2s′3(1) s′′4(1)− βΩ2s′4(1)

s′′′3 (1) + ν̃s′3(1) + αΩ2s3(1) s′′′3 (1) + ν̃s′3(1) + αΩ2s3(1)


 .

(42)
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Substituting functions sj(ξ), j = 1, · · · , 4 from equation (39) and simplifying we obtain

R =




−λ1ηr −λ2
1

λ3
1 + νλ1 ηt

− sin (λ1) λ1
2 − Ω2β cos (λ1) λ1 − cos (λ1) λ1

2 + Ω2β sin (λ1) λ1

− cos (λ1) λ1
3 + ν̃ cos (λ1) λ1 + Ω2α sin (λ1) sin (λ1) λ1

3 − ν̃ sin (λ1) λ1 + Ω2α cos (λ1)

−λ2ηr λ2
2

λ3
2 + νλ2 ηt

sinh (λ2)λ2
2 − Ω2β cosh (λ2) λ2 cosh (λ2) λ2

2 − Ω2β sinh (λ2) λ2

cosh (λ2) λ2
3 + ν̃ cosh (λ2) λ2 + Ω2α sinh (λ2) sinh (λ2) λ2

3 + ν̃ sinh (λ2) λ2 + Ω2α cosh (λ2)


 .

(43)

The constant vector in equation (41) cannot be zero. Therefore, the equation governing the
natural frequencies is given by

|R| = 0. (44)

This, upon simplification (see Appendix A for the Mapler code developed for this purpose)
reduces to

− λ1
6s1 λ2

4sh2 + 2 ν2λ1
3c1 λ2

3ch2 + 2 λ1
3Ω4α c1 λ2

3β ch2 + 2 ν λ1
3c1 λ2

5ch2 − ν λ1
3Ω4β λ2α

+λ1
5Ω4β λ2α−2λ1

5c1 λ2
5ch2−2 ν2λ1

3λ2
3−2 ν λ1

3λ2
5+2λ1

5λ2
3ν−λ1

5c1 λ2
2Ω2α sh2+λ1

4Ω2β s1 λ2
5ch2

+λ1
4Ω4β s1 λ2

2α sh2+λ1
6s1 λ2

3Ω2β ch2−λ1
3Ω2α c1 λ2

4sh2+ν λ1
3c1 λ2

2Ω2α sh2−ν λ1
2Ω2β s1 λ2

5ch2

− ν λ1
4s1 λ2

3Ω2β ch2 − ν2λ1
2s1 λ2

4sh2 + ν λ1Ω2α c1 λ2
4sh2 − ν λ1Ω4α c1 λ2

3β ch2

+ s1 λ1
4λ2

3Ω2α ch2 + s1 λ1
4ν2λ2

2sh2 + Ω2α s1 λ1
2λ2

5ch2 − Ω4α s1 λ1
2λ2

4β sh2

+c1 λ1
5λ2

4Ω2β sh2+c1 λ1
5ν λ2

2Ω2β sh2+Ω2β c1 λ1
3λ2

4ν sh2+Ω4β c1 λ1
3ν λ2α ch2+s1 λ1

4ν λ2Ω2α ch2

+ Ω2β c1 λ1
3λ2

6sh2 + Ω2α s1 λ1
2ν λ2

3ch2 + 2 λ1
5λ2

5 +
((

λ1Ω2α c1 sh2 λ2
2 − 2λ1

2ν s1 sh2 λ2
2

+λ1
3c1 ν ch2 λ2+λ1

5λ2−λ1
4s1 Ω2β ch2 λ2+2 λ1

3c1 ch2 λ2
3−2 λ1Ω4α c1 β ch2 λ2−λ1

2Ω4β s1 α sh2

−s1 λ2
3Ω2α ch2 +2λ1Ω4β λ2α+Ω4β s1 λ2

2α sh2−s1 λ1
2λ2

4sh2 +λ1
3c1 Ω2α sh2−s1 λ1

2λ2Ω2α ch2

−λ1
3ν λ2−c1 λ1

3λ2
2Ω2β sh2−Ω2β c1 λ1λ2

4sh2+λ1λ2
3ν+λ1

4s1 sh2 λ2
2+λ1λ2

5−λ1
2Ω2β s1 ch2 λ2

3

−ν c1 λ1λ2
3ch2

)
ηt + λ1Ω4α c1 λ2

4β sh2 − λ1
3c1 λ2

4ν sh2 − λ1Ω2α c1 λ2
5ch2 − λ1

5c1 λ2
2ν sh2

− 2 λ1
3c1 λ2

3Ω2α ch2 − λ1
3c1 λ2

6sh2 + 2 λ1
4s1 λ2

4Ω2β sh2 + λ1
2ν s1 λ2

5ch2 + λ1
6s1 λ2

2Ω2β sh2

+ λ1
3Ω4α c1 λ2

2β sh2 + λ1
2Ω4β s1 λ2

3α ch2 + λ1
4s1 ν λ2

3ch2 − λ1
4s1 λ2

5ch2 + λ1
4Ω4β s1 λ2α ch2

−λ1
5c1 λ2

4sh2 + λ1
2Ω2β s1 λ2

6sh2 − λ1
6s1 λ2

3ch2 − λ1
5c1 λ2Ω2α ch2

)
ηr+Ω4α β λ1λ2

5+Ω4α β λ1λ2
3ν

+
(−s1 λ1

2λ2
5ch2 − Ω4β c1 λ1

3α sh2 + Ω4α s1 λ1
2β ch2 λ2 − s1 λ1

4ch2 λ2
3 − s1 λ1

2ν λ2
3ch2

− Ω2β c1 λ1λ2
5ch2 − Ω4β c1 λ1λ2

2α sh2 + Ω4α s1 λ2
3β ch2 − Ω2α s1 λ2

4sh2 − ν c1 λ1λ2
4sh2

−2 s1 λ1
2λ2

2Ω2α sh2−s1 λ1
4ν ch2 λ2−ν c1 λ1

3sh2 λ2
2+c1 λ1

3λ2
4sh2+c1 λ1

5sh2 λ2
2−c1 λ1

5Ω2β ch2 λ2

−s1 λ1
4Ω2α sh2 − 2Ω2β c1 λ1

3ch2 λ2
3
)
ηt + s1 λ1

4λ2
6sh2 − 2 ν λ1

2Ω4β s1 λ2
2α sh2

+ 4 λ1
4ν s1 λ2

4sh2 − 2λ1
5c1 ν λ2

3ch2 = 0. (45)

where
s1 = sin(λ1), c1 = cos(λ1), sh2 = sinh(λ2), ch2 = cosh(λ2). (46)

The natural frequencies can be obtained by solving equation (45) for Ω. Due to the complexity of
this transcendental equation it should be solved numerically. Equation (45) is shown not to scare
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you, but to show the complicated nature of the frequency equation even under the simplifying
assumptions discussed before. If we aim to relax any of the assumptions (e.g., variable bending
stiffness), this equation is likely to be even more complicated. Luckily, equation (45) can be
translated to Matlabr automatically and can be solved numerically.

3.2 Special Cases
Equation (45) is quite general as they consider axial load, elastic end restraints, mass and

rotary inertia of the rotor. Several interesting special cases can be obtained from this expression.

• Standard cantilever column: fixed support without any top mass, rotary inertia and axial
force:
For this case β = 0, α = 0, µ = 0 and ν = 0. From the dispersion relationship in (32)

observe that for this case λ1 = λ2 =
√

Ω = ω
√

mL4

EI = λ (say). Since the bottom of the
column is fixed, the stiffness parameters ηr and ηk approach to infinity. Substituting these
in equation (45) and simplifying (see the Mapler script in Appendix A) we obtain the
frequency equation as

1 + cos (λ) cosh (λ) = 0. (47)

This matches exactly with the frequency equation for a standard cantilever (see the book
by Meirovitch [21] or Géradin and Rixen [10]).

• Cantilever column with a top mass: fixed support without any rotary inertia and axial
force:
For this case η = 0, β = 0, and ν = 0. From the dispersion relationship in (32) observe
that for this case again λ1 = λ2 = λ (say). Substituting these in equation (45), taking the
limit ηr, ηt → ∞ and simplifying (see the Mapler script in Appendix A) we obtain the
frequency equation as

(− sin (λ) cosh (λ) + cos (λ) sinh (λ))α λ + cos (λ) cosh (λ) + 1 = 0. (48)

If we substitute α = 0 in this equation, we retrieve the standard cantilever case obtained
in equation (47).

• Cantilever column with a top mass and rotary inertia: fixed support without axial force:
For this case only η = 0 and ν = 0 and we also have λ1 = λ2 = λ (say). Substituting
these in equation (45), taking the limit ηr, ηt →∞ and simplifying (see the Mapler script
in Appendix A) we obtain the frequency equation as

(− cos (λ) cosh (λ) + 1) α β λ4 + (− cos (λ) sinh (λ)− sin (λ) cosh (λ))β λ3

+ (− sin (λ) cosh (λ) + cos (λ) sinh (λ))α λ + cos (λ) cosh (λ) + 1 = 0. (49)

If we substitute β = 0 in this equation, we retrieve the case obtained in equation (48).

4 Numerical Example
In this section we aim to understand the analytical expressions developed in the last section.

First we determine the relevant non-dimensional parameters in the equations derived here. We
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focus our attention on the affect of ν and the non-dimensional soil rotational stiffness ηr on the
first-natural frequency. For this reason, the numerical results are presented as a function of ν

and ηr. These two parameters are considered because the boundary condition and the load of
the turbine are the crucial design issues for the overall system.

The non-dimensional mass ratio can be obtained as

α =
M

mL
=

P

gmL
=

PL2

EI

(
EI

gmL3

)
= ν

(
EI

mL4

)
L/g = νf2

0 L/g (50)

We consider the rotary inertia of the blade assembly J = 0. This is not a very bad assumption
if there are very less misalignment.

In this example we have used the data of a wind turbine given in reference [26]. The numerical
values of the main parameters are summarised in Table 1 The moment of inertia of the circular

Turbine Structure Properties Numerical values
Length (L) 81 m
Average diameter (D) 3.5m
Thickness (th) 0.075 mm
Mass density (ρ) 7800 kg/m3

Young’s modulus (E) 2.1× 1011 Pa
Mass density (ρl) 7800 kg/m3

Rotational speed ($) 22 r.p.m = 0.37 Hz
Top mass (M) 130,000 kg
Rated power 3 MW

Table 1: Material and geometric properties of the turbine structure

cross section can be obtained as

I =
π

64
D4 − π

64
(D − th)4 ≈ 1

16
πD3th = 0.6314m4 (51)

The mass density per unit length of the system can be obtained as

m = ρA ≈ ρπDth/2 = 3.1817× 103kg/m (52)

Using these, the mass ratio α = 0.2495 and the nondimensional axial force ν = 0.0652. We also
obtain the natural frequency scaling parameter can be obtained as

f0 =
EI

mL4
= 0.9682 s−1. (53)

Since no information on the rotary inertia of the blade assembly is given, we consider J = 0.
This approximation is likely cause insignificant error for the first natural frequency. The radius
of gyration of the wind turbine is given by

r =

√
I

A
=

1
4

√
D2 + (D − th)2 ≈ D

2
√

2
= 1.2374m (54)

Therefore, the nondimensional radius of gyration µ = r/L = 0.0151. From equation (20) we
therefore have

ν̃ = ν + 2.2844× 10−4Ω2 ≈ ν (55)

The values of the soil stiffness parameters were not given. For the fixed support, the values of
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ηr and ηt will be infinity. Therefore, we will use ηr and ηt as variable parameters and try to
understand how they affect the overall behavior of the system.

We substitute the derived constants in Eqs. (35) and (36) to obtain λ1 and λ2. Substituting
them in equation (45) we solve for the nondimensional first natural frequency Ω1 in Matlabr. For
most applications the first natural frequency is the most important as the excitation frequency is
generally between 1/3-10 Hz and close to the blade passing frequency. Higher natural frequencies
can however be obtained by solving equation (45).
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Figure 2: The variation of the first natural frequency of the wind turbine with respect to the nondi-
mensional axial load ν for different values of nondimensional rotational soil stiffness ηr. Four fixed values
of the nondimensional translational stiffness ηt are considered in the four subplots. The data from the
example ($ = 0.37Hz and ν = 0.0315) is shown by a ’*’ in the diagram.

The variation of the first natural frequency of the wind turbine with respect to the axial
load for different values of nondimensional rotational soil stiffness and four fixed values of the
nondimensional translational stiffness are shown in Figure 2. A similar plot, but this time for
different values of ηr is shown in Figure 3 for furhter understanding. Since these plots are in
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Figure 3: The variation of the first natural frequency of the wind turbine with respect to the nondi-
mensional axial load ν for different values of nondimensional translational soil stiffness ηt. Four fixed
values of the nondimensional rotational stiffness ηr are considered in the four subplots. The data from
the example ($ = 0.37Hz and ν = 0.0315) is shown by a ’*’ in the diagram.

terms of generalized non-dimensional quantities, they are applicable to any turbine structures
which can be modeled within the scope of the theory discussed here. The natural frequency of
the system increases with the increasing values of the stiffness parameters ηr and ηt. This is
due to the fact that the increase in the rotational and translational stiffness properties stabilizes
the system. Note that after certain values of ηr and ηt (typically above 100), a further increase
in their values do not change the natural frequency. This is because after these values, the soil
structure interaction can be essentially considered as fixed so that further increase in ηr and/or
ηt has no effect. The natural frequency of the system decreases with the increasing value of ν.
This expected as the increase in the downward axial force essentially drives the system closer to
buckling. In fact the zero natural frequency corresponding to very small value of the rotational
stiffness (ηr ≈ 1) shown in the figures suggests that for that particular configuration the system
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has actually buckled. In these figures we have plotted the real data corresponding to the system
(marked by ’*’). The design should be such that the natural frequency of the system should
avoid the blade passing frequency.

The variation of the first natural frequency of the wind turbine with respect to the nondi-
mensional rotational soil stiffness for different values of axial force and four fixed values of the
nondimensional translational stiffness is shown in Figure 4. A similar plot, showing the variation
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Figure 4: The variation of the first natural frequency of the wind turbine with respect to the nondi-
mensional rotational soil stiffness ηr for different values of nondimensional axial load ν. Four fixed values
of the nondimensional translational stiffness ηt are considered in the four subplots. The bade passing
frequency $ = 0.37Hz is shown by a dashed line in the diagram.

of the first natural frequency with respect to the nondimensional translational soil stiffness for
different values of axial force and four fixed values of the nondimensional rotational stiffness is
given by Figure 5. In the same diagrams the bade passing frequency is shown by a dashed line.
The design should be such that the natural frequency of the system must always be far from
this line. From this criteria one can decide which parameter values should be avoided for a safe
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Figure 5: The variation of the first natural frequency of the wind turbine with respect to the nondi-
mensional translational stiffness ηt for different values of nondimensional axial load ν. Four fixed values
of the nondimensional rotational soil stiffness ηr are considered in the four subplots. The bade passing
frequency $ = 0.37Hz is shown by a dashed line in the diagram.

design.
In Figure 6, the overall variation of the first natural frequency of the wind turbine with respect

to both nondimensional rotational soil stiffness and axial load is shown in a 3D plot. Four fixed
values of the nondimensional translational stiffness ηt are considered in the four subplots. The
interesting feature to observe from this plot are (a) the rapid and sharp ‘fall’ in the natural
frequency for small values of ηr and relative flatness for values of ηr approximately over 50, and
(b) extremely high sensitivity for lower values of ν. The parameter ηt has an overall ‘scaling
effect’ of the natural frequency. Higher values of the stiffness corresponds to higher values of the
natural frequency as expected. In Figure 7, the overall variation of the first natural frequency
with respect to both the nondimensional soil stiffness parameters is shown in a 3D plot. Four
fixed values of the nondimensional axial load ν are considered in the four subplots. It can be
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Figure 6: The variation of the first natural frequency of the wind turbine with respect to the nondimen-
sional axial load ν and nondimensional rotational soil stiffness ηr. Four fixed values of the nondimensional
translational stiffness ηt are considered in the four subplots.

seen that lower values of ν corresponds to higher values of the natural frequency as seen in the
previous figures. These plots can be used to understand the overall design of the system.

5 Approximate Natural Frequency Based on SDOF Assumption
In subsection 3.1 an exact expression for the equation of the natural frequencies of the wind

turbine has been derived. Since only numerical solutions to the transcendental equation (45)
are available, in this section we aim to derive an approximate closed-form solution with the aim
of gaining more physical insights and simplicity. For wind and marine turbines, the first mode
of vibration is the most significant. As a result, we focus our attention on the first mode only.

In the first mode we can replace the distributed system by a single-degree-of-freedom (SDOF)
system with equivalent stiffness ke and equivalent mass Me as shown in Figure 8. The first
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Figure 7: The variation of the first natural frequency of the wind turbine with respect to the nondimen-
sional translational stiffness ηt and nondimensional rotational soil stiffness ηr. Four fixed values of the
nondimensional axial load ν are considered in the four subplots.
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e


Figure 8: Equivalent single-degree-of-freedom system for the first bending mode of the turbine
structure.
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natural frequency is given by

ω2
1 =

ke

Me
(56)

Following [Table 8-8, case 1, page 158, 4] for a cantilever column one has

Me = M + 0.24Mb = (α + 0.24)mL (57)

For our case the column is standing on elastic springs and also have an axial force. Therefore
the coefficient 0.24 needs to be modified to take these effects into account. We suppose that the
equivalent mass can be represented by

Me = (α + γm)mL (58)

where γm is the mass correction factor.
It is useful to express ke normalized by the stiffness term, kCL = EI/L3. Therefore, the first

natural frequency can be expressed as

ω2
1 ≈

ke

Me
=

ke

kCL

EI/L3

(α + γm)mL
=

EI

mL4

γk

(α + γm)
(59)

or ω1 ≈f0

√
γk

α + γm
(60)

where the stiffness correction factor γk is defined as

γk =
ke

kCL
. (61)

We only need to obtain γk and γm in order to apply the expression of the first natural frequency
in equation (59).

These correction factors can be obtained using the procedure developed in reference [3]. Here
we avoid the details of the derivation and give the final results only as:

γk =
λ3ηt (ηr cos (λ)− λ sin (λ))

ηrηt (sin (λ)− λ cos (λ)) + λ2 (ηt sin (λ) + ηr cos (λ)− λ2 sin (λ))

and γm =
3

140
11 ηr

2ηt
2 + 77 ηt

2ηr + 105 ηr
2ηt + 140 ηt

2 + 420 ηrηt + 420 ηr
2

9 ηr
2 + 6 ηr

2ηt + 18 ηrηt + ηr
2ηt

2 + 6 ηt
2ηr + 9 ηt

2

(62)

where
λ =

√
ν (63)

Substituting these expressions in the approximate formula (60) gives the complete parametric
variation of the first-natural frequency in terms of ν, α, ηr and ηt. The resulting expression is
simple enough to program in software like MS Excelr.

To understand the accuracy of the derived approximate expression, we compare it to the
numerical solution of the exact transcendental equation (45). Approximation of the first nat-
ural frequency of the wind turbine with respect to the nondimensional axial load for different
values of nondimensional translational soil stiffness and four fixed values of the nondimensional
rotational stiffness are shown in Figure 9. A similar plot, showing the approximation of the first
natural frequency with respect to the nondimensional translational soil stiffness for different
values of axial force and four fixed values of the nondimensional rotational stiffness is given by
Figure 10. Both these plots show that the results from this simple closed-form expression is in
excellent agreement from the results obtained via numerical solution of the complex transcen-
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Figure 9: Approximation of the first natural frequency of the wind turbine with respect to the nondi-
mensional axial load ν for different values of nondimensional translational soil stiffness ηt. Four fixed
values of the nondimensional rotational stiffness ηr are considered in the four subplots.

dental frequency equation over the wide range of parameter values considered. Therefore, the
formula shown in equation (60) should be used for all practical purposes.

6 Conclusions
Dynamics of flexible turbine structures on elastic end support has been investigated. A dis-

tributed parameter model using the Euler Bernoulli beam theory with axial load, elastic support
stiffness and top mass with rotary inertia is considered. The physical assumptions behind the
simplified model have been explained in details. The non-dimensional parameters necessary to
understand the dynamic behavior have been identified. These parameters are nondimensional
axial force (ν), nondimensional rotational soil stiffness, (ηr), nondimensional translational soil
stiffness, (ηt), mass ratio between the building and the turbine (α), nondimensional radius of
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(b) ηr = 5
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(c) ηr = 10
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Figure 10: Approximation of the first natural frequency of the wind turbine with respect to the nondi-
mensional translational stiffness ηt for different values of nondimensional axial load ν. Four fixed values
of the nondimensional rotational soil stiffness ηr are considered in the four subplots.

gyration of the turbine (µ). The characteristic equation governing the natural frequency of
the system by solving the associated eigenvalue problem. Necessary computer codes in Mapler

and Matlabr have been developed to solve the equation characteristic equation. Some well
recognized special cases arising from the general approach have been discussed for improved
understanding.

The analytical results derived here are illustrated by numerical examples. One of the key
conclusion is that the first natural frequency of the turbine structure will decrease with the
decrease in the stiffness properties of the (soil) support and increase in the axial load in the
column. This means that one needs to check the condition of the underlying soil and weight of the
rotor-blade assembly. The first natural frequency of the system should be well separated from the
the blade passing frequency. Based on an equivalent single-degree-of-freedom system assumption,
a simple approximate expression of the first natural frequency is given. Numerical verifications
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confirm that the results from this simple closed-form expression is in excellent agreement from
the results obtained via numerical solution of the complex transcendental frequency equation
over a wide range of parameter values. Using this expressions, designers could estimate the first
natural frequency for various parameter values and design the turbine structure such that the
resulting natural frequency does not come close to the blade passing frequency.
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A Mapler Code for the Derivation of the Frequency Equation
Here we show the code in Mapler [22] used to generate the equation for the natural frequen-

cies, that is equation (45). Codes used to obtain the special cases discussed in subsection 3.2
are also given below.

#------------------------------------------------------------------

# Program for calculating the symbolic expression of the eigenvalue

# equation of a beam-column with axial load supported by rotation and

# translational springs. The beam-column has a mass at the free end

# with rotary inertia.

# Developed by Prof S Adhikari: January 2009, Swnasea

#------------------------------------------------------------------

with(combinat):with(linalg):with(CodeGeneration):

R:=array(1..4,1..4):

s:=array(1..4,[sin(lambda[1]*x),cos(lambda[1]*x),

sinh(lambda[2]*x),cosh(lambda[2]*x)]);

for jj from 1 to 4 do

R[1,jj]:=subs(x=0,diff(s[jj],x$2) -eta[r]*diff(s[jj],x));

R[2,jj]:=subs(x=0,diff(s[jj],x$3) +nu*diff(s[jj],x) +eta[r]*s[jj]);

R[3,jj]:=subs(x=1,diff(s[jj],x$2) -Omega^2*beta*diff(s[jj],x));

R[4,jj]:=subs(x=1,diff(s[jj],x$3) +nu*diff(s[jj],x) +Omega^2*alpha*s[jj]);

od:

evalm(R);

feq1:=collect(simplify(det(R)),{alpha,nu});

# SPECIAL CASES

# no top mass, rotary inertia & axial force

feqSC1:=subs(lambda[1]=lambda,lambda[2]=lambda,

beta=0,alpha=0,nu=0,feq1):

collect(simplify(feqSC1/(2*lambda^6)),{eta[r],eta[t]})=0;

# Standard cantilever column: fixed support without any top

# mass, rotary inertia and axial force

t1:=collect(simplify(feqSC1/(2*lambda^6)),{eta[r],eta[t]})=0:

t2:=limit(t1,eta[r]=infinity):

limit(t2,eta[t]=infinity);

# Cantilever column with a top mass: fixed support without any
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# rotary inertia and axial force

feqSC2:=subs(Omega=lambda^2,nu=0,

lambda[1]=lambda,lambda[2]=lambda,beta=0,feq1):

t1:=collect(subs(simplify(feqSC2/(2*lambda^6))),{alpha,lambda})=0;

t2:=limit(t1,eta[r]=infinity):

limit(t2,eta[t]=infinity);

# Cantilever column with a top mass and rotary inertia: fixed

# support without axial force

feqSC3:=subs(Omega=lambda^2,nu=0,

lambda[1]=lambda,lambda[2]=lambda,feq1):

t1:=collect(subs(simplify(feqSC3/(2*lambda^6))),{alpha,lambda,beta})=0;

t2:=limit(t1,eta[r]=infinity):

limit(t2,eta[t]=infinity);

# export the frequency function to Matlab with correct notations

feq2:=subs({Omega^2=x,Omega^4=x^2,eta[r]=eta_r,eta[t]=eta_t,

alpha=alpha_p,beta=beta_p},feq1):

Matlab(feq2, resultname="f");
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